• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Limit behaviors of extended Kalman filter as a parameter estimator for a sinusoidal signal

    2018-07-31 03:30:18LiXIE
    Control Theory and Technology 2018年3期

    Li XIE

    State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China

    Abstract In this note,the basic limit behaviors of the solution to Riccati equation in the extended Kalman filter as a parameter estimator for a sinusoidal signal are analytically investigated by using lim sup and lim inf in advanced calculus.We show that if the covariance matrix has a limit,then it must be a zero matrix.

    Keywords:Extended Kalman filter,parameter estimator,sinusoidal signal,covariance matrix,limit behavior

    1 Introduction

    Since the standard Kalman filter for linear systems was invented in 1960 by R.E.Kalman,there have been a number of applications both in theory and practice.One of the applications was Apollo navigation system in the 1960s where the actual version of Kalman filter on board was the extended Kalman filter(EKF)adapted for nonlinear systems[1].In EKF,instead of exact state and observation matrices provided by linear models,these matrices are obtained by linearizing nonlinear models around the predicted values or filtered values of state vectors,which introduces model errors and the filter may quickly diverge[2].Hence unlike its linear counterpart,there are stability and convergence issues in EKF for the linearization.

    Concerning the convergence and stability analysis of discrete-time EKF,there are two methods related to the topic of this note.Ljung in[3]developed a differential equation method to analyze the convergence of the estimates for linear systems with unknown parameters.A simple linear system with unknown parameter as a numerical example was used to illustrate the method.Reif et al.in[2]analyzed the stochastic stability of EKF by using Lyapunov function method;see also[4]for the Lyapunov function method.Lower and upper bounds of covariance matrices were required to solve a meansquare boundedness problem.

    In this note,we considera parameterestimation problem for a sinusoidal signal,and EKF is used to estimate an unknown parameter.The measurements of the sinusoidal signal are corrupted by white noise.Since the related observation equation is nonlinear,Ljung’s method cannot be directly adapted for such an estimation problem.Meanwhile,we will see that the covariance matrix in our parameter estimation does not have a strict positive lower bound,thus the stochastic stability cannot be easily established by using Lyapunov function method.Instead of the convergence of parameter estimates and the stochastic stability of covariance matrices,we study the limit of the covariance matrix.The limit behavior of the solution to the Riccatiequation of the covariance matrix is also mainly concerned both in practice and theory.For example,an asymptotic analysis for the covariance matrix was carried out in[5]when an extended complex Kalman filter was used to estimate a sinusoidal signal.The main result is stated in Theorem 1 in Section 2.2.A numerical example is given in Section 3 to show the limit behavior of the EKF.

    2 Two-state extended Kalman filter

    Consider a sinusoidal signal with an additive noise

    We assume that the magnitude a is a known constant and the angular frequency ω as an unknown constant will be estimated.Let φ= ωt.In order to solve the parameter estimation problem of the sinusoidal signal(1)by using discrete-time EKF,we follow a procedure given in[6,Chapter 10]to establish the discrete-time state and measurement equations of(1).By calculating the derivatives of φand ω with respect to the time t,we have

    We then discretize the continuous-time state equation(2)by sampling.After a computation,we have its fundamental matrix as follows:

    in which Tsis the sampling time.We next use the nonnegative integer k to denote the discrete-time kTs.Then the discrete-time state and observation equations are obtained

    where the Gaussian white noise v has zero mean and variance R>0.In this way,we can use a real-valued EKF for the nonlinear system(3)to estimate the unknown parameter ω of the sinusoidal signal(1)with an additive noise.

    2.1 Extended Kalman filter

    Let xk+1denote x(k+1).The extended Kalman filter of the nonlinear system(3)is given as follows:1)State and covariance matrix update

    2)State and covariance matrix predict

    and substituting it into the random Riccati equation(9),after a straightforward calculation,we have

    Here we use cos2to denote cos2()for convenience.By(4)and(7),we also obtain the recursive formulas for the state estimation

    Since Pkis a covariance matrix for the linearized system,it should be a positive semidefinite matrix[10,Page 275]and[9]which can also be seen from the first equality in(9).Hence Pk,11≥0,Pk,22≥0,det(Pk)=Obviously each entry of the matrix Pkis a number since the noise covariance R>0.Using(12),we can rewrite(10)and(11)as

    where bk=

    The next proposition describes the singularity of Pkby its determinant as k increases.

