何志利,王慧
?
王慧 軍事醫(yī)學研究院微生物流行病研究所研究員,博士生導師。主要從事病原微生物進化、致病機理與防治基礎研究,先后主持和承擔國家傳染病重大專項、國家新藥創(chuàng)制重大專項、國家973計劃、國家重點研發(fā)計劃、國家自然科學基金課題20余項。在高致病病原新毒力因子發(fā)現(xiàn)、病原菌適應性進化以及感染防治技術方面取得重要進展。研究成果在、、、、等國內外學術期刊發(fā)表論文80余篇。獲得中國發(fā)明專利17項,獲得美國、日本、澳大利亞、歐洲等國際發(fā)明專利5項。現(xiàn)兼任全軍科學技術委員會生物技術專業(yè)委員會常委。
細菌毒素-抗毒素系統(tǒng)的功能
何志利,王慧
軍事科學院軍事醫(yī)學研究院 微生物流行病研究所 病原微生物生物安全國家重點實驗室,北京 100071
何志利, 王慧. 細菌毒素-抗毒素系統(tǒng)的功能. 生物工程學報, 2018, 34(8): 1270–1278.He ZL, Wang H. Functions of bacterial Toxin-Antitoxin systems. Chin J Biotech, 2018, 34(8): 1270–1278.
毒素-抗毒素(Toxin-Antitoxin,TA) 系統(tǒng)廣泛存在于原核生物和古細菌的染色體和質粒中。此系統(tǒng)由2個共表達的基因組成,分別編碼穩(wěn)定的毒素蛋白和易降解的抗毒素,毒素通常發(fā)揮毒性作用抑制細菌生長,而抗毒素則可中和毒性,二者相互作用對細菌生長狀態(tài)起精密調節(jié)作用。根據(jù)TA的組成和抗毒素的性質,目前已經發(fā)現(xiàn)有6型TA,這些TA系統(tǒng)在細菌中發(fā)揮的作用一直是近年來學者們研究的熱點,文中對細菌TA的功能研究進展進行了綜述。
毒素-抗毒素系統(tǒng),環(huán)境適應性,持留態(tài)細胞,生物被膜,細菌毒力
毒素-抗毒素系統(tǒng)最初是作為質粒穩(wěn)定分子被發(fā)現(xiàn)的[1],它們廣泛分布在原核生物和古細菌中。TA操縱子編碼出一個穩(wěn)定的毒素和一個易被降解的抗毒素,其中毒素通常為蛋白質如RelE,而抗毒素可以是蛋白質也可以是RNA。隨著進一步研究,越來越多染色體TA分子也被發(fā)現(xiàn)[2-3],目前認為染色體TA與維持質粒穩(wěn)定性無關,而主要通過調節(jié)代謝和生長狀況來對抗不利環(huán)境[4]。質粒TA分子被認為只有唯一功能——執(zhí)行post- segregational killing (PSK),殺死不繼承父輩TA質粒的子代細胞。但是有研究證明質粒編碼的一對TA中,毒素是一種可持續(xù)傳代基因[5]。染色體TA分子的功能則表現(xiàn)出多樣性,涉及到調節(jié)整體水平對抗不利外界環(huán)境[6]、參與細胞程序性死亡[7]、對抗質粒編碼TA介導的PSK[8]、參與抗生素下持留態(tài)細胞的形成[10]、參與生物被膜形成[11]、提高菌株存活率和毒力[12]、對抗噬菌體以及參與菌株定植[13]等多個方向。文中著重于闡述TA在影響細菌環(huán)境適應性方向的研究進展,以及其探索性應用與展望。
在過去的30年里根據(jù)抗毒素的性質和TA的組成,總共發(fā)現(xiàn)六型TA (TypeⅠ至Type Ⅵ)[14],如圖1所示。
