• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于稀疏分解的空間目標(biāo)雙基地ISAR自聚焦算法

      2018-08-29 05:27:04韓寧李寶晨王立兵童俊郭寶鋒
      航空學(xué)報(bào) 2018年8期
      關(guān)鍵詞:自聚焦正則方位

      韓寧,李寶晨,王立兵,童俊,郭寶鋒

      1.軍械技術(shù)研究所,石家莊 050003 2. 陸軍工程大學(xué) 科研學(xué)術(shù)處,南京 210014 3. 中國人民解放軍63961部隊(duì),北京 100012 4. 陸軍工程大學(xué)石家莊校區(qū),石家莊 050003

      雙基地逆合成孔徑雷達(dá)(Inverse Synthetic Aperture Radar, ISAR)因其具有良好的“四抗性能”,且成像不受目標(biāo)運(yùn)動方向限制,已逐漸成為國內(nèi)外的研究熱點(diǎn)[1-6]。雙基地ISAR作為空間目標(biāo)監(jiān)視的一種重要手段,具有成像距離遠(yuǎn)(發(fā)站靠前布置)、可實(shí)現(xiàn)目標(biāo)多姿態(tài)觀測等優(yōu)點(diǎn),是未來空間目標(biāo)監(jiān)測與識別的一個(gè)重要發(fā)展方向。

      目前,對雙基地ISAR的研究,主要集中在全極化成像[7]、旋轉(zhuǎn)運(yùn)動的補(bǔ)償方法[8-9]、雙基地ISAR圖像重建[10]、雙基地ISAR圖像的快速生成[11]、雙基地ISAR三維成像[12-13]等方面,對雙基地ISAR的理論研究還有待進(jìn)一步豐富與完善。而且,大多數(shù)研究都基于成像期間雙基地角恒定不變的假設(shè),沒有研究雙基地角時(shí)變對成像的影響。針對雙基地角時(shí)變對成像的影響這一問題,文獻(xiàn)[14]主要研究了雙基地角對成像自聚焦的影響,并利用循環(huán)迭代和初始相位誤差的高精度估計(jì)與校準(zhǔn)來完成雙基地角時(shí)變下的自聚焦。但該方法性能優(yōu)劣受循環(huán)迭代次數(shù)的影響較大,為了得到聚焦精度較高的二維ISAR圖像,通常需要反復(fù)多次的循環(huán)迭代才能完成,且在迭代后期,圖像的聚焦度并未有明顯提升。針對雙基地角時(shí)變下的自聚焦問題,本文基于相位建模、參數(shù)估計(jì)、高階相位補(bǔ)償?shù)乃悸?,研究提出了一種利用稀疏分解算法估計(jì)二次項(xiàng)系數(shù)完成相位補(bǔ)償?shù)淖跃劢顾惴ā?/p>

      1 空間目標(biāo)雙基地ISAR成像原理

      以平穩(wěn)空間目標(biāo)為研究對象,雙基地ISAR的成像原理模型如圖1所示。

      圖1中:T為雙基地雷達(dá)的發(fā)射站;R為接收站;TR為雙基地雷達(dá)基線;Rt0、Rr0分別為觀測時(shí)刻目標(biāo)相位中心距發(fā)射站和接收站的距離;Rt1、Rr1分別為目標(biāo)運(yùn)動到下一時(shí)刻時(shí),目標(biāo)相位中心距發(fā)射站和接收站的距離;Rv0為目標(biāo)運(yùn)動方向矢量;Ci為目標(biāo)上的任一散射點(diǎn);Ei為該散射點(diǎn)在觀測起始時(shí)刻目標(biāo)相位中心與收發(fā)雙站雷達(dá)確定的平面內(nèi)的投影;RtCi0、RrCi0分別為散射點(diǎn)Ci在觀測時(shí)刻距發(fā)射站、接收站雷達(dá)的距離。

