• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectral Element Methods for Stochastic Differential Equations with Additive Noise

    2018-07-12 05:28:58ChaoZhangDongyaGuandDongyaTao
    Journal of Mathematical Study 2018年1期

    Chao Zhang,Dongya Gu and Dongya Tao

    School of Mathematics and Statistics,Jiangsu Normal University,Xuzhou 221116,P.R.China.

    1 Introduction

    Many problems in science and engineering can be characterized by differential equations.However,deterministic differential equations can not reveal the essence of these problems well due to the existence of accidental phenomena and small probability events. Therefore,many scholars consider stochastic differential equations to describe these problems,see[10,22,23]and etc,and the references therein.

    Since the solution of a stochastic differential equation(SDE)is a stochastic process,it is difficult to reveal visually the information the process contains.Recently,there are many works to study the numerical solution for stochastic ordinary differential equations(SDEs).Euler-Maruyama method,Milstein method and Runge-Kutta method were proposed to solve SDEs numerically,see[3,4,13,16,17,19,20,31]and the references therein.

    On the other hand,many authors investigated the numerical methods for stochastic partial differential equations(SPDEs).Allen et al.[1],Mcdonald[21],Gy?ngy[14,15]used finite difference method to study the numerical solutions of linear SPDEs driven by additive white noise.Also,Walsh[28],Du and Zhang[11]studied finite element method for linear SPDEs driven by special noises.Moreover,Caoet al.[6,7,8],Theting[26,27],Yan[29]and etc,have also made some contributions.

    As we know, spectral methods take orthogonal polynomials (such as Legendre, Chebyshev,Jacobi,Laguerre and Hermite polynomials)as the basis functions to approximate the solutions of problems in mathematical physics,and tend to have higher accuracy,see[5,12,25].Recently,some scholars are trying to study SPDEs by spectral methods.Shardlow[24]took the eigenvectors ofsubject to Dirichlet boundary condition as the basis functions and used spectral method to approximate the noise.Cao and Yin[9]studied spectral Galerkin method for stochastic wave equations driven by space-time white noise.In addition,Yin and Gan[30]proposed the Chebyshev spectral collocation method to solve a certain type of stochastic delay differential equations.

    In the present work,we will try to solve stochastic equations by using spectral element methods.We begin with taking the SDEs driven by white noise into consideration.As we know,the regularity of the solutions of the original stochastic differential equations plays an important role in priori error estimates of the numerical solutions.Unfortunately,the regularity estimates are usually very weak because of the existence of white noise.In order to overcome this difficulty,we will approximate the white noise process by piecewise constant random process as in[1],and apply the Legendre spectral element method for the corresponding stochastic differential equation.We prove the numerical solution converges to the original solution.Moreover,the accuracy of the proposed scheme is indicated by the provided computational results.The other part is that we use spectral element methods to solve stochastic differential equations driven by colored noise numerically.Analogous to the way to deal with white noise,it is nature to use an finite dimensional noise to discretize the colored noise(see[11]),which could improve the regularity of the solutions of the original stochastic differential equations.Therefore,the relevant stochastic differential equation is capable of being approximated by the Legendre spectral element scheme.Furthermore,the numerical results show the high accuracy of spectral element methods.

    This paper is organized as follows.In the next section,we study numerical solutions of stochastic differential equations driven by white noiseusing spectral element methods,and the error estimates as well as the numerical results are presented.In Section 3,we use spectral element methods to solve stochastic differential equations driven by colored noise numerically.The final section is for conclusion remarks.

    2 Numerical solutions of SDEs driven by white noise

    We consider the following stochastic problem driven by white noise

    where(x)denotes white noise,g(x)is a deterministic function andbis a constant.

    The integral form of(2.1)has the form

    wherek(x,y)=x∧y?xyis Green’s function associated with the elliptic equation

    Multiplying the equation(2.1)byφ(x)and integrating by parts onI,we derive that a weak formulation of(2.1)is

    whereφ∈C2(0,1)∩C0[0,1].

    Remark 2.1.Buckdahn and Pardoux[2]proved existence and uniqueness of solutions to(2.2)and(2.3).Meanwhile,(2.2)and(2.3)are equivalent.

