• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON ENTIRE SOLUTIONS OF SOME TYPE OF NONLINEAR DIFFERENCE EQUATIONS?

    2018-07-23 08:41:42HuifangLIU劉慧芳
    關(guān)鍵詞:志強(qiáng)

    Huifang LIU(劉慧芳)

    College of Mathematics and Information Science,Jiangxi Normal University,Nanchang 330022,China

    E-mail:liuhuifang73@sina.com

    Zhiqiang MAO(毛志強(qiáng))

    School of Mathematics and Computer,Jiangxi Science and Technology Normal University,Nanchang 330038,China

    E-mail:maozhiqiang1@sina.com

    Abstract In this article,the existence of finite order entire solutions of nonlinear difference equationsare studied,where n ≥ 2 is an integer,Pd(z,f)is a difference polynomial in f of degree d(≤ n?2),p1,p2are small meromorphic functions of ez,and α1,α2are nonzero constants.Some necessary conditions are given to guarantee that the above equation has an entire solution of finite order.As its applications,we also find some type of nonlinear difference equations having no finite order entire solutions.

    Key words Nevanlinna theory;difference polynomial;difference equation;entire solution

    1 Introduction and Main Results

    Let f be a meromorphic function in the complex plane C.It is assumed that the reader is familiar with the standard notations and basic results of Nevanlinna’s value distribution theory of meromorphic functions,such as m(r,f),N(r,f),T(r,f)etc.;see,for example,[1,2].The notation S(r,f)is defined to be any quantity satisfying S(r,f)=o(T(r,f))as r→∞,possibly outside a set E of r of finite logarithmic measure.A meromorphic function α is said to be a small function of f provided that T(r,α)=S(r,f).In general,a difference polynomial,or a differential-difference polynomial in f is defined to be a finite sum of difference products of f and its shifts f(z+cj),(cj∈C,j∈I),or of products of f,derivatives of f,and of their shifts,with small meromorphic coefficients,where I is a finite index set.

    It is an important and difficult problem for complex differential equations to prove the existence of their solutions.In[3],Yang and Li pointed out that the differential equation 4f3(z)+3f′′(z)= ? sin3z has exactly three nonconstant entire solutions f1(z)=sinz,f2(z)=Furthermore,the existence of entire solutions of the more general differential equation

    where Qd(z,f)is a differential polynomial in f of degree d,have attracted many interests(see[4–7]etc.).In[4],Li and Yang proved the following result.

    Theorem A([4]) Let n≥4 be an integer and d≤n?3.If p1,p2are nonzero polynomials,and α1,α2are nonzero constants such thatis not rational,then equation(1.1)does not have any transcendental entire solutions.

    When weakening the restriction on d,Li[5]proved the following result.

    Theorem B([5]) Let n≥2 be an integer,d≤n?2,p1,p2be nonzero small functions of ez,and let α1,α2be real numbers.If α1<0< α2and equation(1.1)has a transcendental entire solution f,then α1+ α2=0 andwhere c1,c2are constants and

    Recently,replacing the differential polynomial Qd(z,f)in equation(1.1)by a difference,or differential-difference polynomial Pd(z,f),many authors[8–10]investigated the existence of entire solutions of the difference,or differential-difference equations

    where Pd(z,f)is a difference,or differential-difference polynomial in f of degree d.In[9],Zhang and Liao obtained a counterpart of Theorem A for entire solutions of finite order of equation(1.2).

    Theorem C([9]) Let n≥4 be an integer,and Pd(z,f)denote an algebraic differential difference polynomial in f of degree d≤n?3.If p1,p2are two nonzero polynomials,and α1,α2are two nonzero constants with,then equation(1.2)does not have any transcendental entire solution of finite order.

    It is natural to ask whether equation(1.2)has any entire solution of finite order if we weaken the restriction d≤n?3 in Theorem C.To this end,we prove the following result.

    Theorem 1.1Let n≥2 be an integer,Pd(z,f)be a difference polynomial in f of degree d ≤ n ? 2 such thatbe nonzero small functions of ez,and let α1,α2be constants.Ifand equation(1.2)has an entire solution f of finite order,then α1+α2=0 andwhere γj(j=1,2)are small functions of f such that

    Remark 1.1The below proof of Theorem 1.1 shows that the result of Theorem 1.1 also holds for the case Pd(z,f)being a differential-difference polynomial in f of degree d≤n?2.