      在較短的成像積累時(shí)間內(nèi),平穩(wěn)目標(biāo)在空間中的姿態(tài)是平穩(wěn)的,為描述散射點(diǎn)在空間中的位置,建立以目標(biāo)散射中心為原點(diǎn)的目標(biāo)慣性坐標(biāo)系,具體方法為:以觀測起始時(shí)刻目標(biāo)雙基地角平分線延長線方向?yàn)閥軸正方向;以觀測起始時(shí)刻目標(biāo)軌道與目標(biāo)雙基地角平分線構(gòu)成平面內(nèi)y軸的法線為x軸,x軸正方向與目標(biāo)運(yùn)動方向一致。該坐標(biāo)軸指向不隨目標(biāo)的運(yùn)動改變,因此該坐標(biāo)系下目標(biāo)散射點(diǎn)距離的變化包含了目標(biāo)的平動和相對轉(zhuǎn)動。為便于分析目標(biāo)轉(zhuǎn)動情況,建立目標(biāo)的雙基地角平分坐標(biāo)系x′O′y′,該坐標(biāo)系的y′軸為雙基地角平分線延長線方向,并隨著目標(biāo)的運(yùn)動和雙基地角平分線指向的改變而改變;x′軸則是xOy平面內(nèi)y′軸的法向。因此,x′O′y′坐標(biāo)系與xOy坐標(biāo)系間的相對轉(zhuǎn)動角直接反映了目標(biāo)在觀測時(shí)間內(nèi)的相對轉(zhuǎn)動情況。

      圖1 雙基地ISAR成像原理模型Fig.1 Principle model for imaging of bisatic ISAR

      在建立以上坐標(biāo)系的基礎(chǔ)上,假設(shè)雷達(dá)發(fā)射如式(1)所示的線性調(diào)頻信號

      (1)

      假設(shè)雙基地雷達(dá)理想同步,即不存在時(shí)間、空間、頻率的同步誤差,且成像期間雙基地角恒定不變,則中頻采樣下變頻后得到的散射點(diǎn)基頻回波如式(2)所示:

      (2)

      式中:σCi為散射點(diǎn)Ci的散射系數(shù);c為真空中的光速;RCi(tm)可表示為

      RCi(tm)=Rref(tm)+Rrotitm≈

      (3)

      式中:Rref(tm)為目標(biāo)散射中心的平動分量;Rroti(tm)為目標(biāo)上散射點(diǎn)Ci的轉(zhuǎn)動分量;θCi為散射點(diǎn)Ci方位矢量與xOy坐標(biāo)系中x軸正向的夾角;ψ(tm)為成像期間雙基地角平分線的轉(zhuǎn)動角度;β0為成像期間的雙基地角;ri為散射點(diǎn)Ci到目標(biāo)散射中心的距離。

      對式(2)進(jìn)行脈沖壓縮,即可得到目標(biāo)的一維距離像為

      (4)

      由式(3)和式(4)可以看出,雙基地ISAR回波中散射點(diǎn)到收發(fā)雙站的距離依然可以分解為平動與轉(zhuǎn)動項(xiàng)之和的形式,在完成包絡(luò)對齊之后,將平動和轉(zhuǎn)動導(dǎo)致的相位項(xiàng)統(tǒng)一建模,而后進(jìn)行二次相位項(xiàng)補(bǔ)償即可實(shí)現(xiàn)自聚焦,隨后完成方位壓縮即可得到目標(biāo)的二維ISAR圖像[15]。

      2 雙基地角時(shí)變對自聚焦的影響機(jī)理

      當(dāng)成像期間雙基地角隨慢時(shí)間變化時(shí),式(3)可表示為

      (5)

      式中:β(tm)為成像期間雙基地角隨慢時(shí)間tm變化。

      為了分析雙基地角時(shí)變對散射點(diǎn)回波的影響,基于泰勒展開的方法,將β(tm)按式(6)進(jìn)行展開

      β(tm)≈β(0)+β′(0)tm

      (6)

      式中:β(0)為β(tm)在零時(shí)刻的雙基地角;β′(0)為β(tm)在零時(shí)刻的一階導(dǎo)數(shù)。此時(shí),半雙基地角的余弦可做如下近似:

      K0+K1tm

      (7)

      式中:K′(0)為半雙基地角余弦相對慢時(shí)間的變化率;

      (8)

      (9)

      其中:K0、K1分別為時(shí)變半雙基地角余弦的常數(shù)項(xiàng)及線性變化項(xiàng)。

      目標(biāo)相位中心的平動距離項(xiàng)Rref(tm)為

      Rref(tm)=Rref(t0)+vreftm

      (10)

      式中:Rref(t0)為目標(biāo)散射中心在成像初始時(shí)刻至收發(fā)雙站的距離;vref為目標(biāo)散射中心在成像期間相對收發(fā)雙站的運(yùn)動速度。

      此時(shí),將式(8)~式(10)代入式(5)進(jìn)行化簡可得

      2yiK1tm+2xiψ(tm)K0+2xiK1ψ(tm)tm=Rref(t0)+2yiK0+(vref+2yiK1+2xiK0ω)tm+

      (11)

