• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NONNEGATIVITY OF SOLUTIONS OF NONLINEAR FRACTIONAL DIFFERENTIAL-ALGEBRAIC EQUATIONS?

    2018-07-23 08:41:16XiaoliDING丁小麗

    Xiaoli DING(丁小麗)

    Department of Mathematics,Xi’an Polytechnic University,Shaanxi 710048,China E-mail:dingding0605@126.com

    Yaolin JIANG(蔣耀林)

    Department of Mathematics,Xi’an Jiaotong University,Shaanxi 710049,China

    Abstract Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors.How to obtain the nonnegative solutions of the equations is an important scientific problem.As far as we known,the nonnegativity of solutions of the nonlinear fractional differential-algebraic equations is still not studied.In this article,we investigate the nonnegativity of solutions of the equations.Firstly,we discuss the existence of nonnegative solutions of the equations,and then we show that the nonnegative solution can be approached by a monotone waveform relaxation sequence provided the initial iteration is chosen properly.The choice of initial iteration is critical and we give a method of finding it.Finally,we present an example to illustrate the efficiency of our method.

    Key words Fractional differential-algebraic equations;nonnegativity of solutions;waveform relaxation;monotone convergence

    1 Introduction

    Fractional calculus has been used widely to deal with some problems in fluid and continuum mechanics[1,2],viscoelastic and viscoplastic flow[3],epidemiological models[4,5],and circuit simulation with superconductor materials[6].The main advantage of fractional derivatives lies in that they are more suitable for describing memory and hereditary properties of various materials and process in comparison with classical integer-order derivative.In these years,various theory and numerical solutions to fractional differential equations were extensively investigated.For example,collocation methods were applied into solving fractional differential equations([7,8]).Gong et al[9]gave an efficient parallel solution for Caputo fractional reaction-diffusion equation with explicit method.The parallel solution is implemented with MPI parallel programming model.Stokes et al[10]proposed a method to accelerate the computation of the numerical solution of fractional differential equations.Xu et al[11]applied parareal method into solving time-fractional differential equations.Mohammed Al-Refai and Yuri Luchko gave maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives[12].

    The investigation of positive solutions of different classes of fractional differential equations is a relevant question in real world prolems.For example,some authors in[13,14]discussed the existence of positive solutions of nonlinear fractional differential equations.Some authors[15,16]investigated positive solutions of fractional differential equations with integral boundary conditions and multi-point boundary conditions,respectively.Li[17]discussed the nonexistence of positive solution for a semi-linear equation involing the fractional Laplcian in RN?.Wang et al[18]gave the existence of solutions for nonlinear fractional differential equations using monotone iterative method.In[19],Kaczorek discussed positive linear systems consisting of n subsystems with different orders,where the proposed system can be described by linear fractional differential-algebraic equations.However,as far as we known,nonnegativity of solutions of nonlinear fractional differential-algebraic equations is still not studied.

    In this article,we consider nonnegativity of solutions of nonlinear fractional differential algebraic equations using waveform relaxation(WR)algorithm.It is well known that the WR method is a dynamic iterative method.It was originally proposed to simulate large circuits in[20]and it was widely studied.Until now,the method has been applied into solving ordinary differential equations[21],differential-algebraic equations[22],functional differential equations[23],and fractional differential equations[24].As usual,the waveform sequence computed by the algorithm is not monotone.In this article,we identify the nonlinear fractional differential algebraic equations which satisfy certain Lipschitz conditions,such that if the initial iteration waveform is chosen properly,the waveform sequence converges to the nonnegative solution monotonically.

    This article is organized as follows.In Section 2,we present some notations,definitions,and assumptions.In Section 3,we firstly examine monotone dependency on initial conditions and inputs.Then,we state the main theorem on nonnegative solution.Finally,we give a method to choose the initial iteration.In Section 4,we present an example with numerical simulations to illustrate the waveform relaxation algorithm.

    2 Preliminaries

    In this section,we give some basic concepts and notations.

    Definition 2.1([26]) Let[a,b]be a finite interval on the real axis R.The Riemann-Liouville integraland the Riemann-Liouville fractional derivativeof order α>0 are defined by

    and respectively,where m?1< α ≤ m,m ∈ N+,and Γ(·)denotes the Gamma function.

    Of course,one has to impose some conditions on the function x such that the right hand sides are defined for almost all t∈ [a,b].For example,the fractional integralis defined for x∈L1(a,b).

    The Laplace transform of the Riemann-Liouville fractional derivative is given as follows:

    However,the practical applicability of the Riemann-Liouville fractional derivative is limited by the absence of the physical interpretation of the limit values of fractional derivatives at the low terminal t=0.The mentioned problem does not exist in the Caputo definition of the fractional derivative.

