• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Hadamard Gate for Open Quantum Systems by the Lyapunov Control Method

    2018-08-11 07:48:46NourallahGhaeminezhadandShuangCongSeniorMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2018年3期

    Nourallah Ghaeminezhad and Shuang Cong,Senior Member,IEEE

    Abstract—In this paper,the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate,which is an important basic gate for the quantum computers.First,the density matrix interested in quantum system is transferred to vector formation.Then,in order to obtain a controller with higher accuracy and faster convergence rate,a Lyapunov function based on the matrix logarithm function is designed.After that,a procedure for the controller design is derived based on the Lyapunov stability theorem.Finally,the numerical simulation experiments for an amplitude damping Markovian open quantum system are performed to prepare the desired quantum gate.The simulation results show that the preparation of Hadamard gate based on the proposed control laws can achieve the fidelity up to 0.9985 for the different coupling strengths.

    I.INTRODUCTION

    DURING recent years much work has been done to develop the quantum computers.In a quantum computer,the data is loaded as a string of quantum bits(qubits)[1].Quantum gates perform very simple operations on these qubits such as flipping their values.By combining many quantum gates,complex operations can be realized and these operations can be used to manipulate the qubits.The preparation of quantum basic gates is one of the most important research topics in quantum control field[2].The main objective is to prepare stable and high- fidelity quantum gates within a possible short time and prevent them from decoherence as long as possible[3].A quantum control process can be divided into coherent and decoherent parts,corresponding to the unitary and non-unitary operations,respectively[4],[5].Up to now,many different quantum control methods have been developed to generate higher fidelity quantum gates in a short time.One of the common methods is the quantum optimal control method,which has been extensively studied[6]?[11].Dynamical decoupling method is also an effective control way for the quantum gate preparation.In 2013,Piltz et al.protected conditional quantum gates by robust dynamical decoupling[12].In 2011,Grace et al.combined dynamical decoupling pulses with the optimal control method for improving preparation of quantum gates[13].However,in the methods mentioned above the control laws are not analytic and the designing procedure is a time-consuming task.The design of control laws based on the quantum Lyapunov method greatly simplifies the mathematic calculation and its analytical type of control laws make the control system be easily adjusted[14],[15].

    The Hadamard gate is one of the most basic and important gates in quantum computers[16].Any unitary operation can be approximated with arbitrary accuracy by means of special gates set in which the Hadamard gate must be included.Many quantum algorithms use the Hadamard transformation as the first step to initialize the state with random information.In quantum information processing,the Hadamard transformation acts as a one-qubit operator that maps the qubit basis states to different superposition states[17].

    In our previous work[18]we prepared a Not gate for one qubit open quantum system.In this paper,we will design a Lyapunov control method to prepare the Hadamard gate using unitary time-evolution operator whose dynamics are transferred to the Bloch vector space.We construct a matrix logarithm function as the Lyapunov function.The design of control laws is based on the Lyapunov stability theorem.The purpose of the control is to drive the unitary evolution operator from any initial quantum gate as close as possible to the desired quantum gate in the shortest possible time.Two performance indices of the system under environment uncertainties are analyzed by means of the simulation experiments.

    The rest of this paper is arranged as follows:in Section II,the descriptions of the control system and the model of the system are studied.In Section III,the Lyapunov function and the design of control laws are investigated.In Section IV,the Hadamard gate based on designed control laws is prepared in numerical experiments,the performances of control laws are analysed,and the comparisons with other control methods are done.Finally,the conclusion is given in Section V.

    II.DESCRIPTIONS OF THE CONTROL SYSTEM AND THE MODEL OF THESYSTEM

    For a two-level Markovian open quantum system,the dynamics of state ρtcan be described as the following Lindblad equation[17]

    where[H(t),ρt]=[H(t)·ρt?ρt·H(t)]is the commutator of H(t)and ρt[19].H(t)is the Hamiltonian of the system

    where H0is a free Hamiltonian which is a Hermitian diagonal matrix,and Hcis the control Hamiltonian of the system

    where fx(t),fy(t)and fz(t)are control fields;σk,k=x,y,z are the Pauli matrices

    In(1),L(ρt)turns out to cause decoherence of the system and is called the dissipation part which describes the correlation between the system and the environment[17],[20],[21]

    In our work,the studied model of the Markovian open quantum system is amplitude damping(AD).The related GKS matrix for the AD system is[22],[23]

    where σi?= σx?iσy,σi+= σx+iσy,and γ is the coupling strength of the system with the environment.

    The preparation of quantum gates is more comprehensible if they can be considered as a kind of operators.Under this consideration,the dynamics of the operators must be obtained.Since the density matrix dynamics of(1)is a bilinear equation with dissipation part,it is not easy to use to manipulate the gates.Fortunately for a two-level quantum system,the state of the quantum system can also be described by the state vector.