    Proposition 11)If there exists a finite k1≥0 such that det(Pk1)=that is,Pk1is a singular matrix,then

    2)If there exists a finite k1≥0 such thatthat is,Pk1>0,then

    ProofSuppose det(Pk1)straightforward calculation shows that this equality also holds for k+1.Substituting it into(12)–(14),we have

    Therefore,

    Then 1)follows.The statement 2)of this proposition is directly due to the matrix inversion lemma;see(21)in Section 2.4. □

    2.2 The limit of the solution to Riccati equations

    It follows from(12)that

    Hence we have the following lemma.

    Lemma 1The sequence Pk,22monotonically decreases with increasing k.The limit of Pk,22exists and is greater than or equal to zero.Also

    Assumption 1The sequence cos2does not have a limit as k approaches∞.

    Proposition 2If P0/0,12≥0,then Pk1,12≥0 for any k>0;otherwise either there is a finite k1>0 such that for any k≥k1,Pk,12≥0 or under Assumption 1,we have the limits

    ProofSince P1,12∶=P1/0,12=P0/0,12+TsP0/0,22,Pk,12≥0 follows from(14)if P0/0,12≥0.For the other case,once there existsa finite k1>0 such that Pk1,12≥0,then it is easy to see that Pk,12≥ 0,?k> k1from(14).Hence we next assume that Pk,12<0 for any finite k in order to establish(16),then again by(14)that Pk,12≤Pk+1,12<0,thus its limit exists by the monotonic property.Suppose further thatthen by using the equality(14)one more time and the convergence of Pk,22,we have the limit

    If c2≠0,then(15)implies that the limit of cos2equals zero,which contradicts the assumption that cos2does not have a limit.Hence c2=0.Finally by taking the limit of(14),we have

    which also contradicts that c1<0 and the fact that the right-hand side is great than or equal to zero.We conclude that the limits(16)hold. □

    In the sequel we always assume that Pk,12≥0.As we will see subsequently in Theorem 2,if Pkis invertible,then eventually Pk,12>0.We next make use of the inequalities of lim sup and lim inf for two sequences xkand yk,for example,if xk≤yk,then

    and for two non-negative sequences xk,yk

    See[11,Problem 2.4.17]for details.All related inequalities as above make senses provided that both sides are not of the indeterminate forms0×±∞,±∞?∞.For each sequence defined on the extended real line[?∞,∞],the limit superior and the limit inferior always exist.

    Assumption 2

    Remark 1Ifthen∞,that is,Pk,11is unbounded since

    With the help of Assumption 2,we can apply(17)to obtain the main result.

    Theorem 1Under Assumptions 1 and 2,we have

    2)If the limit of Pk,11exists as k→ ∞,we have

    ProofIt follows from(15)that

    from which three possible cases follow

    Due to

    we have

    Further it follows from(14)that Pk+1,12≥TsPk+1,22,then taking lim inf on both sides,

    We now establish the second limit of this part.Since Pk≥0,we haveTaking lim sup on both sides yields

    Hence,

    Corollary 1Under Assumptions 1 and 2,we have

    ProofIt follows from(13)and using(1)in Theorem 1 that

    One can easily see from the last inequality that eitherSince the former leads to the latter,we conclude that

    2.3 The solution to recursive equations

    In this section,we use the transition function of the recursions(13)and(14)to derive their solutions in terms of initial values of the states.

