• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CHAIN CONDITIONS FOR C?-ALGEBRAS COMING FROM HILBERT C?-MODULES?

    2018-09-08 07:49:50MahmoodPOURGHOLAMHOSSEINMohammadROUZBEHANI

    Mahmood POURGHOLAMHOSSEIN Mohammad ROUZBEHANI

    Department of Mathematics,Faculty of Sciences,University of Qom,Qom,Iran

    E-mail:m-purghol@qom.ac.ir;mrouzbehani@stu.qom.ac.ir

    Massoud AMINI

    Department of Mathematics,Faculty of Mathematical Sciences,Tarbiat Modares University,14115-134 Tehran,Iran

    E-mail:mamini@modares.ac.ir

    Abstract In this paper we define and study chain conditions for Hilbert C?-modules through their C?-algebras of compact operators and discuss their perseverance under Morita equivalence and tensor products.We show that these chain conditions are passed from the C?-algebra to its Hilbert module under certain conditions.We also study chain conditions for Hilbert modules coming from inclusion of C?-algebra with a faithful conditional expectation.

    Key words Hilbert C?-module,Noetherian and Artinian C?-algebras,purely infinite C?-algebras,Morita equivalence

    1 Introduction

    Chain conditions for a C?-algebra[7]are defined in its set of closed(two-sides)ideals,while in an earlier definition,they are defined for its closed left ideals[26].The main goal of this paper is to extend chain conditions to Hilbert C?-modules.

    Hilbert C?-modules were first appeared in the work of Kaplansky[10]in the commutative case,and later in[20]and[22]for general C?-algebras(independently)and soon found applications in dilation theory[11]and Morita equivalence[24].It now plays a significant role in K-theory and KK-theory,as well as representation theory(via Morita equivalence)[14,16].

    Let A be a C?-algebra.A Hilbert C?-module E over A(or a Hilbert A-module)is a vector space over C and a right A-module with compatible scalar multiplication equipped with an A-valued inner product satisfying

    Let A be a C?-algebra and E be a Hilbert A-module.Let LA(E)be the C?-algebra of adjointable operators on E.Every element of LA(E)is a bounded A-linear map.Let KA(E)be he closed linear span of the set of all elementary operators θx,y:E → E given by θx,y(z)=x;x,y,z ∈ E.The elements of KA(E)are called compact(adjointable)operators.KA(E)is a closed ideal in LA(E)and so is a C?-algebra.The linking algebra of E is denoted by L(E)(c.f.,[21],p.51).

    A Hilbert C?-module E is called(algebraically) finitely generated if there exists a finite set S?E such that E equals the linear span(over C and A)of this set([16],p.8).If S is a countable set and E is the closed span of S.A,then E is called countably generated.

    Let E′be the set of all bounded A-inear maps from E to A.This set is itself a right A-module by the scalar multiplication(λf)(x)=λf(x)and the module action(f.a)(x)=a?f(x),for λ ∈ C,f ∈ E′,x ∈ E([20],p.450).This is called the dual(Banach)module of E.A Hilbert A-module E is called self-dual if E=E′.

    Let A and B be two C?-algebras.An A-B-imprimitivity bimodule X is an A-B-bimodule such that

    (i)X is a full left Hilbert A-module and a full(right)Hilbert B-module,

    for x,y,z∈X,a∈A,b∈B.

    Two C?-algebras A and B are called(strongly)Morita equivalent if there exists an A-B-imprimitivity bimodule.Rieffel called a pair of algebras admitting an imprimitivity bimodule strongly Morita equivalent,and used Morita equivalence to mean that the two C?-algebras had isomorphic categories of representations on Hilbert space.Here,Morita equivalence always means strong Morita equivalence in the sense of Rieffel.Morita equivalence preserves several properties of C?-algebras such as nuclearity and simplicity but it is weaker than the notion of C?-isomorphism[3,8].For more details on Hilbert C?-modules see[14,16,21].

    2 Chain Conditions on Ideals

    Chain conditions for a C?-algebra are defined in its set of closed(two-sides)ideals.A C?-algebra A is called Noetherian if it satisfies the ascending chain condition for closed ideals,that is,for any ascending chain I1? I2? I3? ···of closed ideals of A,there is an integer n such that Ii=Infor all i≥ n.The dual notion to a Noetherian C?-algebra is an Artinian C?-algebra,which satisfies the descending chain condition for closed ideals.

    Definition of a Noetherian C?-algebra differs from the traditional definition of a Noetherian Banach algebra,which imposes the same chain condition on the set of closed left ideals.In[26],it was shown that every Noetherian Banach algebra is finite dimensional.This result is still true for commutative C?-algebras,but not in general.In[7],there are examples of infinitedimensional Noetherian C?-algebras.Clearly,every C?-algebra with finitely many ideals is Noetherian and Artinian,such as simple C?-algebras.Examples of nontrivial Noetherian C?-algebras(i.e.,the Noetherian C?-algebras with infinitely many closed ideals)are given in[7].

    Each C?-algebra A is a Hilbert C?-module over itself with respect to the inner product ha,biA=a?b(a,b∈ A).This provides the motivation for extending chain conditions to Hilbert C?-modules.Of course,we cannot define Noetherian Hilbert C?-modules directly based on ascending chain conditions on closed submodules,since closed submodules of a C?-algebra A(as a Hilbert A-module)correspond to closed right ideals in A.Instead,we use the following definition.

    Definition 2.1 Let A be a C?-algebra.A Hilbert A-module E is called Noetherian(resp.Artinian)if C?-algebra KA(E)is Noetherian(resp.Artinian).

    A C?-algebra A is Noetherian(resp.Artinian)as a Hilbert A-module if and only if it is Noetherian(resp.Artinian)as a C?-algebra,because we have KA(A) ~=A(see[16],Proposition 2.2.2).

    If I is a closed ideal in C?-algebra A,then a ideal submodule for E,denoted by EI,is defined as follows

    This is a closed submodule of E.Indeed EI=E.I=E.I={x.a:x∈E,a∈I}(see[2],Definition 1.1 and Proposition 1.2).

    It’s worth mentioning that for a C?-algebra A,considered as a Hilbert A-module,the ideal submodules are precisely the closed ideals.

    If A is a C?-algebra and S ? A,then the closed ideal I generated by S is the smallest closed ideal containing S(see[17],p.4).