    As{I,σx,σy,σz}makes a basis for 2 × 2 Hermitian matrices,the density matrix ρtin(1)can be rewritten in Bloch vector rtas

    Moreover,the dissipation part of the AD system is[23]

    in this way ρtis represented by the vector rt=(rxt,ryt,

    We define U(t)as a unitary time-evolution operator on density matrix ρt;accordingly the time-evolution of ρtcan be written as

    According to(1),(9)and(10),we can obtain the following dynamics equation

    in which A(t)is the adjoint representation of?iH(t)in group of SO(3)which is derived from converting unitary part?i[H(t),ρt]of(1)to the Bloch vector representation and has the following form

    where Ax=andB is extracted from converting the dissipation part L(ρt)of(1)to the Bloch vector representation and can be written as

    Based on(6)and(7),for the AD system we set γxx= γyy= γ,γxy= γi,γyx= ?γi and γxz= γyz= γzx= γzy=γzz=0.In this case,one has

    From(9)and(10),the time-evolution of vector rtin the Bloch vector space can be written as

    Accordingly,based on(11)we can obtain

    Now for preparing the quantum gate,the control task becomes to design the control fields in A(t)in order to drive the initial gate towards the desired one.

    By substituting the Pauli matrices(4)into the density matrix given by(9),the relationship between ρtand rtbecomes

    where G?refers to the conjugate transpose of matrix G,and u?stands for the conjugate of element u.

    Let the final state vector be rf= (rxf,ryf,rzf)T,by comparing(17)with(18),rxf,ryfand rzfcan be obtained as

    Considering(15),(19),(20),and(21),the time-evolution operator U(t),which drives the initial vector r0to the final vector rtin the Bloch vector space,can be derived as(22)(see the bottom of this page).

    In this paper,the desired gate is a Hadamard gate GH,which is a unitary operator that implies on a single qubit,and transfers each basis stateto the superposition of both states,i.e.,it transfers the basis stateand the basis state The GHcan be written as[1]

    To obtain the Hadamard gate GHby the vector dynamics,the matrix GHwill be realized in the form of U(t)in(22)as the unitary time-evolution operator in the Bloch vector space.According toand(23),the final parameters of the Hadamard matrix in GH,i.e.,are substituted into(22);then the representation of the desired Hadamard gate in the Bloch vector space is expressed as

    III.DESIGN OF CONTROL LAWS

    In Section II,density matrix dynamics and desired quantum gate have been derived in the Bloch vector space,and we have obtained the dynamics of time-evolution operator U(t)in the same space.Now we design a proper Lyapunov function and Lyapunov-based control laws.A suitable Lyapunov function is first constructed and evaluated,then the control laws based on the Lyapunov stability theorem are designed.

    The Lyapunov stability theorem is used to determine the stability of a control system without need of solving the partial differential equations.It can also be used to design the control laws in order to obtain a stable control system.According to the Lyapunov stability theorem the dynamical system in(11),is stable if there is a scalar function V(t)that satisfies the following conditions:a)V(t)is positive semi-definite,i.e.,V(t)≥0 at any time;b)the first order time derivative of the Lyapunov function is negative semi-definite,i.e.,˙V(t)≤0 at any amount of time[17].

    The Lyapunov function V constructed in this paper is based on the matrix logarithm log(Uf?U(t))[25].Let’s define Uf?U(t)=W(t).As long as the spectral radius is less than one,the Mercator series of log(W(t))is[26]

    where I is the identity matrix.

    The first two terms of Mercator series in(25)are chosen,and the Lyapunov function in this paper is constructed by taking the square norm of two terms as

    Equation(26)asserts that,V(t0)=32 when U(t)=U0=I,and V(tf)=0 as long as U(t)=Uf.The constructed Lyapunov function satisfies V(t)≥0 at any time.

    To design the control laws,the first order time derivation of V(t)must satisfy˙V(t)≤0 at any amount of time,and˙V(t)=0 while U(t)=Uf.According to(26),˙V(t)is derived as follows:

    where the first and second terms of the trace function are the conjugate transpose of each other.Moreover,all elements of the trace function are real matrices,so the trace of these two terms are equal,and(29)can be rewritten as

    Substituting the conjugate transpose of˙U(t)in(11),i.e.,˙U?(t)=U?(t)(A(t)+B)?into(30),one has

    Substituting A(t)in(12)into(31),we can obtain

    where B is defined in(14),and fx(t),fy(t),and fz(t)are real valued functions which are pulled out from the trace function to divide(32)into 4 parts as shown in(33)

    From(33)it is obvious that,˙V(t)is composed of 4 parts with the similar structure as

    then these similar functions are defined as S(X,t)

    in which X is Ax,Ay,Azor B,in the first,second,third,or fourth term of(33)respectively.By substituting(34)into(33),we have

    while Ax,Ay,Az,and B are defined in(12)and(14),respectively.

    Now the control task becomes to design the control functions fx(t),fy(t)and fz(t),to make V(t)decrease monotonically,i.e.,˙V(t)≤0.The main idea of design is to make the control laws consist of two terms,such that the first term is used to ensure˙V(t)≤0,and the second term is used to eliminate the dissipation part caused by B.For this purpose,the control functions are designed as

    where ax,ay,az,hx,hy,and hz,are tuning weights.In(36),the terms?ajS(Aj,t),aj≥ 0,j=x,y,z,are used for preparing the operator,while for terms?hjS(B,t)/S(Aj,t),j=x,y,z,by adjusting hj,hx+hy+hz=1,the dissipation part caused by B goes to be eliminated.