    Definition 2.2([26]) Let[a,b]be a finite interval on the real axis R,and let x∈The Caputo fractional derivativeof order α>0 is defined by

    The Laplace transform of the Caputo fractional derivative is given by

    Contrary to the Laplace transform of the Riemann-Liouville fractional derivative,only integer order derivatives of function x appear in the Laplace transform of the Caputo fractional derivative.Thus,it can be useful for solving applied problems leading to linear fractional differential equations with constant coefficients with accompanying initial conditions in traditional form.

    Particularly,the Riemann-Liouville fractional derivative and the Caputo fractional derivative are connected with the following relation

    Note that if x(i)(a)=0,i=0,1,···,m ? 1,thencoincides with

    In this article,we consider the following semi-explicit nonlinear fractional differential algebraic system with two continuous inputs u and e:

    In the following,we give sufficient conditions for the existence of nonnegative solutions of system(2.2)and construct a monotone waveform relaxation method to approximate the nonnegative solutions.For(2.2),the WR algorithm is described as

    Definition 2.3Forfor all i=1,2,···,n.For x(t),y(t):for all t∈[0,T].

    Definition 2.4A function h:Rn×Rm×R1→Rlis said to be globally Lipschitz continuous with respect to the first argument uniformly over the other arguments if there exists a constant L such that for all x,y∈Rn,e∈Rm,and t∈[0,T],kh(x,e,t)?h(y,e,t)kRl6 Lkx?ykRn,where k·kRland k·kRnare norms in Rland Rn,respectively.

    Definition 2.5A function h:Rn×Rm×R1→Rlis said to be monotone increasing with respect to the first argument if for each e∈Rmand t∈[0,T],h(x,e,t)6 h(y,e,t)when x 6 y,where x,y∈Rn.A function k:Rn×Rm×R1→Rlis said to be quasi-monotone increasing with respect to the first argument if for each i∈ {1,2,···,n},each e ∈ Rm,and t∈ [0,T],ki(x,e,t)6 ki(y,e,t)when x 6 y with xi=yi,where x,y∈Rn.

    Clearly,monotone increasing implies that quasi-monotone increasing.In fact,quasi-monotone increasing for functions is a key property used in proving the monotone convergence of iterative waveforms.This concept was carefully stated in[27].

    In this article,except Theorem 3.2 of Section 3,we always assume that the functions F and G satisfy the following assumptions 1 and 2.

    Assumption 1For all t ∈ [0,T],the function F(·,·,·,·,·,t)is globally Lipschitz continuous with respect to each of the first four arguments with Lipschitz constants Li(i=1,2,3,4),respectively,uniformly over the other arguments.Likewise,for all t∈[0,T],the function G(·,·,·,·,t)is globally Lipschitz continuous with respect to each of the first three arguments with Lipschitz constants Li(i=5,6,7),respectively,uniformly over the other arguments.

    Assumption 2For all t ∈ [0,T],the function F(·,·,·,·,·,t)is quasi-monotone increasing with respect to the first arguments,and it is monotone increasing with respect to the each of the other four arguments.Likewise,for all t ∈ [0,T],the function G(·,·,·,·,t)is monotone increasing with respect to the each of the first four arguments.

    Finally,we state an existence condition of solutions of system(2.2).This existence condition can be carried out by the approach in[24]with a careful modification on its proof.So,we omit the proof in this article.

    Theorem 2.1Assume that for all t ∈ [0,T],the functions f(·,·,·,t)and g(·,·,·,t)are globally Lipschitz continuous with respect to each of the first two arguments with Lipschitz constantsand(i=1,2),respectively,uniformly over the other arguments,that is,for any u∈Rp,e∈Rq,xi∈Rn1,and yi∈Rn2(i=1,2,3,4),

    and

    Similarly,we give a convergence condition for the WR algorithm(2.3).

    Theorem 2.2Assume that the functions F and G satisfy Assumption 1.If L7<1,then the iteration sequence{z(k)}produced by the WR algorithm(2.3)converges uniformly to the unique solution[x(t)T,y(t)T]Tof system(2.2)on[0,T].

    3 Monotone Waveform Relaxation Method

    3.1 Monotone dependency on initial conditions and inputs

    We examine the monotone dependency properties on initial iteration and inputs for system(2.2)for any fixed k ∈ {0,1,2,···.}.These properties are useful to show the monotone convergence of the relaxation sequence based on system(2.2).For the sake of clarity,we consider the following nonlinear fractional differential-algebraic system for system(2.2)for some fixed k:

    For system(3.1),let the inputs e1:[0,T]→ Rm1and e2:[0,T]→ Rm2be two given continuous functions.Then,we establish the following lemma.