    2.1 Approximation of white noise

    Partition the intervalIinto 0=x0

    where

    η1,η2,···,ηKare a sequence of random variables that are independent and identically distributed(i.i.d.)and subject to the standard normal distributionN(0,1),

    Substitutingd(y)fordW(y)in(2.2),we can get

    According to Theorem 2.2 in[1],we have the following regularity result.

    Lemma 2.1.Letbe the solution of(2.5)with g∈L2(0,1)and b≥0.Then∈H2(0,1)∩(0,1)withwhere constant C depends only on g.

    From Theorem 2.1 in[1],we have the estimation between u and.

    Lemma 2.2.Letbe the solution of(2.5),and u be the solution of(2.2).There holds

    where λ2=(x,y)dxdy<1.

    Remark 2.2.Lemma 2.2 implies that if the mesh is sufficiently fine,then(x)is a good approximation to u(x),and(x)is smoother than u(x).

    2.2 Spectral element methods for stochastic differential problem(2.1)

    Denote(I)={u|u,u′∈L2(I),u(0)=u(1)=0},we substitute(x)for W(x),then the weak form(2.3)of the problem(2.1)can be written as

    Let

    where PNbe the space of the algebraic polynomials with degree at most N.Then the corresponding Galerkin scheme of(2.7)is to findsuch that

    Define the Sobolev space:

    By using Theorem 3.39 in[25],we obtain the following result on I directly.

    Lemma 2.3.Ifthen for 1≤m≤N+1 andμ=0,1,

    where C is a positive constant independent of,h,m and N.

    Remark 2.3.In particular,for m=2,letand uNbe the solutions of(2.7)and(2.8),we have

    Therefore,by the triangle inequality,Lemma 2.2,(2.9)and Lemma 2.1,successively,we have the following error estimates.

    Theorem 2.1.Let u and uNbe the solutions of(2.1)and(2.8),respectively.Then we have

    where C is a positive constant independent of h and N.

    2.3 Numerical results

    Let

    Here,Lm(ξ)is the Legendre polynomial on(?1,1)with degree m,which satisfy that Lm(±1)=(±1)m,and fulfill the following relations.

    In actual computation,we introduce the boundary-inner decomposition basis

    We expand them into global variable by

    where mi(ξ)=xi?1φ0(ξ)+xiφN(ξ),i=1,···,K,m=1,···,N?1.For ensuring the continuity of the solution of the problem,we must propose the basis functions at interfaces.Therefore,we introduce

    where i=1,···,K?1.At the left and right endpoints,we define

    So the global basis set are

    Then,we expand the numerical solution of the problem(2.1)as follows:

    Substituting the above expression into Galerkin scheme(2.8)and taking φ=ψl(x),l=0,···,KN,which yields that

    Let us denote

    Then the linear algebraic system(2.19)becomes the following compact form

    To compute the errorEku?uNkL2,we set the state of random numbers to be 400,perform 10000 runs with different samples of noise for each computation,then for each sample calculateku?uNkL2,and finally,obtain the average value of ku?uNkL2.

    For the problem(2.1)withb=,we take the test functionu(x)=x(1?x)sin3x.In Table 1,the values of the errorEku?uNkL2with variousNandKare listed.We can see that the errors decay asNandKincrease.Comparison with the numerical results in[1],Allen,Novosel and Zhang tookh=0.0294 and the smoother test functionu(x)=x(1?x),the accuracy of errors can only be reached toO(10?4).While in Table 1,though the test functionu(x)=x(1?x)sin3xis oscillatory,the accuracy can be reached toO(10?6)withN=8.This indicates that our new approach seems to be more accurate.

    Table 1:The values of EkuN?ukL2.

    3 Numerical solutions of SDEs driven by colored noise

    Due to the existence of white noise,the solution to(2.1)has low regularity,thus it doesn’t achieve higher precision,which can be seen from Table 1.In this section,we will study numerical methods for stochastic differential equations driven by colored noise.