    Substituting(36)into(35),one gets

    This means the control laws given by(36)can ensure≤0,so these control laws satisfy the requirements of the Lyapunov stability theorem.

    IV.SIMULATION EXPERIMENTS AND RESULT ANALYSIS

    In this section,the control laws in(36)are used to prepare the Hadamard gate for a Markovian open quantum system,i.e.,to drive the time-evolution operator U(t)from the initial identity matrix gate(38)to the desired gate(39).

    Numerical simulations are conducted to investigate the performances of control laws and the dynamical behavior of the system.We mainly study the following three points:

    1)The dynamics and characteristics of the time-evolution operator under the Lyapunov-based control are investigated.Meanwhile,the accuracy of preparation of the Hadamard gate is analyzed based on two performance indices:the fidelity F and the distance D,for different coupling strength γ.Then,the performances of control laws are investigated by the experiments.

    2)The effects of control laws on the control system performances are studied by analyzing the state-transfer from ρ0to ρf.

    3)The comparisons between different control methods are discussed.

    A.Preparation of Hadamard Gate and Analysis of the Control Performance Indices

    In this subsection,the dynamics and characteristics of the time-evolution operator U(t)under the action of the control laws are studied.The Hadamard gate for the AD Markovian open quantum system is prepared,and two control performance indices are analyzed.

    In dynamical equation˙U(t)=(A(t)+B)U(t),the four thorder Runge-Kutta method is used to obtain the time-evolution operator U(t)as

    where

    in which

    In(40),h is the sampling time.The control time is divided into 100 steps from 0 to 0.1a.u.,so h=0.001.As the steps go ahead,according to(40),the first step starts from U0,and the U(t)is updated until Ufis prepared.The control laws are used to drive U(t)from U0to Uf,in which ax=70,ay=106,and az=66 are set.At the initial time,we set the initial values of control functions as fx(0)=10.28,fy(0)=10.73,and fz(0)=40.

    The fidelity and the distance are introduced to analyse the accuracy of quantum Hadamard gate preparation.The fidelity is defined as[27]

    where N is the system dimensions and for the two-level system,N=2.As long as the operator reaches completely the desired operator,the fidelity is equal to one.

    The distance is defined as

    Accordingly,the distance gives the perception whether U(t)achieves Ufand to what extent.When U(t)reaches Ufcompletely,the distance is equal to 0.Otherwise by considering the fault tolerant quantum computation,the distance should satisfy the following performance selected in our experiment which is the distance criterion for valid operator preparations.

    As the system is an open quantum system,when the coupling strength γ increases,there is a higher coupling strength with the environment.Fig.1 shows the experimental results of the fidelity,when preparing the Hadamard gate for the AD Markovian open quantum system under designed control laws with three coupling strength γ = 0.01, γ = 0.1,and γ = 0.18,respectively.

    Fig.1.The fidelity under control laws for the AD system when γ=0.01,γ=0.1,and γ=0.18.

    One can see from Fig.1 that,when γ=0.01,at t=0.0164a.u.,the fidelity reaches 0.9985.For larger parameters γ,i.e., γ =0.1 and γ =0.18,the fidelity becomes 0.981 and 0.962,respectively.This indicates that as γ increases,the dissipation part has more effect on the system,which makes the fidelity decrease.When γ=0.1 at time 0.091a.u.,the fidelity has a fluctuation,and when γ=0.18,the fluctuations happen again with larger deviation at times 0.0447a.u.and 0.092a.u.,which are caused by the dissipation L(ρt)of the open quantum system.The designed Lyapunov control laws can guarantee the system stability,and when the dissipation makes the system deviate from the desired result,the control laws can eliminate it in a very short time.

    Fig.2 is the result of the distance when preparing the Hadamard gate for the AD Markovian open quantum system with γ =0.01, γ =0.1,and γ =0.18.For all parameters γ,at t=0.0164a.u.,the distance reaches less than 10?4,and it remains in this criterion for the rest of time.For γ=0.1,at t=0.092a.u.,the distance becomes 4× 10?3,but after a short time the controller brings it under 10?4again.When γ=0.18,at times 0.047 and 0.093a.u.,there are also some peaks that values are 3.1× 10?2and 5 ×10?3,respectively,but these fluctuations are rectified by the controller.These fluctuations are caused by the dissipation of the system coupled to environments.As the γ increases the fluctuations also increase,which are eliminated by the control laws in a very short time.

    The function of control laws consists of two parts:the first is the preparation,and the second is the preservation.During the preparation part,the desired gate is prepared,and two control performance in dices,i.e.,density and fidelity,tend to reach the minimum and maximum values,respectively.In the preservation part,the desired gate remains stable under the action of the control laws.The effects of control laws in the preservation part eliminate the dissipation of the system which emerges as the fluctuations.