    Lemma 2.2 A C?-algebra A is Noetherian(resp.Artinian)if and only if every hereditary C?-subalgebra of A is Noetherian(resp.Artinian).

    Proof Let D be a hereditary C?-subalgebra of A and J be a closed ideal in D.We set

    Then h is a closed ideal in A contained in k=ADA.Let Id(D)be the set of closed ideals in D and Idk(A)be the set of closed ideals in A contained in k.We know that the map

    is a bijection(see[4],p.90).Therefore,the ascending(resp.descending)chain J1?J2?J3? ···(resp.J1? J2? J3? ···)of closed ideals of D stabilizes,because A is Noetherian(resp.Artinian).Thus D is Noetherian(resp.Artinian).The converse is clear. ?

    This lemma implies that a C?-algebra A is Noetherian(resp.Artinian)iffevery closed ideal in A is Noetherian(resp.Artinian),because a closed ideal is also a hereditary C?-subalgebra.

    Proposition 2.3 Let A be a C?-algebra.A Hilbert A-module is Noetherian(resp.Artinian)if and only if any of its ideal submodules are Noetherian(resp.Artinian).

    Proof Let E be a Noetherian(resp.Artinian)Hilbert A-module,I a closed ideal in A and EIan ideal submodule of E.According to the previous definition,C?-algebra KA(E)is Noetherian(resp.Artinian).On the other hand,KA(EI)is(up to isomorphism)a hereditary C?-subalgebra of KA(E)(see[15],Lemma 2.13).Now KA(EI)is Noetherian(resp.Artinian),by the previous lemma,and so EIis Noetherian(resp.Artinian).The converse is clear. ?

    Let A and B be two C?-algebras,I be a closed ideal in B and X an A-B-imprimitivity bimodule.In this case,X.I is a closed A-B-submodule of X andAhX.I,X.Ii(taking the closed span)is a closed ideal of A.In addition,if X?is dual(or adjoint)module of X(see[21],p.49)and we set then L(X.I)is a closed ideal of linking algebra L(X).

    Theorem 2.4 Let A and B be two C?-algebras and X an A-B-imprimitivity bimodule.Then the following assertions are equivalent

    (i)A is Noetherian(resp.Artinian);

    (ii)B is Noetherian(resp.Artinian);

    (iii)L(X)is Noetherian(resp.Artinian);

    (iv)KA(X)is Noetherian(resp.Artinian);

    (v)KB(X)is Noetherian(resp.Artinian).

    Proof In the above notations,the maps I 7?→Aand I 7?→ L(X.I)provide inclusion preserving bijective correspondences between the closed ideals of B,the closed ideals of A and the closed ideals of the linking algebra L(X),respectively(see[21],§3.3).Thus(i)? (ii)? (iii).On the other hand,since X is an A-B-imprimitivity bimodule and X?is a B-A-imprimitivity bimodule,then KB(X) ~=A and KA(X?) ~=B(see[21],Proposition 3.8).But KA(X)KA(X?)(via x?T=(T?x)?),therefore(i) ? (v)and(ii) ? (iv). ?

    As stated in the introduction,two C?-algebras A and B are called Morita equivalent if there exists an A-B-imprimitivity bimodule(see[16],Definition 1.5.5).Two Hilbert C?-modules E and F,respectively,over C?-algebras A and B are Morita equivalent,E ~MF,if the C?-algebras KA(E)and KB(F)are Morita equivalent(see[9],Definition 2.1).Morita equivalence in the classes of C?-algebras or Hilbert C?-modules is an equivalence relation(see[14],Proposition 7.5 and[9],p.3).

    Corollary 2.5 Noetherian(resp.Artinian)property is preserved under Morita equivalence of C?-algebras and Hilbert C?-modules.

    Proof Let A be a Noetherian(resp.Artinian)C?-algebra,B be a C?-algebra,E be a Noetherian Hilbert A-module and F be a Hilbert B-module.If A~MB,there is an A-B-imprimitivity bimodule.Thus,it follows from the previous theorem that B is Noetherian(resp.Artinian).If E ~MF,then KA(E)~MKB(F).Since KA(E)is Noetherian(resp.Artinian),KB(F)is also Noetherian(resp.Artinian)and so F is Noetherian(resp.Artinian). ?

    Let{Hn}be a set of Hilbert spaces and{An}be a set of C?-algebras.Then Hilbert space H and C?-algebra A are defined as follows Of course,A is a closed ideal in

    (see[4]).

    Example 2.6The C?-algebrais not Noetherian as a Hilbert A-module,because C CC2CC2C3···is a strictly ascending chain of closed ideals of KA(A)~=A.Also,ideal submoduleis not Noetherian.Therefore,C?-algebras C and A are not Morita equivalent as Hilbert C?-modules in the sense of(see[9],Definition 2.1),by Corollary 2.5.But Hilbert spaces C andare Morita equivalent as Hilbert C-modules,since KC(C)~MKC(H).Furthermore,for A and H as Hilbert C-modules and B=K(H)as a Hilbert B-module,we have A?MH ~MB.

    Theorem 2.7 Let A be a C?-algebra and E be a Hilbert A-module.Then the following assertions are equivalent

    (ii)E is Noetherian(resp.Artinian);

    (iii)L(E)is Noetherian(resp.Artinian);

    (iv)Each ascending(resp.descending)chain of ideal submodules of E stabilizes;

    (v)Each non-empty set of ideal submodules of E has a maximal(resp.minimal)element.

    Proof Since each Hilbert A-module E is itself a KA(E)-hE,EiA-imprimitivity bimodule(with KA(E)-valued inner productKA(E)hx,yi:= θx,y;θx,y∈ KA(E)),Theorem 2.4 implies(i)?(ii)and(i)?(iii).There is a natural bijective correspondence between the set of all ideal submodules of a Hilbert C?-module E and the set of all closed ideals of the corresponding linking algebra L(E)[2].Thus(iii)? (iv).For(iv)? (v),let(iv)holds and Γ be a non-empty set of ideal submodules of E.Since Γ 6= ?,there exists EI1∈ Γ.If EI1is maximal(resp.minimal),the implication holds.Otherwise,there exists EI2∈Γ such that EI1?EI2(resp.EI1?EI2).By continuing this process,we will obtain an ascending(resp.descending)chain EI1? EI2? EI3? ···(resp.EI1? EI2? EI3? ···)of ideal submodules of E.Now,by assumption,this chain stabilizes and so there is a n∈N such that EIn∈Γ is maximal(resp.minimal).(v)?(iv)is clear. ?