    Denote αk=R/(R+bk)and define the transition function

    Then after a straightforward calculation,we obtain the solution to(14)in terms of the initial value and the transition function

    Notice that in order to obtain(18),we use(8)to calculate P1,12and define α0=1.Introducing a new sequence

    substituting(13)into(19),and using(14),we have

    Then the solution to(13)is given by

    Proposition 3Under Assumption 1,if the initial value of Pk,11is not equal to zero,then it is forgotten in the long run.We also have

    ProofSince Ψ(k+1,0)= αkΨ(k,0),it follows from αk≤ 1 that Ψ(k+1,0)≥ 0 is monotonically decreasing and hence has a limit.We now assume0,then

    Forthe non-trivial case P0,11>0,it follows from(20)thatThanks to the left-hand side inequality of(17),we have

    The second equality is due to the equivalence

    See[12,Page 17]or[13,Page 220,Theorem 4]in which the left-hand side is referred to as a divergent infinite product.The claim of the proposition directly follows from(20)in which the transition function Ψ(k+1,0)is coefficient of P0,11. □

    2.4 The limit of the inverse matrix of Pk

    By the matrix inversion lemma,

    Denote A?T=(AT)?1.Taking the inverse of both sides of(21)gives a Lyapunov equation

    Substituting the partitioned matrixand the inverse of the matrix A

    into the Lyapunov equation(22)yields

    Further we obtain recursive formulas for all entries

    By using(24),the equality(25)can be rewritten as

    Making use of the above equalities,we obtain the following theorem.

    Theorem 2Under Assumptions 1 and 2,suppose that there exists a finite k1≥0 such that det(Pk1)=that is,Pk1>0,then

    The entry Pk,12of Pkeventually is greater than zero.We have also

    ProofBy Proposition 1,the covariance matrix Pk>0 for k>k1which ensures that its inverse exists.Then one can easily obtain its inverse matrix as follows:

    Since we assume that the limit of the sequence cos2φkdoes not exist,we haveotherwise its limit is zero.Then(23)gives

    from which we obtain

    Thanks to(24),we have

    An argument similar to the one used in(27)shows that

    Notice that since

    as k→∞due to Pk,12→0,as k→∞.Therefore we have Pk,11Pk,22→ 0 as k→ ∞,which implies the last claim in this theorem. □

    3 A numerical example

    Consider a sinusoidal signal with an additive noise.The discrete-time state and observation equations are

    where a=0.5 and the Gaussian white noise v has zero mean and variance R=1.We employ the extended Kalman filter to estimate the unknown parameter ω.The true value of ω is 1.5.In simulation we let P0/0be the identity matrix.

    Fig.1 shows a sample path of sinusoidal signal and its measurements with the sampling time Ts=0.1.Indeed,the limit of cos2does not exist.Hence we claim thatby Theorems 1 and 2.This can be seen in Fig.2.In Fig.3,the dependence of the parameter estimatesωkis found on the sampling time Tsfor the same sample path.The parameter estimate is obviously improved by decreasing the sampling time.Notice that the convergence of Pk,22to zero does not necessarily guarantee that the parameter estimates converge to the true value.In Fig.4,we also give the time average for a sample path of the parameter estimateωkand the sample average over 1000 sample paths ofωk.Obviously the EKF as a parameter estimator under consideration is biased.

    Fig.1 The sinusoidal signal and measurements.

    Fig.2 The entries and the determinant of Pk.

    Fig.3 The estimatesωk with different T s s.

    Fig.4 The time and sample averages ofωk.

    4 Conclusions

    In this note,by using lim sup and lim inf,we study the limit behaviors of the extended Kalman filter as a parameter estimator for a sinusoidal signal.The estimation problem of a sinusoidal signal often occurs in power systems.We claim that three entries of the covariance matrix and its determinant have zero limits as the time approaches infinity.Further,if the limit of the covariance matrix exists,we show that it must be a zero matrix.However we also find that it is difficult to obtain the limit behavior of the entry Pk,11of the 2×2 covariance matrix Pk,and the question concerning its existence remains open.Further research could explore the possibility whether or not the differential equation method developed by Ljung in[3]can be adapted to analyze the convergence of the EKF under consideration,and also investigate the ergodic property of the EKF by using operator methods in[14]and references therein.

    Acknowledgements

    The author thanks the reviewers for valuable comments that help to improve the presentation.