    Table I is the parameters in(36)selected in experiments in order to have the maximum fidelity and the minimum distance in the shortest possible time.The control laws as the function of time with γ=0.1 are shown in Fig.3.From which one can see that at t=0.0164a.u.the control laws tend to zero,then there appear some fluctuations.This time is the preparation time and during 0≤t≤0.0164a.u.,the control laws work in the preparation part.After t=0.016a.u.and till the end of simulation time t=0.1a.u.,the control laws work in the preservation part.

    B.State-Transfer Under Designed Control Laws

    In this subsection,in order to study the relation between the density matrix and the gate,the numerical simulation of corresponding state-transfer from the arbitrary identity matrix U0to desired gate Ufis fulfilled to verify the effect of designed control laws.From(15)and(17),one can see that the density

    Fig.2.The distance under control laws for the AD system when(a)γ=0.01,(b)γ=0.1,and(c)γ=0.18.

    matrix ρtis an implicit function of U(t)by means of vector rt.

    Let the initial vector be r0=(1,0,0),which is regarded to be the superposition of basis states,i.e.,According to(15)and(24),the desired final vector,which is correlated to the state■■0〉,can be derived as

    TABLE IMINIMUM VALUES OF D AND MAXIMUM VALUES OFF

    Fig.3.Control laws as the function of the time when γ=0.1.

    To find out the corresponding density matrix,the initial vector r0=(1,0,0)and the final desired vector rf=(0,0,1)are substituted into(17),we can obtain

    Fig.4 illustrates the trajectory of the time-evolution density matrix as a function of time for the AD Markovian open quantum system under the designed control laws.

    Fig.4. State-transfer from ρ0to ρfunder control laws for the AD system when γ=0.1.

    Based on the principle of Von Neumann,the diagonal elements of a density matrix can be interpreted as the probability.The trace of a density matrix must be normalized,which means the sum of the diagonal elements of time-evolution density matrix,i.e.,ρ11+ ρ22,must be equal to one at each moment of time-evolution[28].The numerical simulation results in Fig.4 show that,at t=0.012a.u., ρ11and ρ22attain 0.999 and 0.001,respectively,whose sum is one.For the rest of simulation time,the loss of stability in Hamiltonian makes ρ11decrease and fluctuate very little away from the desired amount.Under the action of control laws,ρ11remains stable close to 1[29].When ρ11decreases a bit,the other diagonal element,i.e.,ρ22slightly increases,in which the sum of ρ11and ρ22is always equal to one.Other elements,i.e.,ρ12and ρ21attain to 4 × 10?4at t=0.012a.u..From Fig.4 one can see that,at times t=0.015a.u.and t=0.091a.u.,there are some fluctuations in the trajectories of ρ12and ρ21,which can be eliminated by the control laws designed.The numerical simulation results verify that the desired state in(47)is achieved.

    C.Comparison and Discussion

    In[30],the optimal control theory is applied to a two level open quantum system to prepare the Hadamard gate by minimizing an energy-type cost functional.25a.u.time was used and the performance of F ≈ 1?10?16was achieved for a closed-loop system.In our paper,when the experimental simulations are done in the same conditions,i.e.,γ=0,and the maximum amplitude of control laws is no larger than 2,the performance of our experimental results is F =1 at t=2.025a.u.which indicates that the control method proposed in this paper can obtain higher fidelity in a shorter time compared to that of the optimal control method in[30].

    In[18],the Lyapunov control method is used to prepare a Not gate for a two-level open quantum system.The performance of F=0.9976 at t=0.0194a.u.is obtained with γ=0.01,and the maximum amplitude of control laws is less than 400.Under the same conditions the fidelity performance in our paper is F=0.9985 at t=0.0165a.u.,which demonstrates the preparation in this paper has higher fidelity with a faster convergence rate.

    V.CONCLUSION

    This paper has prepared a Hadamard gate for the two level AD Markovian open quantum system based on the Lyapunov stability theorem.The controlled system dynamics are obtained in the Bloch vector representation.Two control performance indices,i.e,the fidelity and the distance are investigated,and numerical simulations are implemented under the MATLAB environment with different coupling strength γ.The control laws which are designed based on a novel Lyapunov function ensure high fidelity and low distance with a very short preparation time.The performances of the gate preparation and the state-transferring illustrate the effectiveness of designed control laws to eliminate the dissipation caused by coupling with environment.