    Lemma 3.1Assume that for eachon t ∈ [0,T]when x>0,xi=0,and y>0.And assume that in system(3.1),on t∈ [0,T]when x>0.Then,the solution z(t)of system(3.1)satisfies z(t)>0 on[0,T]if the initial values subject to Mx0>0,and y(0)>0,where

    ProofWe apply contradiction to show the statement.Suppose that there exist t?>0 and some subscript l such that(Mx)l(t?)<0 or yl(t?)<0.Becauseis Lipschitz continuous with respect to x,system(3.1)has a unique solution and the solution depends continuously on the initial value and the right-hand continuous disturbance([26]).

    Thus,there exists δ>0 such that the following system

    We denote z(t)=[x(t)T,y(t)T]T=[z1(t),z2(t),···,zn1(t),zn1+1(t),···,zn(t)],where n=n1+n2.Let K={k:zk(t)<0 for some t>0}and tk=inf{t>0:zk(t)<0}for k∈K.By continuity,zk(tk)=0 for each k∈K.Now,let r be the smallest integer such that tr=min{tk}.We have z(t)>0 for t 6 trin which zr(tr)=0.

    Let r ∈ {1,2,···,n1}.When t 6 tr,it has x(t)>0,x(tr)=0,and x(t)<0 for t∈ (tr,tr+?],? is some positive constant.Then,by the Hadamard lemma(see[28],p.17),x(t)leads to the representation x(t)=(tr?t)h(t),with h(t)∈C1([0,tr]),h(t)>0 for t∈[0,tr],and h(t)6 0 for t∈ [tr,tr+ ?].

    Then,it has

    where

    and

    As h(t)is continuous on[0,tr]and the function

    is of one sign and integrable on the interval[0,tr],the mean value theorem yields the following representation with a ξ,0< ξ

    It follows from the last representation that

    Because the function h is continuous and non-positive on[0,tr],the limitexists and is non-negative.

    Now,we consider the auxiliary functionthat is of one sign and integrable on the interval[tr,tr+?t].Because the function h is continuous on[tr,tr+?t],the mean value theorem applied to the integral I2yields the following representation with a ζ,tr<ζ

    Thus,we get the following representation

    On the basis of the relations(3.3)and(3.4),we can obtain

    Furthermore,by relation(2.1),we can obtain

    Let r∈ {n1+1,n2+2,···,n}.Then,yl(tr)=0,that is,Gl(x(tr),e2(tr),tr)+δ=0.This is impossible because x(tr)>0.This completes the proof of this lemma. ?

    In the following,we will discuss that for some fixed k,the iteration waveform at each iteration in the WR algorithm is monotonically dependent on the previous iterative waveform and input functions.For this aim,let,where x(k)(0)=x0is a solution of system(2.3)with given continuous input functions u,e,and the previous iterationAnd letwhereis a solution of system(2.3)with given continuous input functionsand the previous iterationLikewise,let z(t)=[x(t)T,y(t)T]T,where x(0)=x0is a solution of system(2.2)with given continuous input functions u and e.And letwhereis a solution of system(2.3)with given continuous input functions u and e.Under these conditions,we have the following result.

    Lemma 3.2Assume that the input functions in system(2.3)satisfy,and the(k?1)st iterations produced by the algorithm(2.3)satisfyingthen we haveon[0,T]if,and

    Likewise,assume that L7<1,and the input functions in system(2.2)satisfyandthen we haveon[0,T]if,and

    ProofThe two statements are analogous,so we consider the first.let η1(t)=x(k)(t) ?Then,η1(t)and η2(t)satisfy the following system:

    Clearly,the functions of the right-hand sides of system satisfy the conditions of Lemma 3.1,so,we can arrive at η1(t)>0,and η2(t)>0 for all t ∈ [0,T],that is,[Mx(k)(t),y(k)(t)]>on[0,T].

    By Theorem 2.2 and the first statement of this lemma,the second part is obvious.The proof of this lemma is completed. ?

    3.2 Convergence of monotone waveform relaxation

    On the basis of the above statements,we can establish the existence theorem(Theorem 3.3)of nonnegative solutions of system(2.2).And from Theorem 3.1,one can see that the nonnegative solution of system(2.2)can be approximated using the WR algorithm(2.3)if the choice of initial iteration is proper.

    Theorem 3.1Suppose L7<1.If the initial iteration[(x(0)(t))T,(y(0)(t))T]Tin(2.3)satisfies

    and

    then,for each k∈N,it has

    ProofFrom

    by Lemma 3.2,one can obtain relation(3.7)for each k by induction.On the other hand,as L7<1,by Lemma 3.2,the sequenceconverges to[(x(t))T,(y(t))T]Tas k→+∞uniformly and monotonically on[0,T].This function[(x(t))T,(y(t))T]Tsatisfies

    From Theorem 3.1,we know that as long as the initial iteration is chosen properly,namely,x(0)(t)6 x(1)(t)and y(0)(t)6 y(1)(t)on[0,T],then the iterative procedure will monotonically converge to the actual solution of system.