    Remark 1.2There exist nonlinear difference(or differential-difference)equations satisfying Theorem 1.1.For example,the difference equation

    has an entire solution f(z)=eλz+e?λz.The differential-difference equation

    It follows from Theorem 1.1 that for the case α1+ α2=0,equation(1.2)may be have entire solutions of finite order.But in[8],Yang and Laine proved that the difference equation

    has no entire solutions of finite order,provided that q(z)is a nonconstant polynomial,where b,c are nonzero constants.In this article,we apply Theorem 1.1 to find some types of equation(1.2)having no entire solutions of finite order for the case α1+α2=0.We obtain the following results,which are supplements of Yang-Laine’s result.

    Theorem 1.2Let n≥3,M(z,f)be a linear differential-difference polynomial in f,p1,p2be nonzero small functions of ez,and let λ be a nonzero constant.If q(z)is a nonzero small function of f,then the nonlinear differential-difference equation

    has no entire solutions of finite order.

    Theorem 1.3Let a(z),b(z)be nonzero polynomials,p1,p2,λ,c be nonzero constants.If a(z)is a nonconstant polynomial,then the difference equation

    Remark 1.3For example,the difference equation

    has three distinct entire solutions

    2Lemmas

    Lemma 2.1([11]) Let T:(0,+∞)→(0,+∞)be a non-decreasing continuous function,s>0,α<1,and let F ? R+be the set of all r such that T(r)≤ αT(r+s).If the logarithmic measure of F is in finite,then

    Lemma 2.2([12]) Let f be a non-constant meromorphic function of finite order,η∈C,and δ<1.Then,

    Remark 2.1By Lemmas 2.1 and 2.2,we know that for a non-constant meromorphic function f of finite order,

    Remark 2.2Lemma 2.2 is a difference analogue of the logarithmic derivative lemma.The other version for finite-order meromorphic functions is due to Chiang and Feng[13].Recently,Halburd,Korhonen,and Tohge[14]proved that the difference analogue of the logarithmic derivative lemma also holds for meromorphic functions of hyper-order less than 1.

    Lemma 2.3Let p0,p1,p2be small meromorphic functions of ez,not vanishing identically,and α1,α2be two nonzero constants,then,

    ProofWithout loss of generality,we assume that p0≡1.Let

    and differentiating(2.1),we obtain

    If b1≡0,then by(2.3),we obtainwhich impliesthen differentiating(2.3),we obtain

    Eliminating eα1zfrom(2.3)and(2.5),we obtain

    Remark 2.3Using the argument similar to that of Lemma 2.3,we also obtain

    where p1,p0are small meromorphic functions of ez,not vanishing identically,α1is a constant.

    Lemma 2.4Let p0,p1,p2be small meromorphic functions of ez,not vanishing identically,and α1,α2be two nonzero constants,then,

    ProofWe only need to proof the case j=1.As

    then from the above equality and Lemma 2.3,we obtain the result of Lemma 2.4.

    Lemma 2.5(see[12]) Let f be a non-constant finite order meromorphic solution of fn(z)P(f)=Q(f),where P(f),Q(f)are difference polynomials in f with small meromorphic coefficients,and let δ<1.If the total degree of Q(f)as a polynomial in f and its shifts f(z+cj)(cj∈C,j∈I)is at most n,then,

    for all r outside of a possible exceptional set with finite logarithmic measure,where|c|=

    Remark 2.4The result of Lemma 2.5 also holds for the case P(f),Q(f)being differential difference polynomials in f with small meromorphic coefficients.

    (ii)For 1≤j

    (iii)For 1≤ j≤ n,1≤ t

    E?(1,∞)is a set with finite linear measure.Then,fj(z)≡ 0,(j=1,···,n).

    Lemma 2.7([3]) Suppose that c is a nonzero constant,and α is a nonconstant meromorphic function.Then,the equation

    has no transcendental meromorphic solution f satisfying T(r,α)=S(r,f).

