徐愛功,蔡贛飛,潘 峰,隋 心,郝雨時(shí),劉 韜
(1.遼寧工程技術(shù)大學(xué) 測(cè)繪與地理科學(xué)學(xué)院,遼寧 阜新 123000;2.北京衛(wèi)星導(dǎo)航中心,北京 100094)
隨著人們?cè)谑覂?nèi)環(huán)境下的工作與活動(dòng)時(shí)間日益增多,人們對(duì)室內(nèi)定位的需求也隨之增大[1]。常用的室內(nèi)定位技術(shù)有藍(lán)牙定位、超寬帶(ultra wide band,UWB)定位、超聲波定位等。其中,超寬帶定位是一種利用非正弦波脈沖來傳輸信息的無線通信技術(shù),憑借其功率消耗低、穿透能力強(qiáng)等特點(diǎn),UWB及相關(guān)技術(shù)廣泛應(yīng)用于室內(nèi)定位研究[2]。但UWB測(cè)距信號(hào)抗差性較差,對(duì)定位精度影響很大[3]。慣性導(dǎo)航系統(tǒng)(inertial navigation system,INS)是一種不依賴外界環(huán)境的自主式導(dǎo)航系統(tǒng),具有短時(shí)間定位精度高、抗干擾能力強(qiáng)等優(yōu)點(diǎn)[4]。但I(xiàn)NS誤差會(huì)隨時(shí)間迅速累積而導(dǎo)致定位結(jié)果發(fā)散。UWB/INS組合既能利用UWB抑制INS誤差隨時(shí)間的累積,又能利用INS彌補(bǔ)UWB輸出頻率低、信息單一的缺陷,提供高頻率、豐富的導(dǎo)航參數(shù)信息[5-6]。但在UWB/INS組合導(dǎo)航中,由于室內(nèi)環(huán)境復(fù)雜,UWB信號(hào)很難保證持續(xù)跟蹤,當(dāng)能接收到信號(hào)的基站個(gè)數(shù)較少時(shí),UWB/INS組合導(dǎo)航系統(tǒng)中只有INS系統(tǒng)單獨(dú)定位,定位結(jié)果會(huì)很快發(fā)散。針對(duì)這種情況,一般可以通過采用更高精度的INS傳感器或加入其他傳感器到組合系統(tǒng)中的方式進(jìn)行解決,但會(huì)增加組合系統(tǒng)的復(fù)雜性與成本。因此需要確定一種合適的方法,該方法既可以保證組合系統(tǒng)定位精度的連續(xù)性也不需要額外增加硬件的成本。
在UWB/INS組合定位過程中,當(dāng)UWB信號(hào)未中斷時(shí),UWB/INS組合定位方法可獲得高精度的定位結(jié)果,而此時(shí)單獨(dú)INS系統(tǒng)的定位精度會(huì)隨著時(shí)間累積而變差,在此期間,如果能夠采用一定的方法確定出單獨(dú)INS系統(tǒng)的定位結(jié)果與UWB/INS組合定位結(jié)果之間的映射關(guān)系,那么在UWB信號(hào)中斷后,可以利用UWB信號(hào)未中斷時(shí)所確定出來的映射關(guān)系來對(duì)單獨(dú)INS系統(tǒng)的定位結(jié)果與UWB/INS組合定位結(jié)果之間的差值進(jìn)行預(yù)測(cè),進(jìn)而對(duì)單獨(dú)INS系統(tǒng)進(jìn)行位置誤差補(bǔ)償,用INS單系統(tǒng)補(bǔ)償后的定位結(jié)果作為組合系統(tǒng)的定位結(jié)果以實(shí)現(xiàn)UWB/INS組合系統(tǒng)定位精度的連續(xù)性。徑向基(radial basis function,RBF)神經(jīng)網(wǎng)絡(luò)由較小的單位神經(jīng)元組成,使用與人腦結(jié)構(gòu)和功能類似的學(xué)習(xí)算法,它將輸入值映射到輸出值,可以用來解決建模非常復(fù)雜和非線性的隨機(jī)問題[7-9]。
根據(jù)以上分析,可以認(rèn)為RBF神經(jīng)網(wǎng)絡(luò)的理論特性適合于UWB/INS組合定位系統(tǒng)的數(shù)據(jù)解算過程,可以采用RBF神經(jīng)網(wǎng)絡(luò)對(duì)UWB/INS組合導(dǎo)航算法進(jìn)行輔助;因此本文將對(duì)基于RBF神經(jīng)網(wǎng)絡(luò)輔助的UWB/INS組合導(dǎo)航算法進(jìn)行研究。