    According to this theorem,a full Hilbert A-module E is Noetherian(resp.Artinian)if and only if A is so.

    Let the set HA={(ai)i∈N:ai∈ Aconverges in A}be the canonical countably generated Hilbert A-module(see[16])and K denote the C?-algebra of compact operators on a separable Hilbert space H.

    Lemma 2.8 Let A be a separable C?-algebra and E a Hilbert A-module.Then KA(E)is σ-unital iff it is separable.

    Proof Let KA(E)be σ-unital.Then E is countably generated(see[14],Proposition 6.7).Thus E ⊕ HA~=HA,by Kasparov’s stabilization theorem(see[14],Theorem 6.2).On the other hand,KA(HA)is separable,because KA(HA)~=K ? A(see[14],p.63).Therefore,KA(E)is also separable.Since every separable C?-algebra is σ-unital(see[4],p.81),the converse holds.

    A topological space is Noetherian if it satisfies the ascending chain condition for open subsets(equivalently,if every family of open subsets contains a maximal element).Let Prim(A)be the set of primitive ideals in C?-algebra A.Then Prim(A),with the hull-kernel topology(or Jacobson topology),is a topological space(see[17],p.159).If A and B are C?-algebras,then we write A⊙B for their algebraic tensor product.We denote the completion of A⊙B with respect to the spatial(minimal)C?-norm by A?B.We say a C?-algebra A is nuclear if,for each C?-algebra B,there is only one C?-norm on A⊙B[4].

    Theorem 2.9 Let A and B be two C?-algebras.Then

    (i)if A is Noetherian,then the topology on Prim(A)has a basis consisting of compact-open sets;

    (ii)if A and B are separable and either A or B is nuclear,then A and B are Noetherian iff A?B is Noetherian.In particular,A is Noetherian iff Mn(A)is so,and also A is Noetherian iff A?K is so;

    (iii)in general,if A and B are Noetherian,then A?B is not necessarily Noetherian.

    Proof (i) We know that a C?-algebra A is Noetherian if and only if Prim(A)is a Noetherian topological space(see[7],Lemma 2.2).Now,since Prim(A)is Noetherian,each open set in Prim(A)is compact[6],and so each element of the basis is both compact and open.

    (ii)Let A and B be Noetherian.Since product of two Noetherian spaces is Noetherian[6],Prim(A)× Prim(B)is Noetherian.But we have a homeomorphism Prim(A)× Prim(B)~=Prim(A?B)([21],Theorem B.45).Thus Prim(A?B)is also Noetherian.Conversely,let A?B be Noetherian but A(or B)is not Noetherian.In this case,since Prim(A)is not Noetherian,it has an open set U which is not compact.If V is an open set in Prim(B),then(U×V)is an open set in Prim(A)× Prim(B) ~=Prim(A ? B)which is not compact.Thus we obtain a contradiction.The last assertion holds,because Mn(A) ~=Mn(C) ? A and two C?-algebras Mn(C)and K are simple,separable and nuclear.

    (iii)Let D be the Dadarlat’s non-exact,separable,simple,unital C?-algebra(see[18],§2.1)and A be the non-exact,separable,unital C?-subalgebra of B(H),constructed in Theorem 2.6 of[18].Then Prim(A)consists of two points and Prim(A?D)does not have a basis for its topology consisting of compact-open sets(see[19],Proposition 4.5(i)).Thus C?-algebras A and D are Noetherian,but A?D is not Noetherian,by(i). ?

    Remark 2.10 It is not true that every Noetherian C?-algebra is separable.For example,the Calkin algebra(i.e.,the quotient B(H)/K(H),on a separable infinite-dimensional Hilbert space H)is simple(and so Noetherian),but it is not separable.

    Suppose that A and B are C?-algebras,E is a Hilbert A-module,F is a Hilbert B-module.Let us briefly recall the construction the interior and exterior tensor products of E and F.

    Let ? :A ?→ LB(F)be an ?-homomorphism.Then F could be considered as a left A-module,via a·y=?(a)(y),for y∈F and a∈A.Consider the algebraic tensor product E⊙AF as a right B-module with action(x?y)·b=x?(y·b).Define

    for x,x′∈ E,y,y′∈ F,extended B-linearity on E ⊙AF.The completion is a Hilbert B-module E ??F,called the interior tensor product of E and F(via ?).There is a canonical?-homomorphism π :LA(E)→ LB(E??F),given on the algebraic tensor products by π(T)(x?y)=T(x)? y.This is injective when ? is so.

    The exterior tensor product E?F of E and F is defined directly.The algebraic tensor product E ⊙F is a right A⊙B-module via(x?y)·(a?b):=(x·a)?(y·b)and

    for x,x′∈ E,y,y′∈ F,extended by linearity.There is a canonical?-homomorphism σ :LA(E)? LB(F)→ LA?B(E ? F),given on the algebraic tensor products by σ(S ? T)(x?y)=S(x)?T(y).Here we have used the minimal tensor norm for the completion,but the construction could be carried out for any C?-norm on A⊙B[14].

    A C?-algebra A is infinite if A has an infinite projection and purely infinite if the hereditary C?-subalgebra xAx contains an infinite projection,for each nonzero positive element x of A.Clearly,if A is purely infinite,then it is infinite and every hereditary C?-subalgebra of A is purely infinite.The notion of purely infinite C?-algebras could also be defined in terms of the Cuntz comparison.Let A+be the positive cone of A.For a,b∈A+we write a-b if there is a sequence(xk)? A such that x?kaxk→ b,as k → ∞.Now a C?-algebra A is purely infinite iffthere is no character on A and for all a,b∈A+such that a belongs to the closed linear span of AbA,we have a-b[4].

    Example 2.11 Assume that E is a Hilbert C?-module over a Kirchberg algebra A that is a simple,separable,nuclear,purely infinite C?-algebra(for instance,see theorem 6.11 of[25]).The Cuntz algebra O∞is a unital,simple,nuclear,purely infinite C?-algebra and so A?O∞ ~=A(see[4],Theorem V.2.2.3).Since A is simple,E is full and so,A=hE,EiA~MKA(E).Furthermore,properties of simplicity,nuclearity and being purely infinite are preserved under Morita equivalence.Thus

    In particular,the Hilbert C?-modules E and E?O∞are Noetherian and Artinian and in fact,E~ME?O∞.