      式中:ω為雙基地角平分線的轉(zhuǎn)動角速度;xi、yi分別為散射點(diǎn)Ci在xOy坐標(biāo)系中x軸與y軸上的坐標(biāo);η0、η1和η2分別為散射點(diǎn)Ci轉(zhuǎn)動距離項(xiàng)的常數(shù)項(xiàng)、一次線性項(xiàng)和二次項(xiàng)。

      由式(11)可以看出,雙基地ISAR成像中,受雙基地角時(shí)變的影響,散射點(diǎn)成像所需的相位項(xiàng)中產(chǎn)生了二次項(xiàng),必須對該二次相位項(xiàng)進(jìn)行補(bǔ)償,否則會導(dǎo)致二維ISAR圖像的散焦。

      3 基于稀疏分解的自聚焦

      分析式(11)可以看出,若能利用合適的方法估計(jì)出二次項(xiàng)的系數(shù)η2,然后構(gòu)造如式(12)所示的補(bǔ)償相位項(xiàng):

      (12)

      exp(-j2πf0η0)exp(-j2πf0η1tm)

      (13)

      式中:第一個(gè)相位項(xiàng)為常數(shù)項(xiàng),不影響自聚焦及二維成像;第二項(xiàng)為成像所需的線性相位項(xiàng)。由式(13) 可以看出,經(jīng)過補(bǔ)償后的一維距離像數(shù)據(jù)中,已不包含會造成圖像散焦的二次相位項(xiàng)。因此,通過估計(jì)參數(shù)η2并據(jù)此構(gòu)造補(bǔ)償相位項(xiàng)完成二次項(xiàng)補(bǔ)償?shù)姆椒?,可?shí)現(xiàn)雙基地角時(shí)變下的自聚焦。

      稀疏分解的目的是從一個(gè)過完備的矢量集(或函數(shù)集)中選擇盡量少的元素來表示已知信號,當(dāng)構(gòu)造出與信號特征相匹配的冗余基時(shí),稀疏分解能挖掘出信號內(nèi)部的精細(xì)結(jié)構(gòu),極大地提高變換域的分辨能力,目前,稀疏分解已廣泛應(yīng)用于雷達(dá)及光學(xué)成像、信號去噪、信號參數(shù)估計(jì)等領(lǐng)域[16-20]。本文利用稀疏分解的高分辨能力,構(gòu)建符合距離分辨單元信號特征的冗余基,利用稀疏分解完成二次項(xiàng)系數(shù)的估計(jì)。

      3.1 稀疏詞典的構(gòu)建

      為便于論述,重寫散射點(diǎn)經(jīng)脈壓后的回波為

      (14)

      式中:A為不同距離分辨單元內(nèi)復(fù)數(shù)形式的回波強(qiáng)度;N為成像所需的積累脈沖數(shù);Ttrs為發(fā)射站雷達(dá)的脈沖重復(fù)周期。構(gòu)造冗余基為

      (15)

      式中:K為冗余基因子數(shù)

      (16)

      其中:ai1、ai2分別為對η1、η2進(jìn)行高精度劃分的第i組冗余基參數(shù)因子。此時(shí),sCi_T在該冗余基Φ上可表示為

      sCi_T=Φa

      式中:a為不同散射點(diǎn)對應(yīng)的復(fù)回波強(qiáng)度,其非零元數(shù)個(gè)數(shù)由散射點(diǎn)個(gè)數(shù)決定。在高頻區(qū),目標(biāo)回波可近似認(rèn)為是來自若干稀疏分布的離散點(diǎn)散射回波的集合[21],因此,向量a可在冗余基Φ上對信號sCi_T進(jìn)行稀疏表示,只需用合適的稀疏分解算法估計(jì)出a,即可根據(jù)系數(shù)a及其在冗余基中對應(yīng)的冗余基因子,構(gòu)建補(bǔ)償相位項(xiàng)完成二次項(xiàng)的補(bǔ)償。

      3.2 二次項(xiàng)系數(shù)的稀疏估計(jì)

      在各類稀疏分解算法中,基于正則化的迭代算法可避免全局貪婪尋優(yōu)算法中一步錯步步錯的問題,故得到更加廣泛的應(yīng)用?;谝话阈韵∈瓒攘亢瘮?shù),文獻(xiàn)[22]研究了推廣的正則化欠定系統(tǒng)聚焦求解(FOCal Underdetermined System Solver,F(xiàn)OCUSS)算法,該算法提供了較為豐富的稀疏性度量函數(shù)的選取方法,可根據(jù)不同的應(yīng)用背景選取稀疏度量函數(shù),降低算法運(yùn)算量,故本文使用該稀疏分解算法完成參數(shù)估計(jì),其迭代過程為