UWB常用的測(cè)距方法有信號(hào)往返傳播時(shí)間法(round-trip time,RTT)、到達(dá)時(shí)間/時(shí)間差法(time/time difference of arrival,TOA/TDOA)、信號(hào)到達(dá)角度法(angle of arrival,AOA)等[10]。其中,RTT測(cè)距是通過測(cè)量UWB脈沖在基準(zhǔn)站和流動(dòng)站間的往返時(shí)間間接完成距離的,這種方法不需要基準(zhǔn)站和流動(dòng)站間的時(shí)間同步[11];因此本文選擇利用RTT測(cè)距方法解算的結(jié)果與INS解算的結(jié)果進(jìn)行組合濾波。RTT測(cè)距原理如圖1所示。
圖1 RTT測(cè)距原理
圖1中:tm為流動(dòng)站發(fā)送信號(hào)的時(shí)刻;ts為流動(dòng)站接收信號(hào)的時(shí)刻,則流動(dòng)站與基準(zhǔn)站的距離表達(dá)式為
(1)
式中:c為光速;di和ti分別是第i個(gè)基準(zhǔn)站到流動(dòng)站的距離和標(biāo)準(zhǔn)時(shí)間偏差改正;N為基準(zhǔn)站的個(gè)數(shù)。
設(shè)N個(gè)固定基站的平面坐標(biāo)為(xi,yi)(i=1,2,…,N),流動(dòng)站平面坐標(biāo)為(x,y),由此可以推導(dǎo)出
(2)
V=AX
(3)
式(3)的最小二乘算法的解[12]為
(4)
式中:P為單位權(quán)陣。則UWB流動(dòng)站速度信息為
(5)
式中:vx,k、vy,k為k時(shí)刻UWB的速度;xk+1,yk+1為k+1時(shí)刻UWB的位置;xk-1、yk-1為k-1時(shí)刻UWB的位置;T為UWB的采樣間隔。
在UWB/INS組合中,數(shù)據(jù)融合方法大多基于卡爾曼濾波器。設(shè)ΔT為INS的采樣間隔,δxk、δyk、δvx,k、δvy,k表示INS在k時(shí)刻的位置和速度誤差,本文以INS的位置和速度的誤差作為狀態(tài)向量,通過卡爾曼濾波對(duì)狀態(tài)向量進(jìn)行估計(jì),對(duì)組合導(dǎo)航系統(tǒng)進(jìn)行位置和速度的修正。系統(tǒng)的狀態(tài)向量可以表示為
Xk+1=FXk+wk
(6)
Zk=HXk+ωk
(7)
通過卡爾曼濾波即可對(duì)載體的導(dǎo)航信息進(jìn)行更新[13],即
(8)
RBF神經(jīng)網(wǎng)絡(luò)是一種具有3層結(jié)構(gòu)的前向神經(jīng)網(wǎng)絡(luò)[14]。輸入層由一些感知節(jié)點(diǎn)組成;隱藏層由僅有一層的節(jié)點(diǎn)組成,輸入空間經(jīng)過非線性變化到隱藏空間;輸出層由隱藏層經(jīng)過線性轉(zhuǎn)換得到。相對(duì)于其他的神經(jīng)網(wǎng)絡(luò),RBF神經(jīng)網(wǎng)絡(luò)的局部調(diào)諧神經(jīng)元能讓自身的學(xué)習(xí)收斂速度更快,緊湊的拓?fù)浣Y(jié)構(gòu)讓自身結(jié)構(gòu)更加簡(jiǎn)單,單層的隱藏層讓自身的表達(dá)更容易,這些優(yōu)點(diǎn)可以讓RBF神經(jīng)網(wǎng)絡(luò)更好地逼近任意的非線性函數(shù)[15];為此,本文用RBF神經(jīng)網(wǎng)絡(luò)來輔助UWB/INS組合導(dǎo)航。RBF網(wǎng)絡(luò)最常用的結(jié)構(gòu)如圖2所示。
圖2 徑向基神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)
圖2中:(x1,x2…xp)∈R為網(wǎng)絡(luò)的輸入矢量;p為輸入矢量的個(gè)數(shù);φi(x)為徑向基函數(shù);Wi∈Rn為輸出權(quán)矩陣;i=1,2,…,N,N為隱含層神經(jīng)元個(gè)數(shù);Y∈Rn為網(wǎng)絡(luò)的輸出矩陣。本文選取高斯核函數(shù)為徑向基函數(shù),有