    Theorem 2.12 Assume that A and B are separable C?-algebras that either A or B is nuclear.Also,assume that E and F are countably generated Hilbert C?-modules,respectively,over C?-algebras A and B.Then

    (i)if A and B are Noetherian,then E?F is also Noetherian.In particular,the standard Hilbert B-module HBis Noetherian;

    (ii)if E and F are full and Noetherian,then A?B and E?F are also Noetherian.

    Proof (i)Since A and B are Noetherian,hE,EiA~MKA(E)and hF,FiB~MKB(F),KA(E)and KB(F)are also Noetherian.Furthermore,KA(E)and KB(F)are σ-unital and so are separable,by Lemma 2.8.Now if we assume that A is nuclear,then KA(E)is also nuclear,because we know that being nuclear is invariant under Morita equivalence of C?-algebras(see[3],Proposition 3.2).Thus KA(E)?KB(F)is Noetherian,by Theorem 2.9(ii),But KA(E)? KB(F)~=KA?B(E ? F)(see[21],Corollary 3.38).Therefore,KA?B(E ? F)is Noetherian.Let H be a separable infinite-dimensional Hilbert space.In this case H is a Hilbert C-module and B a Hilbert B-module.Thus H?B~=HBis Noetherian.

    (ii)First,since E and F are full and Noetherian,A and B are also Noetherian,by Theorem 2.7.Thus A?B is Noetherian,by Theorem 2.9(ii).Furthermore,E?F is also Noetherian,by(i). ?

    Proposition 2.13 Let E and F be Hilbert C?-modules,respectively,over C?-algebras A and B.If E is Noetherian and ? :A ?→ LB(F)is a ?-isomorphism,then E ??F is also Noetherian.

    Proof By assumption,KA(E)is Noetherian.But KA(E) ~=KB(E ??F)(see[14],Proposition 4.7),therefore,KB(E??F)is Noetherian. ?

    If we consider the example of C?-algebras A and D,presented in the proof of Theorem 2.9(iii),as Hilbert C?-modules,we conclude that being Noetherian as a Hilbert C?-modules is not preserved under tensor product,in general.Of course,this property is always preserved under Morita equivalence of Hilbert C?-modules and it passes to ideal submodules.

    3 Properties of Projections

    In this section we show that under certain conditions,we can attribute some of the properties of a simple C?-algebra to Noetherian and Artinian C?-algebras.As an application we obtain some properties of the C?-algebra of compact operators of a Noetherian and Artinian Hilbert C?-module.

    Lemma 3.1 Suppose that the following conditions hold for properties X and Y in the category of C?-algebras.

    (i)Any simple C?-algebra having property X,also as property Y.

    (ii)Property X passes to closed ideals and quotients.

    (iii)The property Y is preserved under extensions.

    Then any Noetherian and Artinian C?-algebra A having property X also has property Y.

    Proof Since A is Noetherian,every non empty set of its closed ideals has a maximal element.Since A is both Noetherian and Artinian,it has composition series of closed ideals as 0=I0?I1?I2?···?In=A,such that Ij/Ij?1is simple,for each 1 ≤ j≤ n.By(ii),Ijand Ij/Ij?1have property X and so property Y0,by(i).In particular,A/In?1=In/In?1has the property Y.By(iii),A/In?2also has property Y because,the closed ideal In?1/In?2?A/In?2and the quotient(A/In?2)/(In?1/In?2) ~=A/In?1have property Y.By continuing this process,A/I0~=A has property Y. ?

    We recall that the element a∈A is called full,if the closed ideal of A generated by a(i.e.,the smallest closed ideal containing a),is all of A.

    Lemma 3.2 Let A be a Noetherian and Artinian C?-algebra that has a full element a.Then either a is the only full element in A or there exists a neighborhood Nδ(a),with center a and radius δ>0,such that b is also full in A,for each b ∈ Nδ(a).

    Proof Let

    be a composition series of A.Then a ∈ AI(λ,n?1),(because if a belongs to a proper closed ideal in A,then the smallest closed ideal containing a is not A,which is a contradiction).Since I(λ,n?1)is closed,AI(λ,n?1)is open and so there is a neighborhood Nδλ(a),with center a and radius δλ>0,such that Nδλ(a) ? AI(λ,n?1).Now suppose that{Sλ}λ∈Λis the set of all composition series in A and δ:=inf{δλ:λ ∈ Λ}.If δ=0,then a is the only full element in A,because if b is an element in A such that k a?b k> δ,then b must belong to a proper closed ideal in A and so it is not full.If δ>0,then there is the desired neighborhood Nδ(a). ?

    A C?-algebra A is said to have the ideal property,in short(IP),if projections in A separate closed ideals in A,i.e.,whenever I,J are closed ideals in A such that I*J,then there is a projection in in IJ,or equivalently if each of its closed ideals is generated(as an ideal)by its projections([19],Remark 2.1).Let a ∈ A+and ?>0.Then(a ? ?)+:= ?(a),where ? :R+→ R+is given by ?(t)=max{(t? ?),0}([13],p.640).

    Now we are ready to state the main theorem of this section.

    Theorem 3.3 Let the C?-algebra A be Noetherian and Artinian and also purely infinite.Let E be a Hilbert A-module.Then

    (i)Every closed ideal in A is generated by a single projection and A has the ideal property.

    (ii)KA(E)has a full projection,is purely infinite and has the ideal property.

    Proof (i)Let I be a closed ideal in A.Then I is also Noetherian and Artinian,because being Noetherian and Artinian pass to closed ideals.First,we show that I is generated by a single positive element.Every simple C?-algebra that is purely infinite,contains an infinite projection([4],Corollary V.2.3.1)that is full,by simplicity.Thus every purely infinite,simple C?-algebra is generated(as a closed ideal)by a single positive element.Also,being purely infinite passes to closed ideals and quotients([13],Proposition 4.3).Furthermore,if the closed ideal J and the quotient I/J are generated(as closed ideals)by a single positive element and we consider the short exact sequence 0?→Jι?→Iπ?→I/J?→0,then by lifting the generator of I/J to I and adding the generator of J to it,we obtain a single generator for I.Thus I is generated by a single positive element a,by Lemma 3.1.We now consider two cases,by the previous lemma.If a is the only full positive element in I,then it is equivalent to a projection p in I,because I is purely infinite and so the positive element a is properly infinite.Thus p is full and so a=p by uniqueness.If there exists a neighbourhood Nδ(a)whose elements are also full in I,then since(a??0)+∈ Nδ(a),for an 0< ?0< δ,I is also generated by(a? ?0)+and so by a single projection,according to the argument in the implication(i)?(ii)in Proposition 2.7 of[19],(without needing to assumptions separability and(i)of that proposition and,of course,applying the previous lemma).Thus,every closed ideal in A is generated by a single projection.This implies that A has the ideal property.