在這種類型的TA系統(tǒng),抗毒素是一種sRNA,毒素是蛋白質??苟舅豷RNA能結合毒素的mRNA促進其降解,阻礙毒素翻譯[3]。準確地說,Ⅰ型毒素是擁有豐富疏水蛋白的小蛋白(超過60個氨基酸)[15],而抗毒素編碼的RNA是毒素的反義鏈。對于Ⅰ型TA胞內靶點我們所知甚少,而現(xiàn)在被知曉較多的Ⅰ型TA是(hok為毒素,sok為抗毒素),有趣的是在這個TA系統(tǒng)中被發(fā)現(xiàn)存在第3種蛋白能協(xié)助毒素翻譯[16]。在革蘭氏陰性菌中鑒定的第一種Ⅰ型TA也被證明與有同樣特點,而陸續(xù)在腐生葡萄球菌質粒上、干酪乳桿菌和單核細胞增生李斯特氏菌中被發(fā)現(xiàn)。其他Ⅰ型TA,例如大腸桿菌含有和[17-18],枯草芽孢桿菌含有染色體Ⅰ型TA[19]。
Ⅱ型TA是現(xiàn)在研究最廣泛的TA類型,近期更新的毒素-抗毒素數(shù)據(jù)庫TADB 2.0中就收錄了105對有實驗數(shù)據(jù)支持的Ⅱ型TA基因座位,還提供了在線預測工具TA finder[9]。Ⅱ型TA中毒素和抗毒素都是蛋白質,相對于穩(wěn)定的毒素來說,抗毒素更易被降解表現(xiàn)出不穩(wěn)定性,因為抗毒素含有較少的有序結構,對蛋白水解酶更為敏感[20]。通常情況下,Ⅱ型TA有著其他TA類型沒有的特征:1) 編碼抗毒素蛋白的基因位于毒素蛋白基因上游;2) 兩個基因共轉錄;3) 兩個基因共翻譯。在正常生長狀況下,毒素和抗毒素以TA復合物狀態(tài)存在,確保毒素不發(fā)揮作用使細胞正常生長??苟舅貢Y合在TA操縱子上游覆蓋啟動子來抑制操縱子表達,而毒素作為輔助抑制劑與抗毒素結合加強這種抑制作用。所以胞內TA復合物的水平受到抗毒素和TA復合物共同調控[10]。一定壓力條件下抗毒素被蛋白酶降解后會釋放出穩(wěn)定的毒素蛋白,同時操縱子的抑制解除,持續(xù)表達出的抗毒素被繼續(xù)降解,以上造成的結果就是毒素的積累,毒性效應啟動[21]。Ⅱ型TA毒素長度大約在100個氨基酸[22],分為12個家族,每個家族的胞內靶點不同,發(fā)揮不同的生理作用。van Melderen等證明Ⅱ型TA能確保移動遺傳元件的安全穩(wěn)定維護[3],Engelberg-Kulka等提出了大腸桿菌中會激活細胞程序性死亡,這樣的利他性死亡能幫助細胞壓力環(huán)境下應對有限的營養(yǎng)物質[23]。大腸桿菌中的會誘導持留態(tài)細胞形成[24-25]來對抗抗生素壓力,因為絕大多數(shù)抗生素都對生長狀態(tài)的細菌有殺滅作用,而對處于半休眠的持留態(tài)細胞束手無策。MqsAR被證明與生物被膜形成相關[26],TA的環(huán)境適應性一直是科學家關注的重點。而最近Ⅱ型TA與菌株致病性的關系引起了科學家們關注,相關研究也越來越多。
圖1 六型TA作用模式
Ⅲ型TA系統(tǒng)最初是作為抵抗噬菌體感染被發(fā)現(xiàn)的[27],抗毒素是RNA,能直接作用于毒素蛋白[28]。鑒定出的第一對Ⅲ型TA分子是ToxIN (毒素ToxN,抗毒素ToxI),它是在腐敗果膠桿菌的質粒上被發(fā)現(xiàn)的,核糖核酸內切酶是ToxN的靶點。ToxN同源基因在革蘭氏陰性菌和革蘭氏陽性菌的染色體和質粒上都有發(fā)現(xiàn),且廣泛分布于人和動物致病菌、海洋和土壤微生物中[27]。后來發(fā)現(xiàn)的TenpI-TenpN和CptI-CptN也參與抵抗噬菌體感染[29]。
Ⅳ型TA系統(tǒng)中,毒素和抗毒素都是蛋白,但是毒素不是直接與抗毒素形成復合物,而是阻礙毒素作用靶點來抑制毒性效應。例如,抗毒素YeeU促進細胞骨架蛋白MerB和FtsZ聚合,讓其免受毒素YeeV的抑制作用[30]。唯一報道的Ⅴ型TA是,毒素蛋白GhoT是一個小的疏水性肽,其表達可導致細胞死亡和持留細菌感染,抗毒素蛋白GhoS不像傳統(tǒng)的抗毒素那樣在壓力條件下不穩(wěn)定,也不和毒素蛋白的DNA結合抑制轉錄,而是作為一種序列特異性的核酸內切酶,切割mRNA,阻止其翻譯[31]。后來發(fā)現(xiàn)的表達還受另一對TA的調控[32],提示著TA家族之間的相互作用呈現(xiàn)多樣性。作為新發(fā)現(xiàn)的一類TA系統(tǒng)——Ⅵ型TA出現(xiàn)在我們的視野里[33],抗毒素SocA作為毒素蛋白SocB的適配器與其連接在一起,與Ⅱ型TA不同的是,SocA并不直接中和SocB的毒性,而是通過特定的蛋白酶促進它的降解。