    3.1 Properties of colored noise

    LetW={W(t),t≥0}be a standard Wiener process and for fixedh>0,we define colored noise by(see[18])

    This is a wide-sense stationary Gaussian process with zero means and with covariances

    it thus has spectral density

    In general,we may use the following abstract formulation to simulate colored noise(see[11]):

    where the i.i.d.random sequence ηk~N(0,1),the deterministic functions{?k(x)}form an orthogonal basis of L2(I)or its subspace,and the coefficients{σk}are to be chosen to ascertain the convergence of the series in the mean square sense with respect to some suitable norms.

    Letapproachas n→∞in some appropriate sense,then an approximation of

    where

    As was shown by Du and Zhang[11],the faster the coefficients σkdecay,the smoother the noise trajectory˙Wn(x)looks.On the other hand,if the coefficients decay sufficiently slowly,then the trajectory can clearly resemble that of a white noise away from the boundary.In the end of this section,we will give the numerical results to demonstrate that different forms of coefficientsinduce different rates of convergence.

    From Lemma 3.1 in[11],a bound is stated on˙Wnin the following lemma.

    Lemma 3.1.For

    provided that the right-hand side is convergent.

    3.2 Spectral element methods for SDEs driven by colored noise

    We consider the following stochastic problem driven by colored noise

    where(x)denotes colored noise,g(x)is a deterministic function and b is a constant.

    The integral form of the problem(3.4)is

    and the weak form is

    We replace dW(y)with dWn(y)in(3.5),and obtain

    According to Theorem 3.1 in[11],the following lemma holds.

    Lemma 3.2.Forif u andare the solutions of(3.5)and(3.7),respectively,then,for some constant C>0,

    where λ2=b2k2(x,y)dxdy<1,(σ1,σ2,···,σk,···)t,

    Substituting Wn(x)for W(x)in(3.6),the weak form(3.6)can be written as

    and the corresponding Galerkin scheme of(3.4)is to findsuch that

    Following the same line of Theorem 2.1,together with the triangle inequality,Lemma 3.2 and Lemma 2.3,we then have the following error estimates.

    Theorem 3.1.Let u and uNare the solutions of(3.4)and(3.10),respectively.Then we have

    where C is a positive constant independent of u,h,m and N.Furthermore,according to Lemma 3.1,for 2≤m≤N+1,we have

    3.3 Numerical results

    In actual computation,we expand the numerical solution of the problem(3.4)as follows:

    whereare defined in(2.14)-(2.17).Substituting the above expansion in to Galerkin scheme(3.10)and takingφ=ψl(x),l=0,···,KN,we can obtain the following system of linear algebraic equations

    Let us denote

    Then we can rewrite the linear algebraic system(3.13)as

    where the matrixS,Mis defined as in(2.20).

    For numerical experiment,we letb=,and the test functionud(x)=x(1?x)sin3x.Then the exact solution to(3.4)is given byu(x)=ud(x)+us(x),where

    The state of random numbers is also set to be 400.Tables 2-3 list the values of the errorEku?uNkL2withσk=respectively.The results indicate that the errors decay rapidly asNandKincrease.At the same time,they demonstrate that if the coefficientsσkdecay sufficiently fast,the numerical solution would be smoother.

    Also,in[11],Du and Zhang tookand the smoother test functionud(x)=x(1?x),the accuracy of error estimates could only be reached toO(10?6)whenσk=While for spectral element methods,from Table 2,the accuracy of error estimates can be reached toO(10?13)withN=240,even if we take the oscillatory function asud(x)=x(1?x)sin3x.Forσk=took the samehand test function,Du and Zhang[11]get the accuracy of estimates reached toO(10?10).As we can see from Table 3,the accuracy can be reached toO(10?14)only withN=140.This demonstrates the accuracy of the proposed method.

    Table 2:The values of EkuN?ukL2with σk=

    Table 2:The values of EkuN?ukL2with σk=

    K=1 K=2 K=3 N=20 3.97e?05 2.10e?05 1.41e?05 N=60 1.33e?05 6.71e?06 4.35e?06 N=100 7.91e?06 3.73e?06 2.37e?06 N=140 5.61e?06 2.56e?06 2.62e?09 N=180 4.26e?06 1.62e?06 1.48e?10 N=220 3.39e?06 9.54e?10 2.21e?11 N=240 2.83e?06 2.02e?10 2.32e?13