    (ii)This follows from(i),because being Noetherian and Artinian and being purely infinite pass to closed ideals and are preserved under Morita equivalence[13],and,moreover,we have hE,EiA~MKA(E). ?

    A C?-algebra is said to be of type I(or postliminal,or GCR)if its image under every irreducible*-representation contains the compact operators(see[23],p.170).

    Proposition 3.4 Let A be a Noetheian C?-algebra and E be a countably generated Hilbert A-module.

    (i)Every closed ideal in A corresponds to a compact-open subset of Prim(A).

    (ii)If A is also separable and purely infinite,then every closed ideal in A is generated by a single projection and,in addition,KA(E)has a full projection,is purely infinite and has the ideal property.

    (iii)If A is also separable and of type I,then KA(E)is a Noetherian AF-algebra.

    Proof (i)Since Prim(A)is Noetherian,each open set in Prim(A)is compact and so each closed ideal in A corresponds to a compact-open subset of Prim(A),via I 7→{J ∈ Prim(A):I?J}c.

    (ii)Every closed ideal in A is generated by a single projection,by(i)and Proposition 2.7 of[19]and so A has the ideal property.Since KA(E)is σ-unital,it is separable,by Lemma 2.8.Thus the last assertion holds.

    (iii)Being of type I is preserved under Morita equivalence(see[23],p.170).Now,since KA(E)is Noetherian,separable and of type I,it is also an AF-algebra(see[5],p.80).

    We know that if A ? B is an inclusion of C?-algebras with a faithful canonical conditional expectation E:B → A,then kxk=kE(x?x)k is a norm induced by the inner product=E(x?y)and so EE:=is a Hilbert A-module.A conditional expectation E:B → A is said to have finite index if there exists u1,u2,···,un∈ B such that[12,28].

    We use the previous notation in the following theorem,which is the second main result of this section.

    Theorem 3.5 Assume that A ? B is an inclusion of C?-algebras with a conditional expectation E:B→A that is faithful and of finite index.If A is Noetherian(resp.Artinian),then EEand LA(EE)are Noetherian(resp.Artinian).Furthermore,LA(EE)=B(EE).

    Proof For any x∈EE=Bk.kE,there is a sequence(bm)m?B such that x= lim m→∞bm.But E is of finite index,thus there exists u1,u2,···,un∈ B such that for each m ≥ 1,

    for each x∈EE.Thereforeis the identity operator and belongs to KA(EE).Now,let A be Noetherian(resp.Artinian).Sinceis a closed ideal in A,hEE,EEiA~MKA(EE)and LA(EE)=M(KA(EE))=KA(EE),EEand LA(EE)are also Noetherian(resp.Artinian).Furthermore,since KA(EE)contains the identity operator,EEis self-dual(see[1],Lemma 3.3(i))and so LA(EE)=B(EE). ?

    In particular,if A is finite-dimensional,then A,B and EEare Noetherian and Artinian.Because,we know that if E is of finite index,then A is finite-dimensional iff B is so(see[28],Lemma 2.7.1).Furthermore,since A is separable,KA(EE)is also separable,by Lemma 2.8.

    In general,if a conditional expectation E:B→A is faithful and of finite index,A and B are not necessarily Morita equivalent.For example,the map E:M2(C)→C2,defined byis a faithful conditional expectation of finite index(see[27],Example 2.10).But M2(C)and C2are not Morita equivalent,because C2is non-simple.Of co urse,for a conditional expectation E:B→A,if(en)nis a countable approximate unit for B(i.e.,B is σ-unital)then(E(en))nis a countable approximate unit for A because

    for each a ∈ A.Thus A is also σ-unital and so A ~MB i ffA and B are stably isomorphic,by the Brown-Green-Rieffel theorem(see[21],Theorem 5.55).