(9)
式中:x為輸入矢量;ci、σi為第i個(gè)隱含層神經(jīng)元的中心和寬度。用最小二乘算法求隱含層和輸出層間的權(quán)Wi,計(jì)算公式為
(10)
式中:h為數(shù)據(jù)中心的個(gè)數(shù);q=1,2,…,p;‖·‖為歐式空間的距離范數(shù);cmax為所選取中心的最大距離。
神經(jīng)元的寬度計(jì)算公式為
(11)
圖3 RBF神經(jīng)網(wǎng)絡(luò)輔助UWB/INS組合導(dǎo)航結(jié)構(gòu)
為了驗(yàn)證RBF神經(jīng)網(wǎng)絡(luò)輔助的UWB/INS組合導(dǎo)航算法的有效性,在某地下停車場(chǎng)進(jìn)行了一次模擬實(shí)驗(yàn)。其中INS儀器為SBG公司的Ellipse-N-G4A2-B2,輸出頻率為200 Hz,加速度計(jì)隨機(jī)游走為14.7×10-4m/(s2·Hz0.5),加速度計(jì)零偏為4.9×10-2m/s2,陀螺零偏為0.2 (°)·(s-1),陀螺角度隨機(jī)游走為0.18 (°)·(h-1·HZ-0.5)。UWB儀器為Time Domain公司的PulsON400,輸出頻率為10 Hz,在信號(hào)通視條件下測(cè)距精度優(yōu)于10 cm。實(shí)驗(yàn)中UWB的3個(gè)基準(zhǔn)站以接近正三角形的方式進(jìn)行布設(shè),UWB流動(dòng)站和基準(zhǔn)站在實(shí)驗(yàn)過程中無任何遮擋,INS和UWB流動(dòng)站固定在小車上,小車沿著設(shè)定好的軌道運(yùn)行,小車初始和終止速度設(shè)置零,初始的位置為UWB流動(dòng)站開始運(yùn)行的坐標(biāo)值,整個(gè)實(shí)驗(yàn)過程運(yùn)行360 s。
為了評(píng)價(jià)所提算法的性能,本文從絕對(duì)誤差(absolute error,AE)、均方根誤差(root mean square error,RMSE)、提高率(improvment,IP)3個(gè)方面對(duì)解算的結(jié)果進(jìn)行評(píng)價(jià)。絕對(duì)誤差為
AE=|Hi-Li|
(12)
均方根的誤差表達(dá)式為
(13)
提高率表達(dá)式為
(14)
式中:Hi為參考真值;Li為解算的值;i=1,2,…,m,m為UWB采樣總數(shù);AER為神經(jīng)網(wǎng)絡(luò)補(bǔ)償之后的絕對(duì)誤差;AEI為無神經(jīng)網(wǎng)絡(luò)補(bǔ)償?shù)慕^對(duì)誤差。
圖4給出了有RBF神經(jīng)網(wǎng)絡(luò)輔助和無RBF神經(jīng)網(wǎng)絡(luò)輔助的UWB/INS組合導(dǎo)航的軌跡與參考軌跡的整體比較,并在圖中依次標(biāo)出UWB信號(hào)在157~162、205~215、270~285 s中斷時(shí)的局部軌跡。
圖4 整體軌跡
圖5為圖4中UWB信號(hào)中斷后軌跡的放大圖,可以看到RBF神經(jīng)網(wǎng)絡(luò)輔助的組合導(dǎo)航方法的定位優(yōu)勢(shì)非常明顯:如果采用無RBF神經(jīng)網(wǎng)絡(luò)輔助的組合導(dǎo)航方法,在UWB信號(hào)中斷后不再對(duì)INS進(jìn)行誤差補(bǔ)償,UWB/INS組合導(dǎo)航解算的定位結(jié)果迅速發(fā)散;而如果采用有RBF神經(jīng)網(wǎng)絡(luò)輔助的組合導(dǎo)航方法,經(jīng)過RBF神經(jīng)網(wǎng)絡(luò)對(duì)發(fā)散的定位結(jié)果進(jìn)行誤差補(bǔ)償,位置軌跡更接近參考的真值。