    青春草国产在线视频| 久久人人爽av亚洲精品天堂| 人妻一区二区av| 午夜福利,免费看| 国产精品人妻久久久久久| 日韩在线高清观看一区二区三区| 亚洲国产精品999| 中国美白少妇内射xxxbb| av视频免费观看在线观看| 国产免费又黄又爽又色| 天天躁夜夜躁狠狠躁躁| av在线app专区| videos熟女内射| 国产精品久久久久久精品古装| 丝瓜视频免费看黄片| 乱人伦中国视频| 国产亚洲精品第一综合不卡 | 亚洲国产精品999| 午夜免费男女啪啪视频观看| 少妇的逼水好多| 国产精品国产av在线观看| 国产又色又爽无遮挡免| 午夜免费男女啪啪视频观看| 99re6热这里在线精品视频| 久久精品国产亚洲av涩爱| 成人午夜精彩视频在线观看| 日韩视频在线欧美| 精品视频人人做人人爽| 国产又色又爽无遮挡免| 高清视频免费观看一区二区| 亚洲国产日韩一区二区| 性高湖久久久久久久久免费观看| 亚洲成人av在线免费| 免费高清在线观看日韩| 精品国产露脸久久av麻豆| 精品国产露脸久久av麻豆| 男女边摸边吃奶| 国产黄频视频在线观看| av福利片在线| 美女国产视频在线观看| 亚洲国产欧美在线一区| 国产片内射在线| 精品第一国产精品| av在线播放精品| 国产精品久久久久久av不卡| 日本av手机在线免费观看| 久久国产亚洲av麻豆专区| 高清欧美精品videossex| 三级国产精品片| 超碰97精品在线观看| 精品99又大又爽又粗少妇毛片| 男男h啪啪无遮挡| 日日摸夜夜添夜夜爱| 国产男女内射视频| 日本av手机在线免费观看| 久久国产亚洲av麻豆专区| av不卡在线播放| 久久久久国产精品人妻一区二区| 国产亚洲一区二区精品| 亚洲精品一区蜜桃| 人妻 亚洲 视频| 欧美老熟妇乱子伦牲交| 国产探花极品一区二区| 九九在线视频观看精品| 婷婷色麻豆天堂久久| 亚洲伊人久久精品综合| 一本色道久久久久久精品综合| 一本—道久久a久久精品蜜桃钙片| 国产精品国产三级国产av玫瑰| 有码 亚洲区| 久久 成人 亚洲| 国产亚洲精品久久久com| 制服丝袜香蕉在线| 全区人妻精品视频| 1024视频免费在线观看| 看非洲黑人一级黄片| 亚洲国产欧美在线一区| 黑人欧美特级aaaaaa片| 亚洲欧美日韩卡通动漫| 99九九在线精品视频| 国产 精品1| 妹子高潮喷水视频| 国产欧美日韩一区二区三区在线| 乱人伦中国视频| 在线观看免费视频网站a站| 在线精品无人区一区二区三| 久久久久久久久久人人人人人人| 制服丝袜香蕉在线| 超色免费av| 看非洲黑人一级黄片| 又粗又硬又长又爽又黄的视频| 久久午夜综合久久蜜桃| 一区二区三区四区激情视频| 精品国产国语对白av| 国产精品久久久久久精品电影小说| 人妻少妇偷人精品九色| 如何舔出高潮| 国产xxxxx性猛交| 亚洲精品一二三| 看十八女毛片水多多多| 伊人亚洲综合成人网| 国产欧美日韩综合在线一区二区| 五月玫瑰六月丁香| 夫妻午夜视频| 久久精品久久精品一区二区三区| 咕卡用的链子| 最近的中文字幕免费完整| 午夜精品国产一区二区电影| 又黄又爽又刺激的免费视频.| 不卡视频在线观看欧美| 永久网站在线| 免费在线观看黄色视频的| 亚洲一级一片aⅴ在线观看| 一级毛片电影观看| 久久国产亚洲av麻豆专区| 亚洲欧美中文字幕日韩二区| 国产一级毛片在线| 一个人免费看片子| 在线精品无人区一区二区三| 一本—道久久a久久精品蜜桃钙片| 五月玫瑰六月丁香| 亚洲av电影在线观看一区二区三区| 视频中文字幕在线观看| 大片免费播放器 马上看| 国产精品99久久99久久久不卡 | 18在线观看网站| 一区在线观看完整版| av片东京热男人的天堂| 制服人妻中文乱码| 日韩欧美精品免费久久| 国产精品一二三区在线看| 精品亚洲成a人片在线观看| 亚洲,欧美精品.