    3.3 Initial iterations

    The choice of initial iterations is crucial to ensure monotone convergence of the waveforms in the WR algorithm.In the following,we present a choice to deal with this matter.In this subsection,we denote kxk∞=max{|xi|:i=1,2,···,n}for x ∈ Rn.

    For any given input functions u and e,we assume that

    and

    for xi∈ Rn1and yi∈ Rn2(i=1,2),where h1(·,·,·,·,t),and h2(·,·,·,t)are nondecreasing functions for any t∈[0,T].

    Now,we need to assume that the following simple two-dimension fractional differential algebraic system has a positive solution w(t)=[w1(t),w2(t)]T:

    where x0is the given initial value and y0=g(x0,y0,e(0),0)in system(2.2).

    We define

    and

    Let

    and

    where t∈[0,T]and l=1,2.It is obvious that

    and

    Lemma 3.3Ifsatisfies

    ProofFirst,we define a sequencesuch that it satisfies

    and

    Thirdly,we need to prove that the sequenceconverges toas k→+∞on[0,T].In fact,we have

    and

    On the basis of the above relations,we have the following inequality

    where the operator Rcis defined by

    By[25],we have ρ(Rc)=0.Thus,we can derive ρ(R)=0,where

    This completes the proof of this lemma.

    The previous result says that if x(0)(t)is chosen as β1(t)and y(0)(t)is chosen as γ1(t),then x(0)(t)6 x(1)(t),and y(0)(t)6 y(1)(t)on[0,T].Thus,by Lemma 3.3 and Theorem 3.1,we can easily establish the following important result.

    Theorem 3.2Suppose L7<1,and let z(t)=[x(t)T,y(t)T]T,where x(0)=x0is a solution of system(2.2)with given continuous input functions u and e.Let the sequence{z(k)(t)}be defined by the WR algorithm(2.3)with initial iteration z(0)(t)=ρ1(t),where ρ1(t)is defined by(3.9).Then,the sequence{z(k)(t)}converges to the unique solution z(t)on[0,T],and the solution z satisfies that z(t)>0 for all t∈[0,T].

    4 Example

    In this section,we give a simple example to con firm the monotone convergence properties of the WR algorithm for fractional differential-algebraic equations.In the processing of the numerical computation,the Caputo fractional derivative is computed by the implicit finite difference approximation:

    where xk=x(tk),and

    The time-step h is adopted as 0.2,and the error is defined bywhere x(k)is obtained by the WR algorithm,x is the true solution,and k·k denotes the 2-norm in Rn.

    Example 4.1Consider the following fractional differential-algebraic system:

    Its WR algorithm is described as

    One can see that the functions of the right-hand side in(4.2)satisfy Assumptions 1 and 2.Therefore,the sequenceobtained by equation(4.2)converges uniformly and monotonically to the solution of equation(4.1).From Figure 1,one can see that the nonnegative solution can be approximated by a monotone waveform sequence.The experiment results agree with the theory analysis.

    Figure 1 Monotone waveforms of x1in system(4.1)

    The errors are given in Table 1.

    Table 1 The relative errors for the different iterative numbers

    Appendix

    Hadamard’s lemmaAny smooth function f in a starlike neighborhood of a point z is representable in the form

    where giare smooth functions.

    In fact,by Hadamard’s lemma,any smooth function f(x)is representable in the form f(x)=f(x0)+(x?x0)g(x),where f(x0)=0,and g(x)is a smooth function.