    3 Proofs of Results

    Proof of Theorem 1.1Let Pd=Pd(z,f),and f be an entire solutions of finite order of(1.2).Differentiating(1.2)and eliminating eα1zor eα2z,we obtain

    and

    Let

    where I is a finite set of the index λ,tλ,lλj(λ ∈ I,j=1,···,tλ)are natural numbers,βλj(λ ∈I,j=1,···,tλ)are distinct complex numbers.Setand substituting this equality into(3.3),we obtain

    Differentiating(3.3)yields

    From Lemmas 2.1 and 2.2,and the lemma of the logarithmic derivative,we obtain m(r,cj)=S(r,f),(j=0,···,d).Hence,from(3.1),(3.4),and(3.5),we obtain

    On the other hand,from(1.2)and(3.4),we obtain

    From(3.6)and(3.7),we obtain

    Substituting(3.4)into(1.2),we obtain

    that is

    On the other hand,from(3.9),we obtain

    Then from(3.8),(3.10),(3.11)and Lemma 2.4,we obtain

    Setting z=reiθ,for fixed r>0,let E1={θ ∈ [0,2π):|eα2z|≥ 1},E2=[0,2π)? E1.Because for θ∈E1,

    we obtain

    While for θ∈E2,because

    we obtain

    Hence,from(3.10),(3.12),(3.13),and(3.14),we obtain

    Combining with(3.1)and(3.2),we obtain

    where

    and Q(z,f)is a differential-difference polynomial in f of degree n+d(≤ 2n?2)with small meromorphic coefficients.From(3.8),(3.10),(3.15),and(3.16),we obtain

    It follows from(3.17)that the poles of ? possibly come from the poles of p1,p2,and f.This implies that N(r,?)=S(r,f).Then,combining with(3.18),we obtain

    Now,we discuss the following two cases.

    Case 1? ≡ 0.Observe thatandcan not vanish identically simultaneously.Otherwise,from these equalitiesandwe getthat is,β ≡ 0.This is absurd.So,without loss of generality,we assume thatThis implies that

    where c is a nonzero constant.Substitutingand(3.20)into(3.1),we obtain

    Case 2Let

    then from(3.8),(3.17),(3.19)and(3.22),we obtain

    From(3.22),we obtain

    Differentiating the first equality of(3.24),we obtain

    Substituting(3.25)into the second equality of(3.24),we obtain

    where

    From(3.8),(3.22),(3.23),and(3.27),we obtain

    Then combining with(3.17),(3.19),(3.24),and(3.29),we obtain

    This is absurd.So,we have A1≡0.From this and(3.26),we obtain A2≡0.Then combining with(3.27),we obtain

    where c1,c2are nonzero constants.Hence,from(1.2),(3.24),and(3.30),we obtainwhere γj(j=1,2)are small meromorphic functions such thatOn the other hand,from(3.8),(3.17),(3.19),and(3.30),we obtain

    This implies that α1+ α2=0.Theorem 1.1 is thus proved. ?

    Proof of Theorem 1.2Suppose that f is an entire solution of finite order of equation(1.3),from Theorem 1.1,it follows that

    where γ1,γ2are small meromorphic function of f such thatSubstituting(3.31)into(1.3),we obtain

    Proof of Theorem 1.3Suppose that f is an entire solution of finite order of equation(1.4).Letand substituting this equality into(1.4),we obtain

    From Theorem 1.2 and(3.33),we obtainand

    and

    Then combining with(3.35)and(3.36),we obtain

    where c1,c2are constants.Substituting(3.40)into(3.34),we obtain

    From(3.41)and Lemma 2.6,we obtain

    Hence,

    If a(z)is a nonconstant polynomial,then(3.42)can not hold.So,equation(1.4)has no entire solution of finite order.

    If a(z)=a is a constant,then by(3.42),we obtainthat isand when k is even,we havewhen k is odd,we havehenceThen,combining withand(3.40),we obtain f which has the form defined as Theorem 1.3.Theorem 1.3 is thus proved. ?