      (18)

      式中:x(k+1)為第k+1次迭代的稀疏表示系數(shù);Wk為與選取的稀疏性度量函數(shù)有關(guān)的矩陣;A為冗余基;λ為與噪聲水平有關(guān)的正則化參數(shù);當(dāng)λ→0+時(shí),即觀測噪聲為0時(shí)的稀疏解。

      3.3 算法基本步驟

      以上分析基于單散射點(diǎn)回波進(jìn)行,當(dāng)某個(gè)距離單元內(nèi)有多個(gè)散射點(diǎn)時(shí),只需按照所有散射點(diǎn)中可能的參數(shù)取值范圍對η1、η2進(jìn)行適當(dāng)劃分,即可構(gòu)建出相應(yīng)的冗余基,以使回波信號在該冗余基上具有稀疏性。

      綜合以上分析,基于稀疏分解的自聚焦算法步驟為:

      步驟1利用最大互相關(guān)法完成一維距離像的包絡(luò)對齊。

      步驟2依據(jù)目標(biāo)尺寸及其運(yùn)行軌道等先驗(yàn)信息,對η1、η2進(jìn)行高精度劃分,并按照式(15)和式(16)構(gòu)建冗余基Φ。

      以上算法針對距離單元內(nèi)只存在一個(gè)散射點(diǎn)的情況,當(dāng)某個(gè)距離單元內(nèi)存在多個(gè)散射點(diǎn)時(shí),因不同散射點(diǎn)的二次項(xiàng)系數(shù)不僅與成像初始時(shí)刻的半雙基地角余弦有關(guān),而且還受散射點(diǎn)的橫坐標(biāo)影響,此時(shí)需對算法進(jìn)行適當(dāng)調(diào)整。

      假設(shè)某個(gè)距離單元內(nèi)存在兩個(gè)散射點(diǎn)C1、C2,對應(yīng)其估計(jì)出的二次項(xiàng)系數(shù)分別為η2C1、η2C2,此時(shí),按照算數(shù)平均的方法構(gòu)造補(bǔ)償相位項(xiàng)為

      (19)

      當(dāng)某個(gè)距離單元內(nèi)存在更多個(gè)散射點(diǎn)時(shí),構(gòu)建補(bǔ)償相位項(xiàng)的方法與式(19)類似。

      3.4 算法關(guān)鍵參數(shù)的選取

      在使用推廣正則化FOCUSS算法進(jìn)行稀疏分解時(shí),若原始信號中不包含噪聲,在迭代過程中只需逐次增大懲罰因子M,當(dāng)分解精度滿足預(yù)先設(shè)定的精度要求時(shí)即可得到精確的稀疏分解結(jié)果。若原始信號中包含噪聲,則需首先選擇正則化參數(shù)λ,然后用1/λ作為懲罰因子M,基于該懲罰因子進(jìn)行稀疏分解得到噪聲環(huán)境下的稀疏表示系數(shù)。正則化參數(shù)λ需在稀疏解的稀疏度和信號表示誤差之間折衷考慮,正則化參數(shù)選取的好壞直接決定了稀疏分解結(jié)果的稀疏度和對原始信號的逼近程度。目前,關(guān)于正則參數(shù)的選擇,主要有先驗(yàn)策略和后驗(yàn)策略兩類,先驗(yàn)策略最早由Tikhonov提出,正則化參數(shù)在正則化過程之前就已經(jīng)確定。先驗(yàn)策略涉及到“最優(yōu)正則參數(shù)”是否存在以及如何確定的問題,故應(yīng)用較少,更具備理論研究上的價(jià)值。后驗(yàn)策略與信噪比是否已知有關(guān)。當(dāng)噪聲水平已知時(shí),主要有Morozov偏差原理和Arcangeli準(zhǔn)則;當(dāng)噪聲水平未知時(shí),主要有擬最優(yōu)準(zhǔn)則、L-曲線準(zhǔn)則、交叉驗(yàn)證、廣義交叉驗(yàn)證準(zhǔn)則等。