TA廣泛分布在原核生物和古細菌中,無論在宿主體外還是體內,這些含有TA的原核生物都面臨各種各樣的生存壓力和排斥威脅,那么TA是怎樣幫助適應惡劣環(huán)境、保證種族延續(xù)的呢?
細菌病原體要承受多重壓力,應對宿主定植過程中不斷變化的環(huán)境,才能成功地感染宿主[34]。在從外部非宿主環(huán)境到進入宿主體內的過程中,入侵的微生物要處理多個宿主防御系統(tǒng),例如腸道病原體在胃內遇到酸性pH值[35]、與腸道菌群的競爭、腸道內其他重要的宿主防御因子抗菌肽(cAMP) 和腸細胞分泌的免疫球蛋白[36]。而近幾年越來越多的研究證明TA系統(tǒng)參與細菌病原體感染宿主的過程,提高其致病力。2011年Georgiades等意外發(fā)現(xiàn)基因組中的TA分子模型與細菌毒力之間存在密切聯(lián)系[37]。在許多致病菌中發(fā)現(xiàn)TA分子廣泛分布于可移動遺傳元件上,作為毒力島參與耐藥與毒力作用[38]。TA分子通過穩(wěn)定與維持編碼毒力質粒來參與致病菌毒力作用,例如富氏志賀菌中(VapBC) 能維持毒力質粒Pmysh 6000的穩(wěn)定[39],HigBA幫助普通變形桿菌毒力質粒穩(wěn)定傳代[40]。在不分型流感嗜血桿菌中敲除VapBC后極大減弱了組織毒力損傷,以及動物模型上中耳炎發(fā)病率[41]。2012年TA分子和被證明參與膀胱定植,參與腎臟定植[42]。次年,Walker 等發(fā)現(xiàn)TA分子的缺失能影響老鼠口服途徑鼠傷寒沙門氏菌的毒力,但不影響腹腔注射途徑感染的毒力,提示TA分子在鼠傷寒沙門氏菌感染過程的早期階段發(fā)揮作用[43]。Pinel等通過研究TA分子提出TA模型中的分泌毒素能增強金黃色葡萄球菌的毒力[44]。Ⅱ型TAmazEF早年也被認為與金黃色葡萄球菌致病力相關。MazFSa毒素能識別特定的核苷酸序列,參與毒力蛋白SraP的表達調控,同時促進致病菌與宿主細胞的黏附作用[45]。最近報道鉤端螺旋體屬中的ChpK和MazF毒素能進入宿主細胞質中殺死細胞,同時△和△缺失突變株感染顯示感染后期的巨噬細胞中細胞壞死數(shù)減少[46]。雖然TA分子調控細菌毒力的具體機制還未完全解釋清楚,但TA系統(tǒng)的毒素作用已經被科學家們認可。
“持留態(tài)細胞”是指能夠在高濃度的抗生素中生存的細菌。這種現(xiàn)象在生長平臺期的菌中更為常見[47]。持留態(tài)細胞能使細菌處于半休眠狀態(tài),細菌低轉錄低翻譯水平使大部分抗生素對其束手無策。第一對被發(fā)現(xiàn)參與持留形成的是K-12中的TA對。氨芐青霉素處理下野生株呈現(xiàn)10?5?10?6的持留率,而雙突變的菌株(,能釋放HipA毒性) 呈現(xiàn)出10?2持留率[48]。在野生株中過量表達HipA毒素也表現(xiàn)出和相同的持留率[49]。HipA毒素能磷酸化Ser239,導致未修飾的tRNA Glu積累,激活和釋放RelA (五磷酸合成酶pppGpp信使),使pppGpp升高,增加持留水平[50-51]。冗余TA可以增加持留態(tài)細胞形成的頻率,而隨機波動的頻率可以自發(fā)地打開TA引起細胞正常和持久的雙穩(wěn)態(tài)[52]。TA對與生物被膜的關系現(xiàn)今也被廣泛關注,有學者證明TA基因敲除后能降低生物被膜的形成[10,25,53],同時又有人提出TA分子對生物被膜形成起正向調控作用[54],而具體機制我們還不得而知。