| 边亲边吃奶的免费视频| 久久精品久久久久久噜噜老黄| 2018国产大陆天天弄谢| 国产av国产精品国产| 亚洲欧美中文字幕日韩二区| 日韩制服丝袜自拍偷拍| 亚洲精华国产精华液的使用体验| 人体艺术视频欧美日本| 香蕉国产在线看| 在线观看三级黄色| videossex国产| 最近的中文字幕免费完整| 亚洲av在线观看美女高潮| 日韩在线高清观看一区二区三区| 老司机影院毛片| 22中文网久久字幕| 国产极品粉嫩免费观看在线| av免费在线看不卡| 综合色丁香网| 亚洲欧美中文字幕日韩二区| 纯流量卡能插随身wifi吗| 午夜免费观看性视频| 成人亚洲精品一区在线观看| 亚洲精品乱码久久久久久按摩| 少妇人妻久久综合中文| 亚洲av电影在线观看一区二区三区| 性色avwww在线观看| 国产亚洲一区二区精品| 成年动漫av网址| 五月开心婷婷网| 只有这里有精品99| 免费不卡的大黄色大毛片视频在线观看| 亚洲av电影在线观看一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产精品国产三级国产专区5o| 一个人免费看片子| 亚洲精品美女久久av网站| 日韩人妻精品一区2区三区| 色婷婷av一区二区三区视频| 久久99热这里只频精品6学生| 美女国产高潮福利片在线看| 内地一区二区视频在线| 少妇的逼水好多| 全区人妻精品视频| 久久久久精品久久久久真实原创| 欧美少妇被猛烈插入视频| 99久久精品国产国产毛片| 飞空精品影院首页| 欧美激情 高清一区二区三区| 国产成人精品久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 久久热在线av| 51国产日韩欧美| 国产高清三级在线| 看十八女毛片水多多多| 国产精品无大码| 丰满乱子伦码专区| 99久久精品国产国产毛片| 国产欧美日韩一区二区三区在线| 亚洲人成网站在线观看播放| 插逼视频在线观看| 婷婷色综合大香蕉| 两个人看的免费小视频| 人妻系列 视频| 日韩视频在线欧美| 99国产综合亚洲精品| 日韩不卡一区二区三区视频在线| 久久热在线av| 在线免费观看不下载黄p国产| 日本91视频免费播放| 国产白丝娇喘喷水9色精品| av免费观看日本| 日本猛色少妇xxxxx猛交久久| 人妻人人澡人人爽人人| 精品99又大又爽又粗少妇毛片| 深夜精品福利| 免费高清在线观看视频在线观看| 精品久久蜜臀av无| av卡一久久| 亚洲精品456在线播放app| 18禁国产床啪视频网站| 美女大奶头黄色视频| 色婷婷av一区二区三区视频| 日日摸夜夜添夜夜爱| 蜜桃国产av成人99| 亚洲精华国产精华液的使用体验| 精品福利永久在线观看| 一本色道久久久久久精品综合| 少妇猛男粗大的猛烈进出视频| 免费看av在线观看网站| 国产精品不卡视频一区二区| 22中文网久久字幕| 国产一区亚洲一区在线观看| 亚洲高清免费不卡视频| 狠狠精品人妻久久久久久综合| 亚洲,欧美,日韩| 1024视频免费在线观看| 一本色道久久久久久精品综合| 美女内射精品一级片tv| 18禁观看日本| 亚洲国产日韩一区二区| 成人黄色视频免费在线看| 国产亚洲最大av| 国产精品久久久久久精品电影小说| 久久久a久久爽久久v久久| 国产成人精品福利久久| av在线观看视频网站免费| 色哟哟·www| av女优亚洲男人天堂| 欧美精品高潮呻吟av久久| 亚洲欧美一区二区三区黑人 | 日韩一本色道免费dvd| 