    搡女人真爽免费视频火全软件| 亚州av有码| 成年人午夜在线观看视频| 欧美bdsm另类| a级一级毛片免费在线观看| 亚洲欧美日韩卡通动漫| 大陆偷拍与自拍| 久久精品国产亚洲网站| 丝袜喷水一区| 久久久久久久精品精品| 纵有疾风起免费观看全集完整版| 免费黄频网站在线观看国产| 国产黄a三级三级三级人| 交换朋友夫妻互换小说| av在线亚洲专区| 高清视频免费观看一区二区| 亚洲天堂国产精品一区在线| 欧美xxxx性猛交bbbb| 一级片'在线观看视频| 交换朋友夫妻互换小说| 欧美激情国产日韩精品一区| 在线观看美女被高潮喷水网站| 神马国产精品三级电影在线观看| 国产精品.久久久| 国产精品99久久99久久久不卡 | 国产91av在线免费观看| 性插视频无遮挡在线免费观看| 五月玫瑰六月丁香| 久久亚洲国产成人精品v| 免费黄色在线免费观看| 久久久精品欧美日韩精品| 欧美日韩综合久久久久久| 午夜精品一区二区三区免费看| 在线 av 中文字幕| 校园人妻丝袜中文字幕| 最近最新中文字幕免费大全7| 国产黄色免费在线视频| 久久女婷五月综合色啪小说 | 身体一侧抽搐| 色综合色国产| 国产色爽女视频免费观看| 色视频www国产| 69av精品久久久久久| 国产国拍精品亚洲av在线观看| 亚洲成人中文字幕在线播放| 亚洲欧美一区二区三区黑人 | 成年女人看的毛片在线观看| 免费av观看视频| 国产 精品1| 偷拍熟女少妇极品色| 国产一区二区在线观看日韩| 国产一区二区三区综合在线观看 | 成年女人看的毛片在线观看| 久久精品国产鲁丝片午夜精品| 国产精品99久久99久久久不卡 | 国产乱来视频区| 亚洲av免费在线观看| av在线观看视频网站免费| 国产探花极品一区二区| 国产精品国产三级国产专区5o| 亚洲最大成人av| 日韩精品有码人妻一区| 男的添女的下面高潮视频| 欧美激情国产日韩精品一区| 丝袜喷水一区| 啦啦啦啦在线视频资源| 午夜福利视频1000在线观看| 国产视频首页在线观看| 亚洲一级一片aⅴ在线观看| 黄片wwwwww| 国产精品一及| 久久精品国产自在天天线| 欧美精品一区二区大全| 人人妻人人爽人人添夜夜欢视频 | 成人美女网站在线观看视频| 最近2019中文字幕mv第一页| 69av精品久久久久久| 国产精品精品国产色婷婷| 国产av不卡久久| 九色成人免费人妻av| 日本与韩国留学比较| 只有这里有精品99| 亚洲精品久久久久久婷婷小说| 亚洲av中文av极速乱| 中文天堂在线官网| 亚洲精品日韩在线中文字幕| 深夜a级毛片| 国产精品国产三级专区第一集| 亚洲精品aⅴ在线观看| 男的添女的下面高潮视频| 久久热精品热| 国产亚洲5aaaaa淫片| 久久精品人妻少妇| 国产免费一级a男人的天堂| 国内精品美女久久久久久| 九九在线视频观看精品| 精品少妇黑人巨大在线播放| 欧美日本视频| 精品久久久久久久人妻蜜臀av| 亚洲三级黄色毛片| 国产精品不卡视频一区二区| 国产又色又爽无遮挡免| 在线播放无遮挡| 国产成人精品福利久久| 一级毛片黄色毛片免费观看视频| 国产熟女欧美一区二区| 欧美最新免费一区二区三区| 夫妻性生交免费视频一级片| 白带黄色成豆腐渣| 99精国产麻豆久久婷婷| 99视频精品全部免费 在线| 久久久久久久久久人人人人人人| 亚洲经典国产精华液单| 身体一侧抽搐| 国产精品福利在线免费观看| 看非洲黑人一级黄片| eeuss影院久久| 激情 狠狠 欧美| 亚洲,一卡二卡三卡| av卡一久久| 午夜老司机福利剧场| 丝袜脚勾引网站| 亚洲精品成人av观看孕妇| 国产精品熟女久久久久浪| 国产成人aa在线观看| 男人爽女人下面视频在线观看| 午夜老司机福利剧场| 国内精品宾馆在线| 久久午夜福利片| 男插女下体视频免费在线播放| 国产人妻一区二区三区在| 麻豆乱淫一区二区| 精品人妻熟女av久视频| 国产精品久久久久久久久免| 狠狠精品人妻久久久久久综合| 国产在线一区二区三区精| 小蜜桃在线观看免费完整版高清| 亚洲经典国产精华液单| 身体一侧抽搐| 亚洲精品亚洲一区二区| 国产精品成人在线| 国产午夜精品久久久久久一区二区三区| av播播在线观看一区| 亚洲熟女精品中文字幕| 26uuu在线亚洲综合色| 国产伦精品一区二区三区视频9| 久久久成人免费电影| 国产精品国产三级国产av玫瑰| 日韩三级伦理在线观看| 精品午夜福利在线看| 有码 亚洲区| 有码 亚洲区| 日日摸夜夜添夜夜爱| 好男人视频免费观看在线| 男人和女人高潮做爰伦理| 欧美xxxx性猛交bbbb| 午夜激情福利司机影院| 乱系列少妇在线播放| 久久久久国产精品人妻一区二区| 少妇人妻精品综合一区二区| 亚洲人与动物交配视频| 日韩 亚洲 欧美在线| 久久久久网色| 久久久久网色| 免费黄色在线免费观看| 色视频www国产| 又爽又黄无遮挡网站| 成人欧美大片| 国产淫语在线视频| 亚洲丝袜综合中文字幕| 人妻 亚洲 视频| 午夜视频国产福利| 一级毛片aaaaaa免费看小| 免费少妇av软件| 人妻 亚洲 视频| 国产毛片在线视频| 欧美+日韩+精品| 精品酒店卫生间| .