    猜你喜歡
    志強(qiáng)
    NFT與絕對主義
    趙志強(qiáng)書法作品
    學(xué)習(xí)“集合”,學(xué)什么
    李志強(qiáng)·書法作品稱賞
    袁志強(qiáng) 始終奮戰(zhàn)在防疫第一線
    盧志強(qiáng) 用心于畫外
    海峽姐妹(2019年4期)2019-06-18 10:39:00
    送別張公志強(qiáng)
    寶藏(2018年12期)2019-01-29 01:50:50
    Numerical prediction of effective wake field for a submarine based on a hybrid approach and an RBF interpolation*
    Analysis of Tibetan Plateau Vortex Activities Using ERA-Interim Data for the Period 1979-2013
    志強(qiáng)的石
    中華奇石(2014年12期)2014-07-09 18:30:22
    国产精品久久久久久久久免| 少妇人妻久久综合中文| 嫩草影院精品99| 日韩亚洲欧美综合| 丝袜喷水一区| 亚洲经典国产精华液单| 国产精品偷伦视频观看了| 色哟哟·www| 丰满少妇做爰视频| 欧美 日韩 精品 国产| 色5月婷婷丁香| 边亲边吃奶的免费视频| 一级a做视频免费观看| 高清欧美精品videossex| 亚洲不卡免费看| 一个人看视频在线观看www免费| 亚洲第一区二区三区不卡| www.色视频.com| 一二三四中文在线观看免费高清| 婷婷色av中文字幕| 国产毛片在线视频| 亚洲欧美精品专区久久| 黄色怎么调成土黄色| 麻豆精品久久久久久蜜桃| 成人午夜精彩视频在线观看| 亚洲av中文av极速乱| 一级a做视频免费观看| 男人爽女人下面视频在线观看| 老女人水多毛片| 免费av不卡在线播放| 欧美bdsm另类| 一个人观看的视频www高清免费观看| 黄色视频在线播放观看不卡| 亚洲丝袜综合中文字幕| 男女边摸边吃奶| 午夜激情久久久久久久| 午夜爱爱视频在线播放| 久热这里只有精品99| 91久久精品电影网| av一本久久久久| 人妻少妇偷人精品九色| 少妇的逼水好多| 久久久久久九九精品二区国产| 国产一区亚洲一区在线观看| 亚洲国产精品成人久久小说| 黄色欧美视频在线观看| 亚洲av欧美aⅴ国产| 精品午夜福利在线看| 高清欧美精品videossex| 国产色爽女视频免费观看| 色网站视频免费| 国产精品久久久久久精品电影| 男男h啪啪无遮挡| 国产爽快片一区二区三区| 九草在线视频观看| 男女下面进入的视频免费午夜| 国产黄片视频在线免费观看| 亚洲久久久久久中文字幕| 精品酒店卫生间| 最新中文字幕久久久久| 好男人视频免费观看在线| 免费黄网站久久成人精品| 免费大片黄手机在线观看| 亚洲成人中文字幕在线播放| 国产av国产精品国产| 亚洲国产成人一精品久久久| 欧美日韩综合久久久久久| 久久99热这里只有精品18| 国产成人a∨麻豆精品| 女的被弄到高潮叫床怎么办| 国产高清不卡午夜福利| 国产男人的电影天堂91| 国产精品一区www在线观看| 联通29元200g的流量卡| 亚洲精品乱码久久久久久按摩| 夫妻午夜视频| 国产69精品久久久久777片| 国产毛片在线视频| 亚洲美女视频黄频| 99久国产av精品国产电影| 精品久久久噜噜| 我的老师免费观看完整版| 国产男女内射视频| 精品国产三级普通话版| 一本久久精品| 一级毛片aaaaaa免费看小| 成人毛片a级毛片在线播放| 一级a做视频免费观看| 最近的中文字幕免费完整| 国产精品国产av在线观看| 