    国产精品国产三级专区第一集| 最近最新中文字幕免费大全7| 欧美日韩精品成人综合77777| 精品久久蜜臀av无| 亚洲国产最新在线播放| 高清毛片免费看| 捣出白浆h1v1| 如日韩欧美国产精品一区二区三区| 国产国拍精品亚洲av在线观看| 午夜91福利影院| 中文字幕免费在线视频6| 久久av网站| 日本黄大片高清| 99热网站在线观看| 亚洲欧美日韩卡通动漫| 999精品在线视频| 亚洲欧美成人精品一区二区| 一区二区三区精品91| 欧美少妇被猛烈插入视频| 在现免费观看毛片| 久久狼人影院| 男女边摸边吃奶| 国产国拍精品亚洲av在线观看| 国产精品久久久久成人av| 999精品在线视频| 亚洲国产精品999| 亚洲一区二区三区欧美精品| 狂野欧美激情性xxxx在线观看| 五月天丁香电影| 久久久久久久亚洲中文字幕| 欧美日韩一区二区视频在线观看视频在线| 国产成人免费观看mmmm| 一本久久精品| 精品一区二区三卡| 国产免费福利视频在线观看| 亚洲色图 男人天堂 中文字幕 | 少妇 在线观看| 欧美 日韩 精品 国产| 蜜桃在线观看..| 大话2 男鬼变身卡| 亚洲国产av影院在线观看| 青春草亚洲视频在线观看| 一区二区三区四区激情视频| 亚洲精品成人av观看孕妇| 男女午夜视频在线观看 | 视频中文字幕在线观看| 欧美国产精品va在线观看不卡| 亚洲av在线观看美女高潮| 宅男免费午夜| 国产女主播在线喷水免费视频网站| 少妇人妻久久综合中文| 黑人猛操日本美女一级片| 亚洲婷婷狠狠爱综合网| 国产精品久久久久成人av| 啦啦啦啦在线视频资源| 乱码一卡2卡4卡精品| 国产日韩欧美亚洲二区| www.色视频.com| 日韩制服骚丝袜av| 国产激情久久老熟女| 久久综合国产亚洲精品| 丝袜美足系列| 最近的中文字幕免费完整| 18禁观看日本| 成年女人在线观看亚洲视频| 高清视频免费观看一区二区| 国产免费现黄频在线看| 伊人亚洲综合成人网| 美女主播在线视频| 五月玫瑰六月丁香| 中文字幕av电影在线播放| 曰老女人黄片| 亚洲国产精品国产精品| 日韩精品免费视频一区二区三区 | 天堂俺去俺来也www色官网| 国产男人的电影天堂91| 在线观看国产h片| 99久久综合免费| 免费看av在线观看网站| 亚洲欧美色中文字幕在线| 99热全是精品| 18+在线观看网站| 成人亚洲精品一区在线观看| 69精品国产乱码久久久| 在线观看国产h片| 国产老妇伦熟女老妇高清| 国产乱人偷精品视频| 少妇被粗大的猛进出69影院 | 99re6热这里在线精品视频| 人体艺术视频欧美日本| 18在线观看网站| 精品一区二区免费观看| 青春草亚洲视频在线观看| 99久久精品国产国产毛片| 国产69精品久久久久777片| 欧美精品高潮呻吟av久久| 国产在线视频一区二区| 久久久亚洲精品成人影院| 国产一区二区在线观看av| 国产亚洲午夜精品一区二区久久| 美女内射精品一级片tv| 久久99热6这里只有精品| 又黄又爽又刺激的免费视频.| 欧美+日韩+精品| 国产免费一级a男人的天堂| 亚洲综合色惰| 看免费av毛片| 9热在线视频观看99| 久久精品国产a三级三级三级| 熟女av电影| 母亲3免费完整高清在线观看 | 国产毛片在线视频| 午夜福利,免费看| 你懂的网址亚洲精品在线观看| 视频区图区小说| 久久韩国三级中文字幕| 久久久久久久国产电影| 成年人免费黄色播放视频| 欧美日韩成人在线一区二区| 免费不卡的大黄色大毛片视频在线观看| 久久午夜福利片| 晚上一个人看的免费电影| 赤兔流量卡办理| 成人亚洲欧美一区二区av| 亚洲精品自拍成人| 亚洲成国产人片在线观看| 久久97久久精品| 欧美成人午夜精品| 久久精品aⅴ一区二区三区四区 | 国产免费又黄又爽又色| 老司机影院毛片| 只有这里有精品99| 欧美少妇被猛烈插入视频| 一本大道久久a久久精品| 熟妇人妻不卡中文字幕| 97超碰精品成人国产| 国产福利在线免费观看视频| 日本wwww免费看| 人人澡人人妻人| av电影中文网址| 亚洲国产成人一精品久久久| 天堂中文最新版在线下载| 男女国产视频网站| 高清在线视频一区二区三区| 午夜福利网站1000一区二区三区| 亚洲av电影在线观看一区二区三区| 国产成人欧美| 日本-黄色视频高清免费观看| 97在线视频观看| 另类精品久久| 大话2 男鬼变身卡| 黄色毛片三级朝国网站| 男女无遮挡免费网站观看| 欧美精品一区二区免费开放| 在现免费观看毛片| 精品酒店卫生间| 亚洲精品乱久久久久久| 欧美 日韩 精品 国产| 精品国产露脸久久av麻豆| 亚洲av.av天堂| 久久人人爽av亚洲精品天堂| 波野结衣二区三区在线| 街头女战士在线观看网站| 高清av免费在线| av电影中文网址| 亚洲欧美色中文字幕在线| 久久国产精品大桥未久av| 最新中文字幕久久久久| 校园人妻丝袜中文字幕| 麻豆乱淫一区二区| 午夜免费观看性视频| 欧美xxⅹ黑人| av免费在线看不卡| 国产1区2区3区精品| 婷婷色av中文字幕| 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| 免费久久久久久久精品成人欧美视频 | 国产高清不卡午夜福利| 美女主播在线视频| 黄色怎么调成土黄色| 亚洲精品中文字幕在线视频| 亚洲久久久国产精品| 欧美亚洲 丝袜 人妻 在线| 免费观看无遮挡的男女| 日韩在线高清观看一区二区三区| 日韩三级伦理在线观看| 啦啦啦啦在线视频资源| 成人毛片a级毛片在线播放| av天堂久久9| 亚洲精品一区蜜桃| 亚洲精品,欧美精品| 一区二区三区四区激情视频| 免费av不卡在线播放| 亚洲av成人精品一二三区| 亚洲,一卡二卡三卡| 亚洲精品国产av蜜桃| 国产伦理片在线播放av一区| 国产女主播在线喷水免费视频网站| 亚洲一级一片aⅴ在线观看| 在线天堂最新版资源| 观看av在线不卡| 啦啦啦中文免费视频观看日本| 亚洲精品成人av观看孕妇| 