    免费人成视频x8x8入口观看| 国产av一区在线观看免费| 久久 成人 亚洲| 欧美日韩精品网址| 亚洲第一av免费看| 极品教师在线免费播放| 国产麻豆69| 亚洲情色 制服丝袜| 99国产精品一区二区三区| 91字幕亚洲| 国产精品久久久久久精品电影 | 亚洲精品中文字幕一二三四区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产日韩一区二区三区精品不卡| 黄网站色视频无遮挡免费观看| 久久国产精品男人的天堂亚洲| 精品久久久久久久毛片微露脸| 久久精品成人免费网站| 天堂影院成人在线观看| 757午夜福利合集在线观看| 乱人伦中国视频| 欧美黄色片欧美黄色片| 91国产中文字幕| 午夜久久久在线观看| 美国免费a级毛片| 午夜精品国产一区二区电影| 女生性感内裤真人,穿戴方法视频| 亚洲五月婷婷丁香| 两个人看的免费小视频| 精品不卡国产一区二区三区| 日韩欧美一区二区三区在线观看| 国产精品久久视频播放| 久久午夜综合久久蜜桃| 亚洲国产高清在线一区二区三 | 亚洲精品美女久久久久99蜜臀| 老鸭窝网址在线观看| 欧美中文日本在线观看视频| 9191精品国产免费久久| 97人妻天天添夜夜摸| 97人妻天天添夜夜摸| 黄色片一级片一级黄色片| 十八禁人妻一区二区| 叶爱在线成人免费视频播放| 女生性感内裤真人,穿戴方法视频| 19禁男女啪啪无遮挡网站| av有码第一页| 欧美激情高清一区二区三区| 满18在线观看网站| 1024视频免费在线观看| 男人的好看免费观看在线视频 | 一区二区三区高清视频在线| 少妇粗大呻吟视频| 精品乱码久久久久久99久播| 午夜精品在线福利| 亚洲精品av麻豆狂野| 亚洲精品中文字幕在线视频| 深夜精品福利| 欧美日韩福利视频一区二区| 欧美乱码精品一区二区三区| 免费少妇av软件| 18禁美女被吸乳视频| 免费不卡黄色视频| 少妇熟女aⅴ在线视频| 国产精品一区二区在线不卡| 国产亚洲精品久久久久久毛片| 婷婷六月久久综合丁香| 日韩大码丰满熟妇| 日韩欧美国产在线观看| 久久久久久人人人人人| 亚洲狠狠婷婷综合久久图片| www国产在线视频色| 成人精品一区二区免费| 日韩欧美国产一区二区入口| 国产精品九九99| 黑丝袜美女国产一区| 国产熟女午夜一区二区三区| 亚洲男人的天堂狠狠| 咕卡用的链子| 中文字幕人成人乱码亚洲影| 久久久久久久久久久久大奶| 9色porny在线观看| 99久久久亚洲精品蜜臀av| 免费高清视频大片| 久久久精品国产亚洲av高清涩受| 一本大道久久a久久精品| 免费看a级黄色片| 免费高清在线观看日韩| 久久久国产成人精品二区| 国产熟女xx| 在线视频色国产色| 亚洲五月天丁香| 成人18禁在线播放| 久久久久久人人人人人| 久久人妻熟女aⅴ| 精品欧美一区二区三区在线| 欧美乱色亚洲激情| 99re在线观看精品视频| 男人的好看免费观看在线视频 | 久久伊人香网站| 国产精品亚洲一级av第二区| 黄色视频不卡| 在线av久久热| 久热爱精品视频在线9| 免费av毛片视频| 国产成人影院久久av| 国产成人啪精品午夜网站| av免费在线观看网站| 一进一出好大好爽视频| 国产国语露脸激情在线看| 99国产精品99久久久久| 国产三级在线视频| 中亚洲国语对白在线视频| 正在播放国产对白刺激| 天天躁夜夜躁狠狠躁躁| 久久精品国产亚洲av高清一级| 欧美中文综合在线视频| 一区二区三区高清视频在线| 久久人妻熟女aⅴ| 国产成人啪精品午夜网站| 亚洲三区欧美一区| 亚洲精品美女久久av网站| 欧美日韩一级在线毛片| 无限看片的www在线观看| avwww免费| 欧美成人一区二区免费高清观看 | 国产精品av久久久久免费| 久久久久国产一级毛片高清牌| 成人国产综合亚洲| 亚洲精品粉嫩美女一区| 最新在线观看一区二区三区| 国产精品一区二区精品视频观看| 99热只有精品国产| 国产国语露脸激情在线看| 美国免费a级毛片| 午夜a级毛片| 日韩高清综合在线| 在线国产一区二区在线| 一进一出好大好爽视频| 欧美色欧美亚洲另类二区 | 欧美色视频一区免费| 免费一级毛片在线播放高清视频 | 国内久久婷婷六月综合欲色啪| 中文亚洲av片在线观看爽| 久久精品影院6| 免费不卡黄色视频| 亚洲成人免费电影在线观看| 成在线人永久免费视频| 国产高清videossex| 亚洲一区二区三区色噜噜| 久久久久久国产a免费观看| 欧美丝袜亚洲另类 | 波多野结衣一区麻豆| 丝袜美足系列| 婷婷六月久久综合丁香| 