午夜福利在线在线| 国产av国产精品国产| 亚洲不卡免费看| 欧美区成人在线视频| 亚洲一级一片aⅴ在线观看| 日本一二三区视频观看| 欧美变态另类bdsm刘玥| 深夜a级毛片| 国精品久久久久久国模美| 欧美高清性xxxxhd video| 亚洲经典国产精华液单| 又粗又硬又长又爽又黄的视频| 国产在视频线精品| 干丝袜人妻中文字幕| 亚洲国产精品国产精品| 老女人水多毛片| 我要看日韩黄色一级片| 老司机影院成人| 免费观看无遮挡的男女| 日日摸夜夜添夜夜添av毛片| 亚洲av二区三区四区| 国产精品.久久久| 一级毛片黄色毛片免费观看视频| 少妇人妻 视频| 久久97久久精品| 一级av片app| av在线老鸭窝| 国产白丝娇喘喷水9色精品| 国产乱人视频| 大片电影免费在线观看免费| 国产黄片视频在线免费观看| 人妻系列 视频| 亚洲,欧美,日韩| 人人妻人人澡人人爽人人夜夜| av国产免费在线观看| 欧美性猛交╳xxx乱大交人| 亚洲精品国产av成人精品| 国产片特级美女逼逼视频| 天堂俺去俺来也www色官网| av黄色大香蕉| 国产午夜精品一二区理论片| 免费大片黄手机在线观看| 亚洲精品自拍成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色视频在线一区二区三区| 国产成人aa在线观看| 男女那种视频在线观看| 黄色日韩在线| 亚洲自拍偷在线| 国产成人福利小说| 婷婷色综合www| 晚上一个人看的免费电影| 亚洲人成网站在线观看播放| 我的老师免费观看完整版| 国产av不卡久久| 国精品久久久久久国模美| 久久精品国产a三级三级三级| 国产伦精品一区二区三区四那| av网站免费在线观看视频| 中国国产av一级| 精品99又大又爽又粗少妇毛片| 一级毛片黄色毛片免费观看视频| 欧美性感艳星| 亚洲av成人精品一区久久| 午夜日本视频在线| videossex国产| 国产日韩欧美亚洲二区| 国产精品一区二区在线观看99| 日韩av在线免费看完整版不卡| 午夜福利在线在线| 国产成人91sexporn| 欧美成人一区二区免费高清观看| 国产精品一二三区在线看| 日韩电影二区| 看黄色毛片网站| 国产有黄有色有爽视频| 亚洲av中文av极速乱| 日本猛色少妇xxxxx猛交久久| 2021少妇久久久久久久久久久| 内地一区二区视频在线| 搞女人的毛片| 男女啪啪激烈高潮av片| 啦啦啦在线观看免费高清www| videossex国产| 欧美成人午夜免费资源| 天天一区二区日本电影三级| 自拍偷自拍亚洲精品老妇| 久久久久久国产a免费观看| 日本欧美国产在线视频| 99热这里只有精品一区| 亚洲国产日韩一区二区| 日韩欧美精品v在线| 国产精品爽爽va在线观看网站| 亚洲欧美一区二区三区国产| 秋霞伦理黄片| 日韩一本色道免费dvd| 国精品久久久久久国模美| 女的被弄到高潮叫床怎么办| 你懂的网址亚洲精品在线观看| 男女国产视频网站| 极品少妇高潮喷水抽搐| 男女边摸边吃奶| 一个人观看的视频www高清免费观看| 精品一区二区三卡| 少妇丰满av| 五月天丁香电影| 精品少妇黑人巨大在线播放| 精品久久久久久久久av| 亚洲av在线观看美女高潮| 边亲边吃奶的免费视频| videossex国产| 久久久欧美国产精品| 成人国产麻豆网| 午夜爱爱视频在线播放| 白带黄色成豆腐渣| 日韩av免费高清视频| 欧美 日韩 精品 国产| 亚洲av日韩在线播放| 精品少妇久久久久久888优播| 国产亚洲av片在线观看秒播厂| 身体一侧抽搐| 亚洲欧洲日产国产| 51国产日韩欧美| 精品久久久噜噜| 国产精品一区www在线观看| 久久久久国产精品人妻一区二区| 人妻系列 视频| 久久久久性生活片| 久久这里有精品视频免费| 哪个播放器可以免费观看大片| 国产免费一区二区三区四区乱码| 