国产午夜精品一二区理论片| 免费人妻精品一区二区三区视频| 亚洲美女视频黄频| 毛片一级片免费看久久久久| 亚洲精品一区蜜桃| 欧美最新免费一区二区三区| 久久久久久伊人网av| 人妻人人澡人人爽人人| 丝瓜视频免费看黄片| 亚洲国产日韩一区二区| 波多野结衣一区麻豆| 午夜免费鲁丝| 婷婷色av中文字幕| 伦理电影大哥的女人| 国产麻豆69| 亚洲婷婷狠狠爱综合网| 涩涩av久久男人的天堂| 国产av精品麻豆| 日本wwww免费看| 美女福利国产在线| 久久人人97超碰香蕉20202| 日本黄色日本黄色录像| 最黄视频免费看| 国产免费视频播放在线视频| 天天躁夜夜躁狠狠躁躁| 女性生殖器流出的白浆| 草草在线视频免费看| 欧美日韩国产mv在线观看视频| 国产爽快片一区二区三区| 欧美激情国产日韩精品一区| 一区在线观看完整版| 日日爽夜夜爽网站| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| 成人国语在线视频| 国产在视频线精品| 国产淫语在线视频| 久久99蜜桃精品久久| 一二三四中文在线观看免费高清| 晚上一个人看的免费电影| 久久久久精品人妻al黑| 最新中文字幕久久久久| 一区二区三区四区激情视频| 九九爱精品视频在线观看| 久久久欧美国产精品| 97精品久久久久久久久久精品| 男人舔女人的私密视频| 国产成人精品在线电影| 又大又黄又爽视频免费| 亚洲欧美中文字幕日韩二区| 亚洲精品美女久久久久99蜜臀 | 亚洲内射少妇av| 少妇 在线观看| 国产白丝娇喘喷水9色精品| 亚洲国产欧美在线一区| 国产精品国产三级国产专区5o| 看免费成人av毛片| 亚洲av福利一区| 一边摸一边做爽爽视频免费| 亚洲,欧美精品.| 欧美bdsm另类| 丰满少妇做爰视频| 午夜福利视频在线观看免费| 成人毛片60女人毛片免费| 国国产精品蜜臀av免费| 亚洲精品第二区| 亚洲精品美女久久久久99蜜臀 | 制服人妻中文乱码| 亚洲av综合色区一区| 国产免费现黄频在线看| 国产精品国产三级国产av玫瑰| 国产精品久久久久久精品电影小说| 国产又色又爽无遮挡免| 欧美人与性动交α欧美精品济南到 | 一级毛片黄色毛片免费观看视频| 欧美精品国产亚洲| 亚洲精品成人av观看孕妇| 国产在线免费精品| av免费在线看不卡| 曰老女人黄片| 欧美激情 高清一区二区三区| 人人妻人人澡人人看| 国语对白做爰xxxⅹ性视频网站| 国产淫语在线视频| 91aial.com中文字幕在线观看| 嫩草影院入口| 精品人妻在线不人妻| 亚洲天堂av无毛| 成人无遮挡网站| 精品视频人人做人人爽| 最黄视频免费看| 午夜激情av网站| 久久久久久久久久久免费av| 国国产精品蜜臀av免费| 九九爱精品视频在线观看| 日韩制服丝袜自拍偷拍| 亚洲,欧美精品.| 久久久久精品久久久久真实原创| 女性被躁到高潮视频| 伦精品一区二区三区| 亚洲第一av免费看| 全区人妻精品视频| 精品一区在线观看国产| 免费在线观看黄色视频的| 国产激情久久老熟女| 青春草国产在线视频| 黄色一级大片看看| 极品人妻少妇av视频| 国产精品熟女久久久久浪| 国产淫语在线视频| 97在线人人人人妻| 男的添女的下面高潮视频| 久久人人爽av亚洲精品天堂| 国产乱人偷精品视频| 久久99一区二区三区| 国产视频首页在线观看| 久久人人97超碰香蕉20202| 亚洲中文av在线| 欧美国产精品va在线观看不卡| 国产成人午夜福利电影在线观看| 欧美人与性动交α欧美精品济南到 | www.av在线官网国产| 日韩三级伦理在线观看| 亚洲欧美一区二区三区国产| 国产一区二区三区综合在线观看 | 久久国产精品男人的天堂亚洲 | 免费看av在线观看网站| 亚洲欧美一区二区三区黑人 | 亚洲国产色片| 亚洲精品美女久久av网站| 午夜激情久久久久久久| 亚洲精品456在线播放app| 国产有黄有色有爽视频| 国产视频首页在线观看| 成年av动漫网址| 欧美精品一区二区大全| 亚洲精品久久午夜乱码| 国产色爽女视频免费观看| 欧美精品一区二区免费开放| 亚洲精品中文字幕在线视频| 欧美日韩精品成人综合77777| 国产69精品久久久久777片| 只有这里有精品99| 久久精品久久久久久久性| 最近2019中文字幕mv第一页| 最近最新中文字幕大全免费视频 | 成人毛片a级毛片在线播放| 国产精品熟女久久久久浪| 不卡视频在线观看欧美| xxx大片免费视频| 亚洲精品久久久久久婷婷小说| 观看美女的网站| 久久精品aⅴ一区二区三区四区 | 黑丝袜美女国产一区| 校园人妻丝袜中文字幕| 男人添女人高潮全过程视频| 美女国产视频在线观看| 丝袜在线中文字幕| 亚洲精品自拍成人| 国内精品宾馆在线| 免费看光身美女| 国产亚洲午夜精品一区二区久久| 韩国精品一区二区三区 | 99热这里只有是精品在线观看| 色网站视频免费| 久久午夜综合久久蜜桃| 日日啪夜夜爽| 精品福利永久在线观看| 校园人妻丝袜中文字幕| 在线观看一区二区三区激情| 国产精品一国产av| 亚洲精品日本国产第一区| 黄色配什么色好看| √禁漫天堂资源中文www| 女人被躁到高潮嗷嗷叫费观| 国产av码专区亚洲av| 一级毛片电影观看| 高清在线视频一区二区三区| 一区二区三区精品91| 亚洲精品国产av成人精品| 欧美人与善性xxx| 亚洲精品色激情综合| 纯流量卡能插随身wifi吗| 1024视频免费在线观看| 精品少妇内射三级| 高清视频免费观看一区二区| 国产成人精品婷婷| 日韩一区二区视频免费看| 久久久精品94久久精品| 亚洲成av片中文字幕在线观看 | 最近手机中文字幕大全| 纵有疾风起免费观看全集完整版| 在线免费观看不下载黄p国产| 超色免费av| 婷婷成人精品国产| 一区二区av电影网| 国产日韩欧美在线精品| 多毛熟女@视频| 18禁国产床啪视频网站| 黄片播放在线免费| 久久久国产精品麻豆| videossex国产| 亚洲第一区二区三区不卡| 