国产男人的电影天堂91| 性色avwww在线观看| 极品少妇高潮喷水抽搐| 伦理电影大哥的女人| 国产熟女午夜一区二区三区| 日本av手机在线免费观看| 欧美亚洲日本最大视频资源| 尾随美女入室| 超色免费av| 天堂8中文在线网| 97人妻天天添夜夜摸| 免费少妇av软件| 国产福利在线免费观看视频| 亚洲av福利一区| 午夜91福利影院| 亚洲精品一区蜜桃| 国产男女超爽视频在线观看| 国产极品天堂在线| 美女xxoo啪啪120秒动态图| 欧美人与性动交α欧美软件 | 精品国产一区二区久久| 欧美精品av麻豆av| 97精品久久久久久久久久精品| 国产又爽黄色视频| 在线看a的网站| 午夜久久久在线观看| 日韩 亚洲 欧美在线| 成年动漫av网址| 亚洲av欧美aⅴ国产| 日韩中文字幕视频在线看片| av电影中文网址| 久久国产精品男人的天堂亚洲 | 亚洲精品国产av成人精品| 丝袜喷水一区| 国产成人精品久久久久久| 国产亚洲欧美精品永久| 成年人午夜在线观看视频| 亚洲丝袜综合中文字幕| 最新的欧美精品一区二区| 在线观看美女被高潮喷水网站| 欧美亚洲日本最大视频资源| 99re6热这里在线精品视频| 亚洲色图 男人天堂 中文字幕 | 午夜精品国产一区二区电影| 日韩熟女老妇一区二区性免费视频| 草草在线视频免费看| 咕卡用的链子| 在线观看人妻少妇| 你懂的网址亚洲精品在线观看| 一本色道久久久久久精品综合| www日本在线高清视频| 少妇被粗大的猛进出69影院 | 青春草亚洲视频在线观看| 免费黄色在线免费观看| 少妇被粗大的猛进出69影院 | 国产精品国产三级国产av玫瑰| 一本大道久久a久久精品| 日韩视频在线欧美| 日韩av不卡免费在线播放| 两个人看的免费小视频| 女人被躁到高潮嗷嗷叫费观| 精品国产露脸久久av麻豆| 啦啦啦在线观看免费高清www| 国产精品一区www在线观看| 亚洲精华国产精华液的使用体验| 国产精品成人在线| 最近中文字幕高清免费大全6| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 免费不卡的大黄色大毛片视频在线观看| 欧美 亚洲 国产 日韩一| 日韩一区二区视频免费看| 在线观看免费日韩欧美大片| 国精品久久久久久国模美| 免费黄网站久久成人精品| 成年美女黄网站色视频大全免费| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品电影小说| 国产不卡av网站在线观看| 国产精品无大码| 精品国产国语对白av| 日本欧美视频一区| 蜜臀久久99精品久久宅男| 色视频在线一区二区三区| 国产乱人偷精品视频| 欧美日韩一区二区视频在线观看视频在线| 国产精品国产三级国产av玫瑰| 大香蕉97超碰在线| 午夜视频国产福利| 日本午夜av视频| 午夜福利影视在线免费观看| 男人添女人高潮全过程视频| 亚洲天堂av无毛| 久久午夜福利片| 国产淫语在线视频| 亚洲一区二区三区欧美精品| 天美传媒精品一区二区| 亚洲av在线观看美女高潮| 男女下面插进去视频免费观看 | 天天影视国产精品| 成年人免费黄色播放视频| 国产女主播在线喷水免费视频网站| 2018国产大陆天天弄谢| 51国产日韩欧美| 18+在线观看网站| 亚洲欧美精品自产自拍| 高清av免费在线| 国产1区2区3区精品| a级毛色黄片| 免费av不卡在线播放| 亚洲综合色网址| 啦啦啦啦在线视频资源| 日韩熟女老妇一区二区性免费视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲四区av| 人妻一区二区av| 