乱码一卡2卡4卡精品| 91久久精品电影网| 亚洲av一区综合| 亚洲成人久久爱视频| 久久久欧美国产精品| 国产乱人视频| 色视频在线一区二区三区| 狠狠精品人妻久久久久久综合| 大香蕉久久网| 中国三级夫妇交换| 亚洲婷婷狠狠爱综合网| 涩涩av久久男人的天堂| 全区人妻精品视频| 高清av免费在线| 国产av国产精品国产| av在线app专区| 国产熟女欧美一区二区| 久久久久久国产a免费观看| 麻豆乱淫一区二区| 岛国毛片在线播放| 亚洲欧洲国产日韩| 69av精品久久久久久| 在线免费观看不下载黄p国产| 18+在线观看网站| 哪个播放器可以免费观看大片| 91在线精品国自产拍蜜月| 狂野欧美激情性bbbbbb| 大香蕉97超碰在线| 国产成人a区在线观看| 日韩一本色道免费dvd| 99热网站在线观看| 日韩精品有码人妻一区| 中国国产av一级| 啦啦啦啦在线视频资源| 国产在线男女| 国产精品国产三级专区第一集| 搡老乐熟女国产| 美女视频免费永久观看网站| 白带黄色成豆腐渣| 18禁裸乳无遮挡动漫免费视频 | 国产成人午夜福利电影在线观看| 亚洲欧美精品专区久久| 69人妻影院| 高清毛片免费看| 插逼视频在线观看| 国产黄a三级三级三级人| 99热全是精品| 国产探花极品一区二区| 亚洲伊人久久精品综合| 2021少妇久久久久久久久久久| 天天一区二区日本电影三级| 一级毛片久久久久久久久女| 久久久欧美国产精品| 国产一区亚洲一区在线观看| 国产 一区 欧美 日韩| 欧美bdsm另类| 欧美日韩亚洲高清精品| 亚洲精品日韩在线中文字幕| 熟女人妻精品中文字幕| 全区人妻精品视频| 欧美成人a在线观看| 特级一级黄色大片| 深爱激情五月婷婷| 中国美白少妇内射xxxbb| 九色成人免费人妻av| 乱码一卡2卡4卡精品| 国产一区二区在线观看日韩| 欧美3d第一页| 久久99蜜桃精品久久| 99久国产av精品国产电影| 国产又色又爽无遮挡免| 日韩不卡一区二区三区视频在线| 女的被弄到高潮叫床怎么办| 国产精品偷伦视频观看了| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久久电影| 国产精品精品国产色婷婷| 精品99又大又爽又粗少妇毛片| 国产黄色免费在线视频| av卡一久久| 一级毛片aaaaaa免费看小| 高清日韩中文字幕在线| 别揉我奶头 嗯啊视频| 日本色播在线视频| 国产一级毛片在线| freevideosex欧美| 久久精品国产亚洲网站| 久久久久久九九精品二区国产| 春色校园在线视频观看| 国产av码专区亚洲av| 女人十人毛片免费观看3o分钟| 午夜免费观看性视频| 各种免费的搞黄视频| 国产91av在线免费观看| 男女下面进入的视频免费午夜| 超碰97精品在线观看| 日韩av不卡免费在线播放| 色婷婷久久久亚洲欧美| 国内精品美女久久久久久| 久久午夜福利片| 人妻制服诱惑在线中文字幕| av在线播放精品| 亚洲性久久影院| 日韩强制内射视频| 国产精品人妻久久久久久| 大片电影免费在线观看免费| 免费人成在线观看视频色| 我的女老师完整版在线观看| 亚洲天堂国产精品一区在线| 亚洲一级一片aⅴ在线观看| 亚洲精品一区蜜桃| 日韩制服骚丝袜av| 国产乱人偷精品视频| 看非洲黑人一级黄片| 婷婷色av中文字幕| 亚洲精品成人久久久久久| 成人鲁丝片一二三区免费| 亚洲精品亚洲一区二区| 韩国av在线不卡| 久久精品人妻少妇| 狂野欧美白嫩少妇大欣赏| 欧美精品一区二区大全| 国产精品一区www在线观看| 三级国产精品欧美在线观看| 一本一本综合久久| 1000部很黄的大片| 日韩 亚洲 欧美在线| 国产精品一区二区性色av| 2021少妇久久久久久久久久久| 国产av码专区亚洲av| videossex国产| 久久女婷五月综合色啪小说 | 国产午夜精品一二区理论片| 搡老乐熟女国产| 另类亚洲欧美激情| 国产一区二区亚洲精品在线观看| 亚洲av中文字字幕乱码综合| 噜噜噜噜噜久久久久久91| 赤兔流量卡办理| 丰满乱子伦码专区| 97超碰精品成人国产| 亚洲精品国产成人久久av| 80岁老熟妇乱子伦牲交| 精品一区在线观看国产| 亚洲国产精品999| 亚洲精品国产色婷婷电影| 午夜视频国产福利| 91久久精品国产一区二区三区| 97在线视频观看| 一本色道久久久久久精品综合| 少妇猛男粗大的猛烈进出视频 | 久久精品人妻少妇| 观看美女的网站| 观看免费一级毛片| 国产午夜精品久久久久久一区二区三区| 午夜福利视频1000在线观看| 免费看光身美女| 国产成人福利小说| 久久精品国产a三级三级三级| freevideosex欧美| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线观看播放| 国产成人91sexporn| 婷婷色av中文字幕| 91久久精品电影网| 97热精品久久久久久| 国产在线男女| 日韩大片免费观看网站| 婷婷色av中文字幕| 中文天堂在线官网| 亚洲高清免费不卡视频| 日韩在线高清观看一区二区三区| av免费在线看不卡| 欧美一级a爱片免费观看看| 国产亚洲91精品色在线| 国产午夜精品一二区理论片| 青青草视频在线视频观看| 亚洲精华国产精华液的使用体验| 综合色av麻豆| 免费看不卡的av| 欧美性感艳星| 精品酒店卫生间| 大片免费播放器 马上看| 99精国产麻豆久久婷婷| 免费观看的影片在线观看| 亚洲av日韩在线播放| 国产精品久久久久久精品电影小说 | 国产熟女欧美一区二区| 国产淫片久久久久久久久| 人妻夜夜爽99麻豆av| 乱系列少妇在线播放| 中文字幕av成人在线电影| 麻豆乱淫一区二区| 日韩中字成人| 国产在线一区二区三区精| 国产成人91sexporn| 又黄又爽又刺激的免费视频.| xxx大片免费视频| 成人欧美大片| 亚洲av一区综合| 国产成人精品福利久久| 亚洲精品国产av成人精品| 国产免费福利视频在线观看| 亚洲成人久久爱视频| 国产亚洲5aaaaa淫片| 热re99久久精品国产66热6| 3wmmmm亚洲av在线观看| 老师上课跳d突然被开到最大视频| 五月玫瑰六月丁香| 免费看不卡的av| 久久久久久久精品精品| 成人亚洲欧美一区二区av| 国内精品宾馆在线| 日韩av不卡免费在线播放| 99热这里只有是精品在线观看| 哪个播放器可以免费观看大片| 国产爽快片一区二区三区| 日日撸夜夜添| 日韩一区二区视频免费看| 中国国产av一级| 看免费成人av毛片| 插阴视频在线观看视频| 精品人妻偷拍中文字幕| 成人二区视频| 草草在线视频免费看| 国产一区有黄有色的免费视频| 2018国产大陆天天弄谢| 国产精品不卡视频一区二区| 国精品久久久久久国模美| 三级男女做爰猛烈吃奶摸视频| 禁无遮挡网站| 亚洲一区二区三区欧美精品 | 一本色道久久久久久精品综合| 成年女人在线观看亚洲视频 | 国产高清不卡午夜福利| 亚洲欧美中文字幕日韩二区| 国产一区二区三区av在线| 99热这里只有精品一区| 自拍欧美九色日韩亚洲蝌蚪91 | 嘟嘟电影网在线观看| 日本与韩国留学比较| 久久久久久久国产电影| 国产精品人妻久久久影院| 久热这里只有精品99| 免费大片18禁| 老司机影院毛片| 中文乱码字字幕精品一区二区三区| 国产黄色免费在线视频| 精品99又大又爽又粗少妇毛片| 亚洲精品乱久久久久久| 97超碰精品成人国产| 免费观看无遮挡的男女| 欧美xxⅹ黑人| 色视频www国产| 国产精品av视频在线免费观看| 亚洲av成人精品一区久久| 国产视频首页在线观看| 国产精品.