細菌應激反應(General stress response, GSR) 作為一種可逆狀態(tài)能幫助細胞在營養(yǎng)匱乏、高氧、強酸和其他不同壓力環(huán)境下長時間存活。革蘭氏陰性菌中編碼的σs是GSR最關鍵的調控因子。因此生物膜休眠增強和持留細胞生長率顯著降低,是生物膜抗生素敏感性降低的主要原因。由于生物被膜的形成,GSR或許直接參與了慢性感染過程。事實證明GSR信號通路確實是在囊性纖維化慢性感染過程中被激活[55]。TA系統(tǒng)中的抗毒素MqsA,能直接抑制壓力調節(jié)關鍵蛋白RpoS的表達[56],阻礙細胞的GSR。MqsA能識別和操縱子上與類似的回文序列[57]并與之結合,而在操縱子上刪除這樣的回文序列會使MqsA蛋白無法結合[56]。在高氧壓力下,MqsA被蛋白酶Lon降解,導致去抑制,細胞GSR啟動,反向說明了MqsA 阻礙細胞的GSR。這是第一個明確的外部壓力如何影響基因調控機制,并為TA系統(tǒng)創(chuàng)造了一個重要的新角色。
至今為止發(fā)現(xiàn)中至少存在6種RNA酶(MqsR,MazF,RelE,ChpB,YafQ,YoeB) 降解不同mRNAs來應對不同壓力。這種假設是根據(jù):1) 不同壓力下激活的TA系統(tǒng)不同,例如YafNO、HigBA、MqsRA TA分子在氨基酸匱乏下被激活,YafNO、HigBA、MqsRA分子在氯霉素(30 μg/mL) 處理下激活[58],YafNO、YafQ/DinJ[59]、TisB/IstR-1[60]、SymE/SymR[61]等分子則參與抗絲裂霉素C和SOS應激,而TisB/IstR-1在環(huán)丙沙星(0.1 μg/mL) 壓力下可被激活[60]。2) MqsR、MazF、YafQ和ChpB分別酶切mRNA GCU[62]、ACA[63]、AAA[59]與 ACY (Y=A或者G) 位點,它們調控不同的基因功能。此外,有報道證明雖然MazF在抗生素壓力下會降解大部分mRNAs,但是未被降解的mRNAs即使含有ACA酶切位點也會編碼出特殊蛋白,這些蛋白一部分發(fā)揮毒素效應,一部分用來協(xié)助細胞生存[64]。
TA廣泛存在于原核細胞和古細菌中而不存在于真核細胞中,毒素的利用就能讓TA成為很好的抗菌靶點。Ⅱ型TA系統(tǒng)似乎是人工激活毒素復合物最可行的目標。最直接的方法就是破壞或是阻礙TA復合體的形成,或促進抗毒素的降解來釋放毒素。然而釋放毒素可能會誘導持留態(tài)細胞和生物被膜的形成,所以目的TA需謹慎篩選。據(jù)報道已有幾種肽類能在體外誘導TA系統(tǒng)[65-67]。例如胞外死亡因子EDF (Extracellular death factor) 能在胞外激活MazF誘導大腸桿菌死亡[68-71]。EDF是一種NNWNN五肽,通過ClpXP依賴途徑從6-磷酸葡萄糖脫氫酶上水解下來[69]并分泌到培養(yǎng)基中。將處于對數(shù)生長期的大腸桿菌在富含EDF懸浮物的培養(yǎng)基中培養(yǎng),或者促進EDF合成,都可以激活MazF[68]和ChpBK[70],誘導細胞死亡,這種現(xiàn)象能分別被其抗毒素MazE 和 ChpBI抑制。因此EDF及其同源肽類為新一類抗菌藥的研制提供了重要的研究線索。