国产精品久久| 欧美xxⅹ黑人| 亚洲精品乱码久久久久久按摩| 永久免费av网站大全| 我的老师免费观看完整版| 22中文网久久字幕| 免费看a级黄色片| eeuss影院久久| 精品一区二区免费观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品色激情综合| 日韩av免费高清视频| 18禁在线播放成人免费| 久久6这里有精品| 18禁裸乳无遮挡免费网站照片| 一本一本综合久久| 熟女人妻精品中文字幕| 精品人妻熟女av久视频| 午夜激情福利司机影院| 99热6这里只有精品| 麻豆精品久久久久久蜜桃| 又爽又黄无遮挡网站| 一级av片app| 国产亚洲一区二区精品| 日韩一区二区三区影片| 久久久久国产精品人妻一区二区| 成人亚洲精品av一区二区| 久热久热在线精品观看| videos熟女内射| 欧美高清成人免费视频www| 免费av不卡在线播放| 久久久午夜欧美精品| 99久久中文字幕三级久久日本| 国产av不卡久久| 国产av国产精品国产| 熟女人妻精品中文字幕| 亚洲国产精品国产精品| 中国美白少妇内射xxxbb| 欧美xxⅹ黑人| 免费播放大片免费观看视频在线观看| 成人特级av手机在线观看| 国语对白做爰xxxⅹ性视频网站| 女人被狂操c到高潮| 联通29元200g的流量卡| 亚洲av二区三区四区| 国产免费一级a男人的天堂| 少妇人妻 视频| 深爱激情五月婷婷| 精品一区二区三区视频在线| 高清毛片免费看| 亚洲国产精品999| 永久免费av网站大全| 久久久成人免费电影| 在线观看美女被高潮喷水网站| 人妻少妇偷人精品九色| 高清在线视频一区二区三区| 精品人妻一区二区三区麻豆| 欧美老熟妇乱子伦牲交| 亚洲第一区二区三区不卡| 国产精品福利在线免费观看| 国产一区二区亚洲精品在线观看| 色播亚洲综合网| 免费看日本二区| 欧美丝袜亚洲另类| 如何舔出高潮| 国产色婷婷99| 麻豆成人av视频| 免费观看av网站的网址| 亚洲精品日韩av片在线观看| 国产一区亚洲一区在线观看| 精品久久久久久久久av| 国产精品女同一区二区软件| 国语对白做爰xxxⅹ性视频网站| 99久国产av精品国产电影| 最近的中文字幕免费完整| 伊人久久国产一区二区| 国产乱人偷精品视频| 亚洲精华国产精华液的使用体验| 国产伦在线观看视频一区| 欧美精品一区二区大全| 自拍偷自拍亚洲精品老妇| 日韩制服骚丝袜av| 一级a做视频免费观看| 18禁在线无遮挡免费观看视频| 丝袜脚勾引网站| 建设人人有责人人尽责人人享有的 | 亚州av有码| 国产一区二区亚洲精品在线观看| 大片免费播放器 马上看| 亚洲精品成人av观看孕妇| 亚洲丝袜综合中文字幕| 午夜福利在线观看免费完整高清在| 99热网站在线观看| 国产成人免费无遮挡视频| 少妇人妻精品综合一区二区| 黄色欧美视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 久久鲁丝午夜福利片| 日本免费在线观看一区| 亚洲精品日韩av片在线观看| 日韩不卡一区二区三区视频在线| 国产精品一及| 欧美少妇被猛烈插入视频| 天天躁日日操中文字幕| 高清毛片免费看| 黄色一级大片看看| 亚洲av欧美aⅴ国产| 欧美亚洲 丝袜 人妻 在线| 精品久久久久久久久av| 99久国产av精品国产电影| 尤物成人国产欧美一区二区三区| 国产一区二区三区综合在线观看 | 又大又黄又爽视频免费| 国产一区亚洲一区在线观看| 91精品伊人久久大香线蕉| 18禁裸乳无遮挡免费网站照片| 男插女下体视频免费在线播放| 欧美丝袜亚洲另类| 青春草视频在线免费观看| 国产精品.