国产成人91sexporn| 国产精品嫩草影院av在线观看| 国产不卡av网站在线观看| 精品国产乱码久久久久久小说| 亚洲av免费高清在线观看| 考比视频在线观看| 国产极品天堂在线| 黄色毛片三级朝国网站| 亚洲欧美色中文字幕在线| 亚洲av欧美aⅴ国产| 亚洲精品久久午夜乱码| 精品亚洲成国产av| 亚洲国产欧美日韩在线播放| 免费观看av网站的网址| 国产亚洲午夜精品一区二区久久| 欧美丝袜亚洲另类| 国产成人精品在线电影| 国产男女内射视频| 另类精品久久| 永久网站在线| 黑人欧美特级aaaaaa片| 伊人久久国产一区二区| 1024视频免费在线观看| 嫩草影院入口| 日韩精品免费视频一区二区三区 | av天堂久久9| 999精品在线视频| 熟女电影av网| 啦啦啦在线观看免费高清www| 久热久热在线精品观看| 永久网站在线| 天美传媒精品一区二区| 丝袜喷水一区| 国产精品国产三级专区第一集| 王馨瑶露胸无遮挡在线观看| 国产xxxxx性猛交| av播播在线观看一区| 丰满少妇做爰视频| 久久久a久久爽久久v久久| 大香蕉久久成人网| 亚洲精品国产av成人精品| 99国产精品免费福利视频| 亚洲熟女精品中文字幕| 黄色怎么调成土黄色| 久久久a久久爽久久v久久| 亚洲美女黄色视频免费看| 老司机亚洲免费影院| 99re6热这里在线精品视频| 精品午夜福利在线看| 黄色 视频免费看| 香蕉丝袜av| 国产精品三级大全| 久久精品国产亚洲av天美| 日韩一本色道免费dvd| 性色avwww在线观看| 国产精品不卡视频一区二区| 中国三级夫妇交换| 丝袜在线中文字幕| 一级片免费观看大全| 少妇猛男粗大的猛烈进出视频| 欧美变态另类bdsm刘玥| 免费在线观看黄色视频的| 最近2019中文字幕mv第一页| 亚洲成色77777| 免费av中文字幕在线| 国产乱人偷精品视频| 久久99精品国语久久久| 夜夜骑夜夜射夜夜干| 色5月婷婷丁香| 九色成人免费人妻av| 熟妇人妻不卡中文字幕| 国产精品国产三级专区第一集| 中文字幕精品免费在线观看视频 | 日本猛色少妇xxxxx猛交久久| 黄色 视频免费看| 亚洲av欧美aⅴ国产| 欧美精品av麻豆av| 久热久热在线精品观看| 日韩欧美一区视频在线观看| 亚洲人成网站在线观看播放| 蜜桃在线观看..| 久久精品人人爽人人爽视色| 香蕉丝袜av| 成年美女黄网站色视频大全免费| 亚洲av中文av极速乱| 亚洲 欧美一区二区三区| 80岁老熟妇乱子伦牲交| 亚洲成国产人片在线观看| 国产精品.久久久| 最黄视频免费看| 又黄又粗又硬又大视频| 不卡视频在线观看欧美| 国产激情久久老熟女| 91成人精品电影| 日本色播在线视频| 亚洲欧美中文字幕日韩二区| 国产高清不卡午夜福利| 久久综合国产亚洲精品| 亚洲三级黄色毛片| 精品一区二区三区四区五区乱码 | 日韩免费高清中文字幕av| 日本黄色日本黄色录像| www.熟女人妻精品国产 | 国产极品粉嫩免费观看在线| 国产精品国产三级国产专区5o| 日本黄大片高清| 人妻人人澡人人爽人人| 90打野战视频偷拍视频| 国产亚洲最大av| 黄色 视频免费看| 边亲边吃奶的免费视频| 一本大道久久a久久精品| 国产精品一区二区在线观看99| 午夜免费鲁丝| 久久久欧美国产精品| 日韩中文字幕视频在线看片| 内地一区二区视频在线| 日本午夜av视频| 亚洲精品456在线播放app| 2022亚洲国产成人精品| 最近2019中文字幕mv第一页| 男女下面插进去视频免费观看 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美日韩卡通动漫| 深夜精品福利| 中国国产av一级| 亚洲精品久久成人aⅴ小说| 一本色道久久久久久精品综合| 国产深夜福利视频在线观看| 观看av在线不卡| 青春草国产在线视频| 亚洲精品自拍成人| 国产老妇伦熟女老妇高清| av.