TA系統(tǒng)另一潛在價值被發(fā)現(xiàn)——抗病毒感染。最近含有基因的逆轉錄載體構建成功,而是被安插在HIV-1啟動子TAR下游并受其調控。HIV感染循環(huán)是以病毒Tat蛋白表達開始的,Tat結合TAR序列誘導整個HIV-1基因組轉錄。被感染的CD4+細胞含有結構,HIV-1侵入后表達Tat蛋白結合TAR序列后誘導MazF表達,MazF發(fā)揮毒性酶切病毒mRNA,阻止HIV-1繁殖,實驗在體外進行[72]。另一項研究則在丙型肝炎病毒HCV (Hepatitis C virus) 領域中同樣證明MazF具有抗病毒潛力。一種多肽鏈MazF+linker+MazEp (MazE片段) 構建成功,其中MazF和MazEp是通過含有NS3酶切位點的延伸鏈連接在一起的,而NS3是一種病毒絲氨酸蛋白酶,是HCV多聚蛋白質必需的加工酶。含有結構的細胞可以正常生長,因為MazF的毒性處于被MazEp抑制狀態(tài)。當細胞被HCV感染后病毒產生的NS3蛋白酶切斷中間的,MazF毒性釋放,阻礙蛋白質合成,根除細胞感染[73]。這種治療策略也適用于同樣依賴蛋白酶的其他病毒,例如HIV。
2003年有學者提出來自質粒R1的Kid毒素能用來研發(fā)抗癌復合物[74],其中一種方法就是利用腫瘤特定啟動子直接打開毒素基因的表達,從而作用于癌細胞[75]。最近,小鼠通過基因工程方法,接入MazF毒素基因后實體瘤發(fā)生逆轉,然而可能是由于毒素的功能喪失,成功逆轉率僅為50%左右[76]。這些發(fā)現(xiàn)為抗腫瘤探索路上打開了一扇新的大門。
然而將毒素作為抗菌或抗病毒藥物時,我們不得不考慮,既然毒素能被直接作用于患者體內殺死病原體,那么人體內的共生菌群和正常細胞是否也會收到毒素的攻擊?;蛟S在真核生物中研制抗菌藥物和抗病毒藥物時,MazF等毒素的活性和劑量需受到嚴格把控。
[1] Gerdes K, Rasmussen PB, Molin S. Unique type of plasmid maintenance function: post segregational killing of plasmid-free cells. Proc Natl Acad Sci USA, 1986, 83(10): 3116–3120.
[2] Pandey DP, Gerdes K. Toxin-antitoxin loci are highly abundant in free-living but lost-from host-associated prokaryotes. Nucleic Acids Res, 2005, 33(3): 966–976.
[3] van Melderen L, de Bast MS. Bacterial toxin-antitoxin systems: more than selfish entities?. PLoS Genet, 2009, 5(3): e1000437.
[4] Wang XX, Wood TK. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol, 2011, 77(16): 5577–5583.
[5] Tripathi A, Dewan PC, Barua B, et al. Additional role for the ccd operon of F-plasmid as a transmissible persistence factor. Proc Natl Acad Sci USA, 2012, 109(31): 12497–12502.
[6] Christensen SK, Mikkelsen M, Pedersen K, et al. RelE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci USA, 2001, 98(25): 14328–14333.
[7] Engelberg-Kulka H, Glaser G. Addiction modules and programmed cell death and anti death in bacterial cultures. Annu Rev Microbiol, 1999, 53(1): 43–70.