国产精品秋霞免费鲁丝片| 久久精品亚洲精品国产色婷小说| av视频免费观看在线观看| 精品欧美国产一区二区三| 丁香六月欧美| 欧美黑人精品巨大| 91国产中文字幕| 久久精品国产综合久久久| 男人舔女人下体高潮全视频| 青草久久国产| 搡老熟女国产l中国老女人| 日韩 欧美 亚洲 中文字幕| a在线观看视频网站| 精品高清国产在线一区| 他把我摸到了高潮在线观看| aaaaa片日本免费| 美女国产高潮福利片在线看| 久久精品人人爽人人爽视色| 欧美另类亚洲清纯唯美| 亚洲精品在线美女| 大陆偷拍与自拍| 亚洲国产中文字幕在线视频| 亚洲av成人不卡在线观看播放网| 久久天躁狠狠躁夜夜2o2o| 啦啦啦韩国在线观看视频| 亚洲美女黄片视频| 成年人黄色毛片网站| 欧美乱码精品一区二区三区| 99国产精品免费福利视频| 性少妇av在线| 日韩精品中文字幕看吧| 视频区欧美日本亚洲| 老司机福利观看| 久久精品91蜜桃| 99国产综合亚洲精品| 国内久久婷婷六月综合欲色啪| 午夜精品国产一区二区电影| 99riav亚洲国产免费| 午夜日韩欧美国产| 黄色女人牲交| 欧美中文日本在线观看视频| 999久久久国产精品视频| 亚洲欧美一区二区三区黑人| 亚洲精品av麻豆狂野| 精品国产一区二区三区四区第35| 久9热在线精品视频| 老司机深夜福利视频在线观看| 国产精品免费一区二区三区在线| 老司机午夜福利在线观看视频| 99在线人妻在线中文字幕| 欧美黄色淫秽网站| 欧美成人午夜精品| 大型av网站在线播放| 精品国产乱子伦一区二区三区| 国产av在哪里看| 中国美女看黄片| 亚洲中文日韩欧美视频| 精品乱码久久久久久99久播| 女警被强在线播放| 在线观看免费视频日本深夜| 国产精品av久久久久免费| 久久国产精品人妻蜜桃| av欧美777| 久久久国产成人免费| 激情在线观看视频在线高清| 国产精品自产拍在线观看55亚洲| svipshipincom国产片| 亚洲专区中文字幕在线| 男人的好看免费观看在线视频 | 脱女人内裤的视频| 国产主播在线观看一区二区| 久久精品国产99精品国产亚洲性色 | 久久精品91蜜桃| 日韩欧美免费精品| 日日摸夜夜添夜夜添小说| 男女下面进入的视频免费午夜 | 成人三级做爰电影| 涩涩av久久男人的天堂| 99精品久久久久人妻精品| 亚洲一区中文字幕在线| 制服丝袜大香蕉在线| 看免费av毛片| 在线免费观看的www视频| 欧美黄色淫秽网站| 久久欧美精品欧美久久欧美| 亚洲色图 男人天堂 中文字幕| 超碰成人久久| 长腿黑丝高跟| 精品第一国产精品| 美女免费视频网站| 最新在线观看一区二区三区| 丝袜在线中文字幕| 老鸭窝网址在线观看| 在线观看舔阴道视频| 99热只有精品国产| 伦理电影免费视频| 一区二区日韩欧美中文字幕| 国产单亲对白刺激| 最好的美女福利视频网| 久久久精品国产亚洲av高清涩受| 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影观看| 成年版毛片免费区| 性色av乱码一区二区三区2| 99精品在免费线老司机午夜| 人人妻人人爽人人添夜夜欢视频| 亚洲av电影不卡..在线观看| 波多野结衣av一区二区av| 久久香蕉激情| 亚洲中文字幕一区二区三区有码在线看 | 91精品国产国语对白视频| 一区福利在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲av成人av| 天堂影院成人在线观看| 久久精品国产亚洲av香蕉五月| 亚洲免费av在线视频| 免费在线观看影片大全网站| 两性夫妻黄色片| 免费无遮挡裸体视频| 亚洲人成77777在线视频| 久久热在线av| 国产精品免费一区二区三区在线| 欧美另类亚洲清纯唯美| 午夜福利欧美成人| 精品无人区乱码1区二区| 亚洲精品国产区一区二| 成人手机av| 国产精品99久久99久久久不卡| 露出奶头的视频| 人人澡人人妻人| 精品一品国产午夜福利视频| 首页视频小说图片口味搜索| 黑人巨大精品欧美一区二区蜜桃| 日韩有码中文字幕| 老汉色∧v一级毛片| 在线观看午夜福利视频| 久热爱精品视频在线9| 久久精品国产亚洲av高清一级| 精品卡一卡二卡四卡免费| www.999成人在线观看| 日韩欧美在线二视频| 亚洲国产精品999在线| 操出白浆在线播放| 12—13女人毛片做爰片一| 又大又爽又粗| 老司机在亚洲福利影院| 最近最新中文字幕大全免费视频| 天天一区二区日本电影三级 | 亚洲专区国产一区二区| 人成视频在线观看免费观看| 激情在线观看视频在线高清| 亚洲国产精品成人综合色| 一本大道久久a久久精品| 淫秽高清视频在线观看| 真人做人爱边吃奶动态| 欧美日韩中文字幕国产精品一区二区三区 | 一级a爱视频在线免费观看| 91av网站免费观看| av电影中文网址| 国产精品九九99| 国内精品久久久久精免费| 国产91精品成人一区二区三区| 熟女少妇亚洲综合色aaa.