      4 仿真實(shí)驗(yàn)與分析

      仿真雙基地雷達(dá)參數(shù)如表1所示,利用頻域脈壓的方法完成距離維成像,用最大互相關(guān)法完成包絡(luò)對齊。自聚焦分別用本文研究的基于稀疏分解的自聚焦算法和相位梯度自聚焦(Phase Gradient Autofocusing,PGA)算法進(jìn)行,方位向壓縮通過傅里葉變換完成,空間目標(biāo)的初始兩行軌道根數(shù)格式如表2所示,按照文獻(xiàn)[24]的算法完成回波模擬。

      仿真用目標(biāo)的三維散射點(diǎn)模型如圖2所示,目標(biāo)尺寸設(shè)定為30 m×20 m×5 m,結(jié)合初始軌道根數(shù),對1階系數(shù)的高精度劃分因子為0.1,2階系數(shù)的高精度劃分因子為0.05。圖3為PGA算法和本文算法得到的目標(biāo)成像結(jié)果。

      表1 雙基地雷達(dá)主要參數(shù)Table 1 Main parameters of bistatic radar

      表2 仿真用兩行軌道根數(shù)格式Table 2 Two Line Elements(TLE) format for simulation

      圖2 目標(biāo)散射點(diǎn)模型Fig.2 Model for target scattering point

      圖像對比度可作為評價(jià)圖像質(zhì)量的指標(biāo),圖像對比度越大則圖像的聚焦度越高,故本文選取圖像對比度作為評估不同自聚焦方法性能優(yōu)劣的指標(biāo)之一,其定義為[25]

      (20)

      式中:Cimag為圖像對比度;I(x,y)為復(fù)圖像的幅度;A(·)為圖像在整個(gè)成像平面(x,y)上的幅度平均。

      按照式(20),表3給出仿真100次時(shí),用本文

      圖3 目標(biāo)成像結(jié)果Fig.3 Results of target imaging

      算法和PGA算法進(jìn)行自聚焦時(shí)統(tǒng)計(jì)得出的圖像對比度平均值,此外,該表中還給出了圖像散射點(diǎn)的距離向和方位向3 dB主瓣寬度的平均值。

      表3 圖像對比度,散射點(diǎn)距離和方位向3 dB主瓣寬度統(tǒng)計(jì)結(jié)果Table 3 Statistical results of image contrast and 3 dB mainlobe width in range and azimuth

      從表3可以看出,用PGA算法和本文算法完成自聚焦所得的圖像中,距離向的主瓣寬度基本一致沒有明顯變化。在方位向,通過統(tǒng)計(jì)成像期間雙基地角平分線的轉(zhuǎn)動角度,可計(jì)算出方位向理論分辨率為0.317,相對而言,本文算法使圖像散射點(diǎn)方位向分辨率偏離理論分辨率的程度更低,具有更優(yōu)的聚焦效果。

      從式(11)可以看出,因成像期間雙基地角隨時(shí)間變化,故二次相位項(xiàng)系數(shù)與散射點(diǎn)橫坐標(biāo)有關(guān),但因目標(biāo)體積的量級遠(yuǎn)小于目標(biāo)與雷達(dá)的距離,因此該部分相位相對于平動相位誤差較小,而在利用PGA算法進(jìn)行自聚焦時(shí),在迭代的初始部分(前150次迭代)主要完成平動相位誤差的補(bǔ)償,二維圖像的對比度會有較大提升,但若繼續(xù)進(jìn)行迭代,圖像對比度的提升有限,無法從根本上補(bǔ)償與散射點(diǎn)橫坐標(biāo)有關(guān)的相位誤差,圖4給出了二維ISAR圖像的圖像對比度隨PGA算法迭代次數(shù)的變化趨勢,從圖中可以看出,當(dāng)?shù)螖?shù)大于150次時(shí),圖像對比度雖然總體上呈繼續(xù)提高的態(tài)勢,但其提高比率較低,這與本段前半部分的理論分析一致,故在圖3和圖4的成像結(jié)果對比中,也用迭代150次的成像結(jié)果與本文算法進(jìn)行對比。

      積分旁瓣比(Integral SideLobe Ratio, ISLR)和峰值旁瓣比(Peak SideLobe Ratio, PSLR)也常用于表征雷達(dá)成像性能,表4給出了兩種自聚焦算法對應(yīng)的ISLR和PSLR指標(biāo),從表中可以看出,在距離向上,兩種自聚焦算法并無明顯區(qū)別,但在方位向上,本文研究的自聚焦算法優(yōu)于常用的PGA算法。