国产片特级美女逼逼视频| 母亲3免费完整高清在线观看 | 亚洲伊人色综图| 国产成人免费观看mmmm| 成年动漫av网址| 男女国产视频网站| 日韩,欧美,国产一区二区三区| 久久韩国三级中文字幕| 久久人妻熟女aⅴ| 亚洲欧美中文字幕日韩二区| 91国产中文字幕| 18禁动态无遮挡网站| 日韩制服骚丝袜av| 少妇精品久久久久久久| 国产精品三级大全| 国产成人一区二区在线| 99久久综合免费| 久久人妻熟女aⅴ| 人妻少妇偷人精品九色| 欧美精品一区二区免费开放| 99久久人妻综合| 18禁裸乳无遮挡动漫免费视频| 男女无遮挡免费网站观看| 欧美精品av麻豆av| 亚洲国产日韩一区二区| 午夜福利影视在线免费观看| 精品人妻偷拍中文字幕| 国产精品熟女久久久久浪| 日韩成人伦理影院| 色5月婷婷丁香| 男女高潮啪啪啪动态图| 国产高清三级在线| 美女主播在线视频| 超碰97精品在线观看| 视频在线观看一区二区三区| 婷婷色综合www| 久久久国产精品麻豆| 亚洲国产精品一区三区| 日本欧美视频一区| 亚洲欧洲国产日韩| 在线免费观看不下载黄p国产| 国产精品久久久久久久电影| 亚洲,一卡二卡三卡| 中国美白少妇内射xxxbb| 少妇的丰满在线观看| 精品99又大又爽又粗少妇毛片| 只有这里有精品99| 熟女人妻精品中文字幕| 插逼视频在线观看| 黄色怎么调成土黄色| 国产成人午夜福利电影在线观看| 18在线观看网站| 99视频精品全部免费 在线| 男男h啪啪无遮挡| 少妇高潮的动态图| 亚洲欧美日韩卡通动漫| av有码第一页| 91精品国产国语对白视频| 十八禁网站网址无遮挡| 午夜免费鲁丝| 人人妻人人爽人人添夜夜欢视频| 成人18禁高潮啪啪吃奶动态图| 国产精品人妻久久久久久| 国产视频首页在线观看| 日韩成人伦理影院| 丰满迷人的少妇在线观看| 深夜精品福利| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品999| 在线观看国产h片| 高清视频免费观看一区二区| 9色porny在线观看| 伦精品一区二区三区| 人人澡人人妻人| 亚洲精品美女久久久久99蜜臀 | 国产 精品1| 国产成人精品无人区| 午夜激情av网站| 亚洲精品视频女| 亚洲五月色婷婷综合| 国产黄色免费在线视频| 久久久精品区二区三区| 只有这里有精品99| 亚洲国产欧美日韩在线播放| 亚洲欧美成人综合另类久久久| 免费黄网站久久成人精品| 18+在线观看网站| 精品少妇久久久久久888优播| 亚洲中文av在线| 99九九在线精品视频| 香蕉丝袜av| 女性被躁到高潮视频| 交换朋友夫妻互换小说| 亚洲国产精品成人久久小说| 亚洲国产精品一区二区三区在线| 亚洲av免费高清在线观看| 欧美日韩综合久久久久久| 一级毛片我不卡| 亚洲av日韩在线播放| 五月天丁香电影| 欧美精品一区二区大全| 九色亚洲精品在线播放| 亚洲av中文av极速乱| 99热全是精品| 制服诱惑二区| 欧美日韩亚洲高清精品| 欧美日韩精品成人综合77777| 纯流量卡能插随身wifi吗| 国产欧美日韩综合在线一区二区| 精品99又大又爽又粗少妇毛片| 久久这里只有精品19| 一个人免费看片子| 大片电影免费在线观看免费| 日韩精品免费视频一区二区三区 | 国产精品久久久久久精品古装| 久久精品国产自在天天线| 精品亚洲成a人片在线观看| 日韩av免费高清视频| 久久亚洲国产成人精品v| 免费观看无遮挡的男女| 九九在线视频观看精品| 下体分泌物呈黄色| freevideosex欧美| 如何舔出高潮| 成人国产麻豆网| av黄色大香蕉| 草草在线视频免费看| 精品亚洲乱码少妇综合久久| 亚洲国产av新网站| 欧美精品高潮呻吟av久久| 男女高潮啪啪啪动态图| 中国美白少妇内射xxxbb| 成人影院久久| 国产欧美亚洲国产| 国语对白做爰xxxⅹ性视频网站| 天天操日日干夜夜撸| 人妻系列 视频| 99热国产这里只有精品6| 国产精品麻豆人妻色哟哟久久| 久久久国产一区二区| 成人午夜精彩视频在线观看| 黄片播放在线免费| 国产一区二区三区综合在线观看 | 久久国产精品大桥未久av| 日本欧美国产在线视频| 久久久国产精品麻豆| 春色校园在线视频观看| 交换朋友夫妻互换小说| 亚洲精品成人av观看孕妇| 成人黄色视频免费在线看| 飞空精品影院首页| 少妇被粗大猛烈的视频| 熟妇人妻不卡中文字幕| 亚洲美女视频黄频| 国产亚洲精品第一综合不卡 | 久久精品国产a三级三级三级| 最新中文字幕久久久久| 日日啪夜夜爽| 十分钟在线观看高清视频www| 国产精品久久久av美女十八| 国产欧美另类精品又又久久亚洲欧美| 天天影视国产精品| 少妇的逼好多水| 秋霞伦理黄片| 夫妻午夜视频| 国产精品人妻久久久久久| 久久人人爽av亚洲精品天堂| 亚洲在久久综合| xxxhd国产人妻xxx| 老司机影院毛片| 亚洲av免费高清在线观看| 精品人妻偷拍中文字幕| 美国免费a级毛片| 寂寞人妻少妇视频99o| 在线免费观看不下载黄p国产| 国产精品一国产av| 18禁动态无遮挡网站| 日韩精品有码人妻一区| 久久精品国产鲁丝片午夜精品| 亚洲一级一片aⅴ在线观看| 国产xxxxx性猛交| 黑人猛操日本美女一级片| 18禁国产床啪视频网站| 亚洲色图综合在线观看| 国产免费现黄频在线看| 性色avwww在线观看| 日本-黄色视频高清免费观看| 国产老妇伦熟女老妇高清| 精品人妻偷拍中文字幕| 建设人人有责人人尽责人人享有的| 国产精品无大码| 亚洲美女搞黄在线观看| 亚洲综合色惰| 日韩视频在线欧美| 丰满乱子伦码专区| 捣出白浆h1v1| 久久精品国产综合久久久 | 亚洲高清免费不卡视频| 香蕉丝袜av| 下体分泌物呈黄色| 免费人妻精品一区二区三区视频| 欧美成人精品欧美一级黄| 精品久久久久久电影网| 国产又爽黄色视频| 国产精品欧美亚洲77777| 人人妻人人爽人人添夜夜欢视频| 国产免费一区二区三区四区乱码| 日本-黄色视频高清免费观看|