[8] de Bast MS, Mine N, van Melderen L. Chromosomal toxin antitoxin systems may act as antiaddiction modules. J Bacteriol, 2008, 190(13): 4603–4609.
[9] Xie YZ, Wei YQ, Shen Y, et al. TADB 2.0: an updated database of bacterial type II toxin-antitoxin loci. Nucl Acids Res, 2018, 46(D1): D749–D753.
[10] Gerdes K, Maisonneuve E. Bacterial persistence and toxin antitoxin loci. Annu Rev Microbiol, 2012, 66(1): 103–123.
[11] Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A, et al. A differential effect oftoxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS ONE, 2009, 4(8): e6785.
[12] Ren D, Walker A, Daines DA. Toxin-antitoxin loci vapBC-1 and vapXD contribute to survival and virulence in nontypeable Haemophilus influenzae. BMC Microbiol, 2012, 12: 263.
[13] Norton JP, Mulvey MA. Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic. PLoS Pathog, 2012, 8(10): e1002954.
[14] Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol, 2016, 12(4): 208–214.
[15] Hayes F. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science, 2003, 301(5639): 1496–1499.
[16] Fozo EM, Makarova KS, Shabalina SA, et al. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of nove families. Nucleic Acids Res, 2010, 38(11): 3743–3759.
[17] Kawano M. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from: hok/sok, ldr/rdl, symE/symR. RNA Biol, 2012, 9(12): 1520–1527.
[18] Fozo EM. New type I toxin-antitoxin families from “wild” and laboratory strains of: Ibs-Sib, ShoBOhsC and Zor-Orz. RNA Biol, 2012, 9(12): 1504–1512.
[19] Durand S. Jahn N, Condon C, et al. Type I toxin-antitoxin systems inRNA Biol, 2012, 9(12): 1491–1497.
[20] Yamaguchi Y, Park JH, Inouye M. Toxinantitoxin systems in bacteria and archaea. Ann Rev Genet, 2011, 45(1): 61–79.
[21] Schuster CF, Bertram R. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett, 2013, 340(2): 73–85.
[22] Fozo EM, Hemm MR, Storz G. Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Bio Rev, 2008, 72(4): 579–589.
[23] Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, et al. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet, 2006, 2(10): e135.
[24] Correia FF, D’Onofrio A, Rejtar T, et al. Kinase activity of over expressed HipA is required for growth arrest and multidrug tolerance in. J Bacteriol, 2006, 188(24): 8360–8367.
[25] Korch SB, Henderson TA, Hill TM. Characterization of theallele ofand evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol, 2003, 50(4): 1199–1213.
[26] Sala A, Bordes P, Genevaux P. Multiple toxin-antitoxin systems in. Toxins, 2014, 6(3): 1002–1020.
[27] Fineran PC, Blower TR, Foulds IJ, et al. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci USA, 2009, 106(3): 894–899.
[28] Blower TR, Pei XY, Short FL, et al. A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat Struct Mol Biol, 2011, 18(2): 185–190.
[29] Blower TR, Short FL, Rao F, et al. Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res, 2012, 40(13): 6158–6173.
[30] Masuda H, Tan Q, Awano N, et al. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in. Mol Microbiol, 2012, 84(5): 979–989.
[31] Wang XX, Lord DM, Cheng HY, et al. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol, 2012, 8(10): 855–861.
[32] Wang XX, Lord DM, Hong SH, et al. Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environ Microbiol, 2013, 15(6): 1734–1744.
[33] Aakre CD, Phung TN, Huang D, et al. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the beta sliding clamp. Mol Cell, 2013, 52(5): 617–628.
[34] Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect, 2015, 17(3): 173–183.
[35] De Biase D, Lund PA. Theacid stress response and its significance for pathogenesis. Adv Appl Microbiol, 2015, 92: 49–88.
[36] Santaolalla R, Abreu MT. Innate immunity in the small intestine. Curr Opin Gastroenterol, 2012, 28(2): 124–129.
[37] Georgiades K, Raoult D. Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules. PLoS ONE, 2011, 6(3): e17962.
[38] Ma Z, Geng JN, Yi L, et al. Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogenssp. zooepidemicus strain ATCC35246. BMC Genomics, 2013, 14: 377.