      圖4 PGA算法迭代次數(shù)與圖像對比度的對應(yīng)關(guān)系Fig.4 Corresponding relation between iteration times of PGA algorithm and image contrast

      表4 散射點(diǎn)ISLR、PSLR參數(shù)統(tǒng)計(jì)

      Table 4 Statistical results of ISLR and PSLR of scattering point

      AlgorithmISLR/dBPSLR/dBRangeAzimuthRangeAzimuthPGA -9.918 1-8.996 2-12.806 7-11.380 8Proposed-9.905 1-9.818 1-12.790 4-12.690 0

      為了更加直觀地說明本文研究的自聚焦算法對多散射點(diǎn)的適應(yīng)性,選取散射點(diǎn)模型中處于同一距離單元的散射點(diǎn)1和散射點(diǎn)2(如圖2所示),在成像仿真時(shí),在[-π,π]之間加入隨機(jī)分布的相位誤差如圖5所示。然后分別利用PGA算法和本文算法對該距離單元進(jìn)行自聚焦并完成方位壓縮。圖6給出了利用本文算法自聚焦并完成方位壓縮后的結(jié)果,驗(yàn)證了本文算法對多散射點(diǎn)的適應(yīng)性。圖7為散射點(diǎn)1利用PGA算法和本文算法自聚焦后的方位壓縮結(jié)果,從圖中可以明顯看出,本文算法的聚焦性能優(yōu)于常用的PGA算法。

      圖5 相位誤差序列Fig.5 Phase error sequence

      圖6 本文算法自聚焦后的方位壓縮結(jié)果Fig.6 Results of azimuth compression after autofocusing with proposed algorithm

      圖7 兩種算法自聚焦后的方位壓縮結(jié)果(散射點(diǎn)1)Fig.7 Results of azimuth compression after autofocusing with two algorithms (Scattering point 1)

      5 結(jié) 論

      1) 通過選取合適的冗余字典來表示包絡(luò)對齊后的一維距離像,并利用稀疏分解算法估計(jì)出二次項(xiàng)的系數(shù),然后據(jù)此系數(shù)構(gòu)建補(bǔ)償相位項(xiàng)可完成圖像的高精度自聚焦,與PGA算法相比,使用本文算法可得到更高聚焦精度的二維ISAR圖像。

      2) 算法的成功實(shí)現(xiàn)依賴于正則化參數(shù)的正確選擇以及迭代誤差門限的恰當(dāng)選取,當(dāng)正則化參數(shù)選取不正確時(shí),得不到正確的稀疏分解結(jié)果,最終造成無法完成圖像的自聚焦,而且當(dāng)目標(biāo)為具有成片連續(xù)散射面的復(fù)雜目標(biāo)時(shí),因其不滿足理想散射點(diǎn)模型的假設(shè),故本文算法也不適用于該類目標(biāo)。

      3) 研究快速恰當(dāng)?shù)膮?shù)選取方法及針對復(fù)雜目標(biāo)的擴(kuò)展性算法也是課題組下一步的重點(diǎn)研究方向。

      猜你喜歡
      自聚焦正則方位
      認(rèn)方位
      幼兒園(2021年12期)2021-11-06 05:10:20
      剩余有限Minimax可解群的4階正則自同構(gòu)
      矢量圓對稱Airy光束傳輸特性研究
      類似于VNL環(huán)的環(huán)
      自聚焦PVDF超聲換能器制作與研究
      基于二維逆濾波的機(jī)載SAR自聚焦算法
      借助方位法的拆字
      中國修辭(2016年0期)2016-03-20 05:54:32
      說方位
      幼兒100(2016年28期)2016-02-28 21:26:17
      基于TMS320C6678的SAR方位向預(yù)濾波器的并行實(shí)現(xiàn)
      基于ZEMAX的自聚焦透鏡設(shè)計(jì)
      兴城市| 西吉县| 大城县| 韶山市| 临沧市| 丘北县| 正镶白旗| 徐州市| 肃宁县| 十堰市| 兴国县| 梅州市| 古蔺县| 安吉县| 郯城县| 莱阳市| 宁远县| 织金县| 河津市| 定州市| 嘉义县| 前郭尔| 苗栗县| 静乐县| 琼中| 扶余县| 额尔古纳市| 光泽县| 涟源市| 汉川市| 丹江口市| 杭锦旗| 陆川县| 毕节市| 玛纳斯县| 共和县| 苏州市| 宁国市| 苏尼特左旗| 开化县| 宝坻区|