久久久| 国产亚洲精品久久久com| 亚洲一区二区三区欧美精品 | av又黄又爽大尺度在线免费看| 人人妻人人看人人澡| 一区二区三区四区激情视频| 永久网站在线| 热re99久久精品国产66热6| 九九久久精品国产亚洲av麻豆| 在线观看一区二区三区激情| 日韩强制内射视频| 人人妻人人澡人人爽人人夜夜| 99热国产这里只有精品6| 国产 一区 欧美 日韩| 丰满乱子伦码专区| 99久久九九国产精品国产免费| 亚洲四区av| 久久久午夜欧美精品| 欧美日韩亚洲高清精品| 亚洲国产欧美在线一区| 人人妻人人爽人人添夜夜欢视频 | 国产成人91sexporn| 日韩一区二区视频免费看| 嫩草影院新地址| 欧美区成人在线视频| 51国产日韩欧美| 男女下面进入的视频免费午夜| 天堂网av新在线| 欧美一区二区亚洲| 99视频精品全部免费 在线| 亚洲欧美一区二区三区国产| 成人国产麻豆网| 一级毛片aaaaaa免费看小| 91在线精品国自产拍蜜月| 免费观看在线日韩| 亚洲成人一二三区av| 丰满人妻一区二区三区视频av| 欧美高清成人免费视频www| 欧美激情在线99| 国内精品美女久久久久久| 婷婷色av中文字幕| 国产成年人精品一区二区| 中国美白少妇内射xxxbb| 97热精品久久久久久| 亚洲精品自拍成人| 亚洲av在线观看美女高潮| 一级毛片电影观看| 久久女婷五月综合色啪小说 | 亚洲电影在线观看av| 久久人人爽人人片av| 精品久久久久久电影网| 国产又色又爽无遮挡免| videossex国产| 国产黄色免费在线视频| 高清在线视频一区二区三区| 噜噜噜噜噜久久久久久91| 欧美最新免费一区二区三区| 少妇 在线观看| 亚洲国产av新网站| a级一级毛片免费在线观看| 少妇猛男粗大的猛烈进出视频 | 欧美日韩亚洲高清精品| 少妇的逼好多水| 黄色配什么色好看| 亚洲欧美中文字幕日韩二区| 在线观看一区二区三区| 人妻 亚洲 视频| 久久韩国三级中文字幕| 国产爱豆传媒在线观看| 国产91av在线免费观看| 久久久久久久午夜电影| 老司机影院毛片| 久久精品国产亚洲网站| 丰满人妻一区二区三区视频av| 国产毛片在线视频| 日本欧美国产在线视频| 美女主播在线视频| 欧美潮喷喷水| 精品久久久久久久末码| 久久99精品国语久久久| tube8黄色片| 午夜亚洲福利在线播放| 亚洲精品aⅴ在线观看| 亚洲精品国产av蜜桃| 国产一区二区亚洲精品在线观看| 精华霜和精华液先用哪个| 特大巨黑吊av在线直播| 成人黄色视频免费在线看| 免费看av在线观看网站| 又大又黄又爽视频免费| 熟妇人妻不卡中文字幕| 高清日韩中文字幕在线| 亚洲在线观看片| 91久久精品国产一区二区三区| 久久久久久久久久成人| 大片免费播放器 马上看| 精品熟女少妇av免费看| 国产精品偷伦视频观看了| 一级黄片播放器| 美女主播在线视频| 真实男女啪啪啪动态图| 国产高清国产精品国产三级 | 国产精品一区二区在线观看99| 亚洲四区av| 中文欧美无线码| 中文字幕人妻熟人妻熟丝袜美| 亚洲内射少妇av| 不卡视频在线观看欧美| 六月丁香七月| 大话2 男鬼变身卡| 51国产日韩欧美| 日本午夜av视频| 国产综合懂色| 亚洲精品国产色婷婷电影| 欧美激情久久久久久爽电影| 亚洲精品国产av成人精品| 日产精品乱码卡一卡2卡三| 亚洲av在线观看美女高潮| 久久久久久久午夜电影| 内射极品少妇av片p| 国产在视频线精品| 亚洲精品久久久久久婷婷小说| av线在线观看网站| 欧美另类一区| 免费看光身美女| 午夜福利视频1000在线观看| 2021天堂中文幕一二区在线观| 国产日韩欧美亚洲二区| 久久人人爽人人爽人人片va| 伊人久久精品亚洲午夜| 热99国产精品久久久久久7| 亚洲精品自拍成人| 九九爱精品视频在线观看| 国产男女内射视频| 熟女av电影| 男插女下体视频免费在线播放| 亚洲精品亚洲一区二区|