[39] Sayeed S, Reaves L, Radnedge L, et al. The stability region of the large virulence plasmid ofcodes an efficient post segregational killing system. J Bacteriol, 2000, 182(9): 2416–2421.
[40] Hurley JM, Woychik N. Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites. J Biol Chem, 2009, 284(28): 18605–18613.
[41] Ren D, Walker AN, Daines DA. Toxin-antitoxin loci vapBC-1 and vapXD contribute to urvival and virulence in nontypeable. BMC Microbiol, 2012, 12: 263.
[42] Norton JP, Mulvey MA. Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic. PLoS Pathog, 2012, 8(10): e1002954.
[43] de la Cruz MA, Zhao WD, Farenc C, et al. A toxin-antitoxin module ofpromotes virulence in mice. PLoS Pathog, 2013, 9(12): e1003827.
[44] Pinel-Marie ML, Brielle R, Felden B. Dual toxic-peptide-coding Staphylococcus aureus RNA under antisense regulation targets host cells and bacterial rivals unequally. Cell Rep, 2014, 7(2): 424–435.
[45] Zhu L, Inoue K, Yoshizumi S, et al.MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP. J Bacteriol, 2009, 191(10): 3248–3255.
[46] Komi KK, Ge YM, Xin XY, et al. ChpK and MazF of the toxin antitoxin modules are involved in the virulence ofduring infection. Microbes Infect, 2015, 17(1): 34–47.
[47] Harrison JJ, Wade WD, Akierman S, et al. The chromosomal toxin gene yafQ is a determinant of multidrug tolerance forgrowing in a bioflm. Antimicrob Agents Chemother, 2009, 53(6): 2253–2258.
[48] Moyed HS, Bertrand KP. hipA, a newly recognized gene ofK-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol, 1983, 155(2): 768–275.
[49] Korch SB, Hill TM. Ectopic overexpression of wild-type and mutant hipA genes in: effects on macromolecular synthesis and persister formation. J Bacteriol, 2006, 188(11): 3826–3836.
[50] Germain E, Castro-Roa D, Zenkin N, et al. Molecular mechanism of bacterial persistence by HipA. Mol Cell, 2013, 52(2): 248–254.
[51] Maisonneuve E, Castro-Camargo M, Gerdes K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin antitoxin activity. Cell, 2013, 154(5): 1140–1150.
[52] Fasani RA, Savageau MA. Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype. Proc Natl Acad Sci USA, 2013, 110(7): E2528–E2537.
[53] Wen YR, Behiels E, Devreese B. Toxin-Antitoxin systems: their role in persistence, biofilm formation and pathogenicity. Pathog Dis, 2014, 70(3): 240–249.
[54] Mitchell HL, Dashper SG, Catmull DV, et al. Treponema denticola biofilm-induced expression of a bacteriophage, toxin-antitoxin systems and transposases. Microbiology, 2009, 156(3): 774–788.
[55] Foley I, Marsh P, Wellington EM, et al. Brown. General stress response master regulator rpoS is expressed in human infection: a possible role in chronicity. J Antimicrob Chemother, 1999, 43(1): 164–165.
[56] Wang X, Kim Y, Hong SH, et al. Antitoxin MqsA helps mediate the bacterial general stress response. Nat Chem Biol, 2011, 7(6): 359–366.
[57] Brown BL, Wood TK, Peti W, et al. Structure of theantitoxin MqsA (YgiT/b3021) bound to its gene promoter reveals extensive domain rearrangements and the specificity of transcriptional regulation. J Biol Chem, 2011, 286(3): 2285–2296.
[58] Christensen-Dalsgaard M, J?rgensen MG, Gerdes K. Three new RelE-homologous mRNA interferases ofdifferentially induced by environmental stresses. Mol Microbiol, 2010, 75(2): 333–348.
[59] Prysak MH, Mozdzierz CJ, Cook AM, et al. Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage. Mol Microbiol, 2009, 71(5): 1071–1087.
[60] D?rr, T, Vuli? M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in. PLoS Biol, 2010, 8(2): e1000317.
[61] Kawano M, Aravind L, Storz G. An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol, 2007, 64(3): 738–754.