久久久| 国产精品无大码| 欧美日韩视频高清一区二区三区二| 久久精品国产亚洲网站| 精品久久久久久久人妻蜜臀av| 交换朋友夫妻互换小说| 国产成年人精品一区二区| 人妻少妇偷人精品九色| 乱码一卡2卡4卡精品| 色网站视频免费| 一本色道久久久久久精品综合| 亚洲四区av| 老师上课跳d突然被开到最大视频| 日韩,欧美,国产一区二区三区| 国产永久视频网站| 精品一区二区免费观看| 嫩草影院入口| 高清毛片免费看| 国产欧美亚洲国产| 最新中文字幕久久久久| 69人妻影院| 99热这里只有精品一区| 成人免费观看视频高清| 男女下面进入的视频免费午夜| 欧美性感艳星| 亚洲成人一二三区av| 免费看光身美女| 久久国产乱子免费精品| 欧美一区二区亚洲| 国产亚洲一区二区精品| 亚洲国产精品999| av播播在线观看一区| 天美传媒精品一区二区| 男人狂女人下面高潮的视频| 欧美日本视频| 国产免费福利视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产午夜精品一二区理论片| 国产精品99久久久久久久久| 亚洲第一区二区三区不卡| 男的添女的下面高潮视频| www.色视频.com| 成人漫画全彩无遮挡| 国产淫片久久久久久久久| 精品亚洲乱码少妇综合久久| 国产精品国产av在线观看| 国产有黄有色有爽视频| 又大又黄又爽视频免费| 狂野欧美激情性xxxx在线观看| 免费大片18禁| 简卡轻食公司| 免费黄频网站在线观看国产| 国产伦在线观看视频一区| 三级男女做爰猛烈吃奶摸视频| 2022亚洲国产成人精品| 亚洲一级一片aⅴ在线观看| 精品一区在线观看国产| 最后的刺客免费高清国语| 午夜精品国产一区二区电影 | 亚洲精华国产精华液的使用体验| 天天躁夜夜躁狠狠久久av| 啦啦啦在线观看免费高清www| 亚洲欧美清纯卡通| 尤物成人国产欧美一区二区三区| 日韩,欧美,国产一区二区三区| 成人国产麻豆网| 国产免费视频播放在线视频| 亚洲人成网站在线播| 在线a可以看的网站| 国产乱人视频| 男女国产视频网站| 亚洲精品日本国产第一区| 亚洲天堂国产精品一区在线| 寂寞人妻少妇视频99o| 99久久精品热视频| 超碰av人人做人人爽久久| 一级黄片播放器| 精品一区二区三卡| 我的老师免费观看完整版| 草草在线视频免费看| 天天躁日日操中文字幕| 日本三级黄在线观看| 在线a可以看的网站| 2018国产大陆天天弄谢| 亚洲精品第二区| 国产午夜精品一二区理论片| av播播在线观看一区| 欧美zozozo另类| 亚洲美女搞黄在线观看| 白带黄色成豆腐渣| 18禁裸乳无遮挡动漫免费视频 | 国产精品不卡视频一区二区| 国产极品天堂在线| 亚洲av一区综合| 成人美女网站在线观看视频| 蜜臀久久99精品久久宅男| 一区二区三区免费毛片| 国产精品人妻久久久久久| 亚洲精品,欧美精品| 国产精品女同一区二区软件| 国产v大片淫在线免费观看| 日日摸夜夜添夜夜添av毛片| 少妇丰满av| 久久久色成人| 特级一级黄色大片| 亚洲av成人精品一二三区| 午夜亚洲福利在线播放| 一级毛片我不卡| 欧美极品一区二区三区四区| 黄色一级大片看看| 亚洲精品乱久久久久久| 人妻少妇偷人精品九色| 午夜免费观看性视频| 欧美97在线视频| 在线天堂最新版资源| 99热网站在线观看| 一区二区三区乱码不卡18| 久久久久久久亚洲中文字幕| 国产永久视频网站| 深爱激情五月婷婷| 国产乱人偷精品视频| 五月开心婷婷网| 久久久久久伊人网av| 搡老乐熟女国产| 成人二区视频| 不卡视频在线观看欧美| 少妇人妻久久综合中文| 婷婷色综合www| 成年女人在线观看亚洲视频 | 高清av免费在线| videossex国产| 日韩电影二区| 2021天堂中文幕一二区在线观| 精品久久久久久久久av| 亚洲精品成人av观看孕妇| 欧美日本视频| 色吧在线观看| 婷婷色综合www| 久久久久久久久久成人| 最新中文字幕久久久久| 男人爽女人下面视频在线观看| 国产成人精品福利久久| 色吧在线观看| 亚洲国产最新在线播放| 精品久久久噜噜| 欧美日韩在线观看h| 亚洲aⅴ乱码一区二区在线播放| 日日啪夜夜爽| 国产黄色免费在线视频| 男男h啪啪无遮挡| 看黄色毛片网站| 亚洲国产精品专区欧美| 久久精品国产亚洲网站| www.av在线官网国产| 欧美少妇被猛烈插入视频| 直男gayav资源| 神马国产精品三级电影在线观看| 69av精品久久久久久| 日本一本二区三区精品| 久久久亚洲精品成人影院| 久久精品久久精品一区二区三区| 亚洲av不卡在线观看| 免费av不卡在线播放| 日日撸夜夜添| 人妻少妇偷人精品九色| 人妻一区二区av| 国产男人的电影天堂91| 汤姆久久久久久久影院中文字幕| 激情 狠狠 欧美| 中文字幕久久专区| 免费av毛片视频| 成年av动漫网址| 久久99蜜桃精品久久| 狂野欧美白嫩少妇大欣赏| 人妻夜夜爽99麻豆av| 亚洲欧美清纯卡通| 色网站视频免费| 国产精品久久久久久av不卡| 久久久久国产网址| 欧美日韩视频高清一区二区三区二| 午夜免费男女啪啪视频观看| 麻豆国产97在线/欧美| 国产精品麻豆人妻色哟哟久久| www.