圖6~8分別為圖5(a)、圖5(b)、圖5(c)對(duì)應(yīng)的位置絕對(duì)誤差圖,通過分析得:在UWB信號(hào)中斷5 s時(shí),無RBF神經(jīng)網(wǎng)絡(luò)輔助的組合導(dǎo)航的定位絕對(duì)誤差在x和y方向的最大值為0.11和0.08 m,均方根誤差為0.05和0.03 m;有RBF神經(jīng)網(wǎng)絡(luò)輔助的組合導(dǎo)航的定位絕對(duì)誤差在x和y方向的最大值為0.08和0.07 m,均方根誤差為0.04和0.02 m,提高率分別為23.6 %和26.4 %,可知在UWB信號(hào)中斷5 s時(shí)2種組合導(dǎo)航方法的定位結(jié)果都比較好,其中有神經(jīng)網(wǎng)絡(luò)輔助的定位精度比無神經(jīng)網(wǎng)絡(luò)輔助的定位精度有小幅提升;在UWB信號(hào)中斷10 s時(shí),無神經(jīng)網(wǎng)絡(luò)輔助的定位絕對(duì)誤差在x和y方向的最大值為0.43和1.05 m,均方根誤差為0.18和0.51 m,有神經(jīng)網(wǎng)絡(luò)輔助的定位絕對(duì)誤差在x和y方向的最大值為0.16 和0.18 m,均方根誤差為0.07和0.1 m,提高率分別為50.2 %和70.4 %,可知在UWB信號(hào)中斷10 s時(shí),有神經(jīng)網(wǎng)絡(luò)輔助的定位精度有較大提升;在UWB信號(hào)中斷15 s時(shí),無神經(jīng)網(wǎng)絡(luò)輔助的定位絕對(duì)誤差在x和y方向的最大值為1.15和2.18 m,均方根誤差為0.49和1.11 m,有神經(jīng)網(wǎng)絡(luò)輔助的定位絕對(duì)誤差在x和y方向的最大值為0.64和0.67 m,均方根誤差為0.24和0.35 m,提高率分別為54.7 %和59.6 %,可知在UWB信號(hào)中斷15 s時(shí)2種組合導(dǎo)航方法的定位誤差都較大,雖然有神經(jīng)網(wǎng)絡(luò)輔助的定位精度更高,但相對(duì)UWB在視距環(huán)境下的定位精度,有神經(jīng)網(wǎng)絡(luò)輔助的組合導(dǎo)航的定位精度已不能滿足人們的定位要求。
圖5 UWB信號(hào)中斷的局部軌跡
圖6 UWB信號(hào)中斷5 s的絕對(duì)誤差
圖7 UWB信號(hào)中斷10 s的絕對(duì)誤差
圖8 UWB信號(hào)中斷15 s的絕對(duì)誤差
綜合上述分析可知:要保證定位均方根誤差不大于10 cm,UWB信號(hào)中斷不能超過10 s。另外從圖6~8中可以發(fā)現(xiàn),隨著UWB信號(hào)斷開時(shí)間的增加,無神經(jīng)網(wǎng)絡(luò)輔助的組合導(dǎo)航的定位絕對(duì)誤差加速增大,雖然經(jīng)過RBF神經(jīng)網(wǎng)絡(luò)補(bǔ)償?shù)亩ㄎ唤^對(duì)誤差也開始增大,但增大的速率遠(yuǎn)慢于無神經(jīng)網(wǎng)絡(luò)補(bǔ)償解算的結(jié)果。
本文的目的是在不增加硬件成本的基礎(chǔ)上提出一種UWB/INS組合導(dǎo)航方法以提高在UWB信號(hào)中斷后的定位精度。為此,設(shè)計(jì)了一種RBF神經(jīng)網(wǎng)絡(luò)輔助的導(dǎo)航算法來補(bǔ)償在UWB信號(hào)中斷后的UWB/INS組合導(dǎo)航的定位誤差,這種方法不需要像傳統(tǒng)的UWB和INS數(shù)據(jù)融合方法一樣要對(duì)各個(gè)傳感器的隨機(jī)誤差建模,利用RBF神經(jīng)網(wǎng)絡(luò)訓(xùn)練過程中存儲(chǔ)的知識(shí)對(duì)發(fā)散的定位結(jié)果進(jìn)行誤差補(bǔ)償,就能為載體提供持續(xù)和較高精度的定位信息。實(shí)驗(yàn)結(jié)果表明在UWB信號(hào)中斷0~15 s的時(shí)間里,所提方法都能夠有效提高定位精度。下一步工作包括根據(jù)儀器的參數(shù)和實(shí)際經(jīng)驗(yàn)提前求得神經(jīng)網(wǎng)絡(luò)的各項(xiàng)參數(shù)以減少訓(xùn)練的時(shí)間,并通過實(shí)際的車載數(shù)據(jù)進(jìn)一步驗(yàn)證RBF神經(jīng)網(wǎng)絡(luò)輔助的UWB/INS組合導(dǎo)航算法的有效性。