[62] Yamaguchi Y, Park JH, Inouye M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in. J Biol Chem, 2009, 284(42): 28746–28753.
[63] Zhang YL, Zhang JJ, Hoeflich KP, et al. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in. Mol Cell, 2003, 12(4): 913–923.
[64] Amitai S, Kolodkin-Gal I, Hananya-Meltabashi M, et al.MazF leads to the simultaneous selective synthesis of both “death proteins” and “survival proteins”. PLoS Genet, 2009, 5(3): e1000390.
[65] Lioy VS, Rey O, Balsa D, et al. A toxin-antitoxin module as a target for Antimicrobial development. Plasmid, 2010, 63(1): 31–39.
[66] Agarwal S, Mishra NK, Bhatnagar S, et al. PemK toxin ofa ribonuclease: an insight into its active site, structure, and function. J Biol Chem, 2010, 285(10): 7254–7270.
[67] Chopra N, Agarwal S, Verma S, et al. Modeling of the structure and interactions of theantitoxin, MoxX: deletion mutant studies highlight its modular structure and repressor function. J Comput Aided Mol Des, 2011, 25(3): 275–291.
[68] Kolodkin-Gal I, Hazan R, Gaathon A, et al. A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in. Science, 2007, 318(5850): 652–655.
[69] Kolodkin-Gal I, Engelberg-Kulka H. The extracellular death factor: physiological and genetic factors influencing its production and response in. J Bacteriol, 2008, 190(9): 3169–3175.
[70] Belitsky M, Avshalom H, Erental A, et al. Theextracellular death factor EDF induces the endoribonucleolytic activities of the toxins MazF and ChpBK. Mol Cell, 2011, 41(6): 625–635.
[71] Erental A, Sharon I, Engelberg-Kulka H. Two programmed cell death systems in: an apoptotic-like death is inhibited by the-mediated death pathway. PLoS Biol, 2012, 10(3): e1001281.
[72] Chono H, Matsumoto K, Tsuda H, et al. Acquisition of HIV-1 resistance in T lymphocytes using an ACA-specificmRNA interferase. Hum Gene Ther, 2011, 22(1): 35–43.
[73] Shapira A, Shapira S, Gal-Tanamy M, et al. Removal of hepatitis C virus infected cells by a zymogenized bacterial toxin. PLoS ONE, 2012, 7(2): e32320.
[74] de La Cueva Méndez G, Mills AD, et al. Regulatable killing of eukaryotic cells by the prokaryotic proteins Kid and Kis. EMBO J, 2003, 22(2): 246–251.
[75] Yang L, Cao Z, Li F, et al. Tumor-specific gene expression using the survivin promoter is further increased by hypoxia. Gene Ther, 2004, 11(15): 1215–1223.
[76] Shimazu T, Mirochnitchenko O, Phadtare S, et al. Regression of solid tumors by induction of MazF, a bacterial mRNA endoribonuclease. J Mol Microb Biotechnol, 2014, 24(4): 228–233.
(本文責編 陳宏宇)
Functions of bacterial Toxin-Antitoxin systems
Zhili He, and Hui Wang
State Key Laboratory of Pathogen and Biosecurity,Beijing Institute of Microbiology and Epidemiology Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
TA (Toxin-Antitoxin) systems are widely spread in chromosomes and plasmids of bacteria and archaea. These systems consist of two co-expression genes, encoding stable toxin and sensitive antitoxin, respectively. The toxicity of toxins usually inhibits bacterial growth and antitoxins can neutralize the toxins. Interaction between them would regulate the growth state of bacteria precisely. According to the composition of TA and nature of antitoxin, six types of TA have been found. The role of these TA systems in bacteria has been a hot research topic in recent years. Now, the research status on functions of bacterial TA is reviewed.
Toxin-Antitoxin system, environmental adaptability, persisters, biofilm, bacterial virulence
December 28, 2017;
March 16, 2018
National Basic Research Program of China (973 Program) (No. 2015CB554202).
Hui Wang. Tel/Fax: +86-10-66948587; E-mail: geno0109@vip.sina.com
國家重點基礎研究發(fā)展計劃 (973計劃) (No. 2015CB554202) 資助。
10.13345/j.cjb.170527