在线天堂| 丰满少妇做爰视频| 90打野战视频偷拍视频| 国产精品久久久av美女十八| 最新的欧美精品一区二区| 久久久久精品性色| 国产精品久久久久久久电影| 99久久综合免费| 久久久国产精品麻豆| 久久综合国产亚洲精品| 亚洲精华国产精华液的使用体验| 一边亲一边摸免费视频| 国产又爽黄色视频| 亚洲精品色激情综合| 男女午夜视频在线观看 | 欧美成人精品欧美一级黄| 国产精品偷伦视频观看了| 韩国av在线不卡| 亚洲一区二区三区欧美精品| 九色亚洲精品在线播放| 精品人妻偷拍中文字幕| 国产精品嫩草影院av在线观看| 永久网站在线| 高清欧美精品videossex| 精品国产一区二区三区久久久樱花| 卡戴珊不雅视频在线播放| 99国产精品免费福利视频| 色视频在线一区二区三区| 伦精品一区二区三区| 免费大片18禁| 久久av网站| 9色porny在线观看| 免费看不卡的av| 亚洲欧洲精品一区二区精品久久久 | 精品第一国产精品| av国产精品久久久久影院| 不卡视频在线观看欧美| 亚洲精品久久午夜乱码| 成人免费观看视频高清| av电影中文网址| 寂寞人妻少妇视频99o| 免费日韩欧美在线观看| 国产福利在线免费观看视频| 曰老女人黄片| 亚洲精品自拍成人| 欧美丝袜亚洲另类| 日韩精品有码人妻一区| 亚洲美女搞黄在线观看| 一区二区av电影网| 91成人精品电影| 日韩中文字幕视频在线看片| 精品一品国产午夜福利视频| 伦理电影免费视频| 看免费成人av毛片| 精品久久久精品久久久| 中文天堂在线官网| 国产精品国产三级国产专区5o| 免费观看a级毛片全部| 欧美成人精品欧美一级黄| 最新中文字幕久久久久| 国产高清三级在线| 国国产精品蜜臀av免费| 尾随美女入室| 高清不卡的av网站| 国产在线免费精品| 又黄又粗又硬又大视频| 满18在线观看网站| 久久精品夜色国产| 男人操女人黄网站| 亚洲av在线观看美女高潮| 五月玫瑰六月丁香| 亚洲精品久久成人aⅴ小说| √禁漫天堂资源中文www| 国产成人午夜福利电影在线观看| 欧美性感艳星| 国产一区二区激情短视频 | 赤兔流量卡办理| 国产片内射在线| 国产毛片在线视频| xxxhd国产人妻xxx| 国产69精品久久久久777片| 成人亚洲精品一区在线观看| 在线观看免费高清a一片| 老司机影院毛片| 国产免费一区二区三区四区乱码| 色94色欧美一区二区| av电影中文网址| 亚洲一码二码三码区别大吗| 国产黄色视频一区二区在线观看| 汤姆久久久久久久影院中文字幕| 超碰97精品在线观看| 少妇被粗大猛烈的视频| 亚洲国产精品国产精品| 五月玫瑰六月丁香| 精品人妻在线不人妻| 丰满迷人的少妇在线观看| 不卡视频在线观看欧美| 毛片一级片免费看久久久久| 一级毛片黄色毛片免费观看视频| 老司机亚洲免费影院| 久久久亚洲精品成人影院| 另类精品久久| 一区二区av电影网| 少妇精品久久久久久久| 国产国拍精品亚洲av在线观看| 国产av一区二区精品久久| 免费大片18禁| 看十八女毛片水多多多| 2021少妇久久久久久久久久久| 伊人亚洲综合成人网| 日韩 亚洲 欧美在线| 国产精品成人在线| 黑人巨大精品欧美一区二区蜜桃 | 国产成人aa在线观看| 欧美精品一区二区免费开放| 亚洲图色成人| av又黄又爽大尺度在线免费看| 日韩一区二区视频免费看| 久久影院123| 国产一区二区激情短视频 | 久久久久久伊人网av|