色视频.com| 免费黄网站久久成人精品| 哪个播放器可以免费观看大片| 国产乱来视频区| 亚洲av中文av极速乱| 亚洲成人久久爱视频| 国产精品久久久久久久电影| 天美传媒精品一区二区| 精品一区二区三卡| 久久久成人免费电影| 性色av一级| 国产爱豆传媒在线观看| 日韩免费高清中文字幕av| 久久精品国产亚洲av涩爱| 国产成人福利小说| 国产大屁股一区二区在线视频| 免费观看a级毛片全部| 午夜爱爱视频在线播放| 99视频精品全部免费 在线| 久久99热这里只频精品6学生| 久热这里只有精品99| 丰满人妻一区二区三区视频av| 国产精品蜜桃在线观看| 亚洲av中文av极速乱| 在现免费观看毛片| 精品国产露脸久久av麻豆| 国精品久久久久久国模美| 欧美潮喷喷水| 日韩精品有码人妻一区| 免费看av在线观看网站| 国产高潮美女av| 日韩欧美精品免费久久| 人妻制服诱惑在线中文字幕| 97在线视频观看| 午夜精品一区二区三区免费看| 美女主播在线视频| 久久精品国产亚洲网站| 人妻夜夜爽99麻豆av| 六月丁香七月| 成人高潮视频无遮挡免费网站| 国产国拍精品亚洲av在线观看| 新久久久久国产一级毛片| av播播在线观看一区| 毛片女人毛片| 看免费成人av毛片| 国产黄a三级三级三级人| 国产色爽女视频免费观看| 久久精品久久久久久噜噜老黄| 少妇人妻精品综合一区二区| 日本免费在线观看一区| av在线播放精品| 91精品一卡2卡3卡4卡| 最近最新中文字幕免费大全7| 亚洲人成网站在线播| 欧美日韩视频精品一区| 啦啦啦啦在线视频资源| 亚洲成人精品中文字幕电影| 欧美丝袜亚洲另类| 男女啪啪激烈高潮av片| 秋霞在线观看毛片| 男的添女的下面高潮视频| 亚洲综合精品二区| 亚洲国产高清在线一区二区三| 国产精品久久久久久av不卡| 免费看不卡的av| 亚洲av男天堂| 亚洲精品国产av蜜桃| 亚洲成人精品中文字幕电影| 欧美xxxx性猛交bbbb| 三级国产精品欧美在线观看| 丰满少妇做爰视频| 成年版毛片免费区| 色视频在线一区二区三区| 人人妻人人看人人澡| 精品久久久久久久久av| 在线观看一区二区三区激情| 亚洲怡红院男人天堂| 久久久久久久国产电影| 成人黄色视频免费在线看| 青春草国产在线视频| 大片免费播放器 马上看| 亚洲性久久影院| 噜噜噜噜噜久久久久久91| av专区在线播放| 日韩大片免费观看网站| av黄色大香蕉| 国产伦精品一区二区三区视频9| 在线亚洲精品国产二区图片欧美 | 你懂的网址亚洲精品在线观看| 亚洲精品影视一区二区三区av| 国产成人精品福利久久| 一区二区三区四区激情视频| 久久精品国产亚洲av涩爱| 国产精品女同一区二区软件| 久久亚洲国产成人精品v| 狂野欧美激情性xxxx在线观看| 99久久精品一区二区三区| 国产成人福利小说| 免费人成在线观看视频色| 啦啦啦在线观看免费高清www| 国产成人a区在线观看| 亚洲精品乱久久久久久| 免费黄频网站在线观看国产| 七月丁香在线播放| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区免费观看| 亚洲精品一区蜜桃| 国产成人91sexporn| av黄色大香蕉| av免费在线看不卡| 伊人久久国产一区二区| 久久久久久久久大av| 国产综合懂色| 亚州av有码| 国产色婷婷99| 一级a做视频免费观看| 成人午夜精彩视频在线观看| 综合色av麻豆| 亚洲无线观看免费| 午夜免费鲁丝| 国产成人精品福利久久| 亚洲精品影视一区二区三区av| 最近中文字幕2019免费版| 美女cb高潮喷水在线观看| 国内精品美女久久久久久| 久久久久精品性色| 欧美精品一区二区大全| 秋霞在线观看毛片| 亚洲熟女精品中文字幕| 九九爱精品视频在线观看| 欧美bdsm另类| 极品少妇高潮喷水抽搐| 在线观看三级黄色| 男女无遮挡免费网站观看| 国产视频首页在线观看|