| 欧美日本亚洲视频在线播放| 99久久精品国产亚洲精品| 久久久久久人人人人人| 日本一区二区免费在线视频| 老熟妇仑乱视频hdxx| 欧美乱妇无乱码| 亚洲五月色婷婷综合| 国产高清有码在线观看视频 | 亚洲第一欧美日韩一区二区三区| 97碰自拍视频| 很黄的视频免费| 大型黄色视频在线免费观看| 国产麻豆69| 大型黄色视频在线免费观看| 久久久精品国产亚洲av高清涩受| 亚洲伊人色综图| 国产成人av教育| 亚洲国产欧美日韩在线播放| 99在线视频只有这里精品首页| 在线观看www视频免费| 又大又爽又粗| 精品一区二区三区视频在线观看免费| 午夜福利视频1000在线观看 | 99久久国产精品久久久| 日韩欧美国产一区二区入口| 久久这里只有精品19| 久久人人97超碰香蕉20202| 麻豆国产av国片精品| 精品国产亚洲在线| 真人一进一出gif抽搐免费| 亚洲精品在线美女| 久久久国产成人免费| 999精品在线视频| 嫁个100分男人电影在线观看| 国产精品99久久99久久久不卡| 色播亚洲综合网| 亚洲色图av天堂| 亚洲aⅴ乱码一区二区在线播放 | 亚洲专区字幕在线| а√天堂www在线а√下载| 国产免费男女视频| 亚洲七黄色美女视频| 无限看片的www在线观看| 免费观看人在逋| 成人永久免费在线观看视频| 性色av乱码一区二区三区2| 搞女人的毛片| 啪啪无遮挡十八禁网站| 国产视频一区二区在线看| 1024视频免费在线观看| 夜夜看夜夜爽夜夜摸| 18禁裸乳无遮挡免费网站照片 | 精品国内亚洲2022精品成人| 色综合站精品国产| 搡老熟女国产l中国老女人| 99国产综合亚洲精品| 国产熟女xx| 精品国产乱码久久久久久男人| 午夜福利影视在线免费观看| 精品免费久久久久久久清纯| 网址你懂的国产日韩在线| 性插视频无遮挡在线免费观看| 少妇高潮的动态图| 国模一区二区三区四区视频| 日本-黄色视频高清免费观看| 日本欧美国产在线视频| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 男人舔奶头视频| 麻豆精品久久久久久蜜桃| 久久人人精品亚洲av| 男人狂女人下面高潮的视频| 精品久久久久久久久亚洲 | 99在线人妻在线中文字幕| 中文字幕久久专区| a级毛片a级免费在线| 在线观看舔阴道视频| 我要搜黄色片| 亚洲av二区三区四区| 最后的刺客免费高清国语| 日本黄色视频三级网站网址| 国产淫片久久久久久久久| 国内少妇人妻偷人精品xxx网站| 国产麻豆成人av免费视频| 日韩一本色道免费dvd| 久久精品国产亚洲网站| 五月伊人婷婷丁香| 级片在线观看| 十八禁网站免费在线| 国产精品野战在线观看| 嫩草影院精品99| 老司机深夜福利视频在线观看| 欧美日韩乱码在线| 国产乱人伦免费视频| 亚洲五月天丁香| 在线天堂最新版资源| 国产亚洲av嫩草精品影院| 国产午夜福利久久久久久| 久久久色成人| 婷婷精品国产亚洲av在线| 一级黄片播放器| 国产午夜福利久久久久久| 日本 欧美在线| 在线观看66精品国产| 最后的刺客免费高清国语| 午夜福利在线观看免费完整高清在 | 精品一区二区三区视频在线观看免费| 人妻少妇偷人精品九色| 日本黄大片高清| 色精品久久人妻99蜜桃| 国产老妇女一区| 精品欧美国产一区二区三| 中文字幕av成人在线电影| 国产亚洲欧美98| 午夜福利欧美成人| 国产高清三级在线| 亚洲国产欧美人成| 不卡视频在线观看欧美| 日韩欧美精品免费久久| 永久网站在线| aaaaa片日本免费| 日本色播在线视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲一区高清亚洲精品| 男女啪啪激烈高潮av片| 一级av片app| 久久精品国产亚洲av香蕉五月| 真实男女啪啪啪动态图| 91久久精品国产一区二区三区| 日日摸夜夜添夜夜添av毛片 | 欧美三级亚洲精品| 美女 人体艺术 gogo| 人人妻人人澡欧美一区二区| 亚洲不卡免费看| 亚州av有码| 中文字幕高清在线视频| 欧美激情在线99| 在线天堂最新版资源| 人妻少妇偷人精品九色| 97人妻精品一区二区三区麻豆| 亚洲第一电影网av| 久久精品影院6| 中国美白少妇内射xxxbb| 丝袜美腿在线中文| 身体一侧抽搐| 日本黄色片子视频| 久久久久久伊人网av| 国内精品久久久久精免费| 91久久精品国产一区二区三区| 日本熟妇午夜| 亚洲欧美清纯卡通| 久久精品人妻少妇| 欧美日韩亚洲国产一区二区在线观看| 88av欧美| 国产伦一二天堂av在线观看| 成人无遮挡网站| 午夜福利高清视频| 亚洲av不卡在线观看| 在线免费观看的www视频| 少妇的逼水好多| av视频在线观看入口| 国产精品亚洲一级av第二区| 热99re8久久精品国产| 日韩中字成人| 又黄又爽又刺激的免费视频.| 色哟哟·www| 亚洲欧美日韩东京热| 日韩欧美精品免费久久| 欧美+亚洲+日韩+国产| 亚洲av不卡在线观看| 亚州av有码| 91在线观看av| 一边摸一边抽搐一进一小说| 22中文网久久字幕| 校园春色视频在线观看| 亚洲av成人av| 亚洲va日本ⅴa欧美va伊人久久| 俺也久久电影网| 两个人的视频大全免费| 精品人妻熟女av久视频| 国内少妇人妻偷人精品xxx网站| 久久精品综合一区二区三区| 日日干狠狠操夜夜爽| 精品一区二区三区av网在线观看| 九九久久精品国产亚洲av麻豆| 在线看三级毛片| 国产av在哪里看| 性欧美人与动物交配| 日韩欧美 国产精品| 久久午夜亚洲精品久久| 欧美日韩综合久久久久久 | 成人性生交大片免费视频hd| 亚洲成人久久性| 亚洲av免费高清在线观看| 亚洲中文字幕一区二区三区有码在线看| 高清毛片免费观看视频网站| 小说图片视频综合网站| 日韩高清综合在线| 日本黄色视频三级网站网址| 男插女下体视频免费在线播放| 亚洲电影在线观看av| 亚洲最大成人手机在线| 三级国产精品欧美在线观看| 欧美色视频一区免费| ponron亚洲| 精品人妻熟女av久视频| 又粗又爽又猛毛片免费看| 国产中年淑女户外野战色| 亚洲真实伦在线观看| 在线看三级毛片| 亚洲成人精品中文字幕电影| 欧美3d第一页| 国产精品一及| 久久久久免费精品人妻一区二区| 桃红色精品国产亚洲av| 亚洲真实伦在线观看| 国产综合懂色| 我要搜黄色片| 国内精品美女久久久久久| 老司机午夜福利在线观看视频| 国产精品国产三级国产av玫瑰| 麻豆一二三区av精品| 男女视频在线观看网站免费| 成人国产一区最新在线观看| 久久精品国产亚洲av天美| 久久久久久久午夜电影| 国产乱人伦免费视频| 51国产日韩欧美| 黄色女人牲交| 在线观看舔阴道视频| 嫁个100分男人电影在线观看| 日本与韩国留学比较| 国产精品一区二区免费欧美| 天美传媒精品一区二区| 麻豆久久精品国产亚洲av| 老司机午夜福利在线观看视频| 亚洲av成人av| 亚洲av五月六月丁香网| 熟女人妻精品中文字幕| 丰满的人妻完整版| 欧美日韩国产亚洲二区| 午夜精品在线福利| 欧美bdsm另类| 成人欧美大片| 男女视频在线观看网站免费| 午夜福利在线在线| 国产在线精品亚洲第一网站| 国产伦人伦偷精品视频| 人妻夜夜爽99麻豆av| 99热这里只有精品一区| 国产精品爽爽va在线观看网站| 亚洲专区国产一区二区| 久久精品国产亚洲网站| 99热只有精品国产| 少妇熟女aⅴ在线视频| 国产精品一区www在线观看 | 国产欧美日韩一区二区精品| 午夜福利欧美成人| 国产在线男女| 国产成人影院久久av| 精品人妻视频免费看| 99精品在免费线老司机午夜| 亚洲精品影视一区二区三区av| 日韩精品青青久久久久久| 国产大屁股一区二区在线视频| 欧美性猛交╳xxx乱大交人| 午夜福利在线观看免费完整高清在 | 日韩强制内射视频| 亚洲电影在线观看av| 成熟少妇高潮喷水视频| 综合色av麻豆| 成年女人看的毛片在线观看| 老司机福利观看| 久久久久久大精品| 一区二区三区激情视频| 亚洲欧美精品综合久久99| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩综合久久久久久 | 91久久精品电影网| 久久久久精品国产欧美久久久| 亚洲av一区综合| 午夜福利高清视频| 国产综合懂色| 国内毛片毛片毛片毛片毛片| 在线观看66精品国产| 亚洲成人久久爱视频| 亚洲美女视频黄频| 伦精品一区二区三区| 男人的好看免费观看在线视频| 精品人妻视频免费看| a级一级毛片免费在线观看| 男人的好看免费观看在线视频| 黄片wwwwww| 中文资源天堂在线| 简卡轻食公司| 在线免费观看的www视频| 白带黄色成豆腐渣|