    Table 3:The values of EkuN?ukL2with σk=

    Table 3:The values of EkuN?ukL2with σk=

    K=1 K=2 K=3 N=20 4.95e?08 6.13e?09 1.82e?09 N=60 1.87e?09 2.27e?10 6.71e?11 N=100 4.08e?10 4.87e?11 1.44e?11 N=140 1.50e?10 1.77e?11 1.12e?14

    4 Conclusion

    In this paper,the Legendre spectral element schemes were proposed for stochastic differential equations driven by white noise and colored noise,respectively.For stochastic differential equations driven by white noise,we improved the regularity of the solution by employing piecewise constant random process to approximate white noise process.Thus,the Legendre spectral element scheme was able to apply to approximate the corresponding stochastic differential equation.The error analysis was provided and the accuracy of the proposed scheme was showed by the numerical experiments.As for stochastic differential equations driven by colored noise,we approximated colored noise process by a finite dimensional noise and employed the Legendre spectral element scheme to the corresponding stochastic differential equation.The error estimation was presented and the numerical results demonstrated the high accuracy of the proposed schemes.

    Although the spectral element methods was only considered for second order elliptic stochastic differential equations in the present work,it is suitable to other types of stochastic differential equations.

    Acknowledgments

    This work is supported in part by NSF of China No.11571151 and No.11771299,and Priority Academic Program Development of Jiangsu Higher Education Institutions.

    [1]E.J.Allen,S.J.Novosel and Z.M.Zhang,Finite element and difference approximation of some linear stochastic partial differential equations,Stochastics Stochastics Rep.,64(1-2)(1998),117-142.

    [2]R.Buckdahn and E.Pardoux,Monotonicity methods for white noise driven quasi-linear SPDEs,Diffusion Processes and related Problems in Analysis.,Vol.?,1990.

    [3]K.Burrage and P.M.Burrage,High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations,Appl.Numer.Math.,22(1996),81-101.

    [4]K.Burrage,P.M.Burrage and T.Tian,Numerical methods for strong solutions of stochastic differential equations:An overview,Proc.R.Soc.A:Math.Phys.Eng.Sci.,460(2004),373-402.

    [5]C.Canuto,M.Y.Hussaini,A.Quarteroni and T.A.Zang,Spectral methods:evolution to complex geometries and applications to fluid dynamics,Springer-Verlag,Berlin,2007.

    [6]Y.Cao,Finite element and discontinuous Galerkin method for stochastic helmholtz equation in two-and-three dimensions,J.Comput.Math.,26(5)(2008),702-715.

    [7]Y.Cao,Z.Chen and M.Gunzburger,Error analysis of finite element approximations of the stochastic Stokes equations,Adv.Comput.Math.,33(2)(2010),215-230.

    [8]Y.Cao,H.T.Yang and L.Yan,Finite element methods for semiline arelliptic stochastic partial differential equations,Numer.Math.,106(2007),181-198.

    [9]Y.Cao and L.Yin,Spectral Galerkin method for stochastic wave equations driven by spacetime white noise,Commun.Pure Appl.Anal.,6(3)(2007),607-617.

    [10]E.Cinlae,Introduction to stochastic processes,Englewood cliffs,New Jersey:Prentice-hall,Inc.,1975.

    [11]Q.Du and T.Zhang,Numerical approximation of some linear stochastic partial differential equations driven by special additive noise,SIAM.J.Numer.Anal.,40(2002),1421-1445.

    [12]B.Y.Guo,Spectral methods and their applications,World Scientific Publishing Co.Inc.,River Edge,NJ,1998.

    [13]Q.Guo,W.Liu,X.Mao and R.Yue,The truncated milstein method for stochastic differential equations,arXiv:1704.04135v2.,2017.

    [14]I.Gy?ngy,Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise,I,Potential Anal.,9(1998),1-25.

    [15]I.Gy?ngy,Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise,II,Potential Anal.,11(1999),1-37.

    [16]D.J.Higham,X.Mao and A.M.Stuart,Strong convergence of Euler-like methods for nonlinear stochastic differential equations,SIAM J.Numer.Anal.,40(2002),1041-1063.

    [17]D.J.Higham,X.Mao and A.M.Stuart,Exponential mean square stability of numerical solutions to stochastic differential equations,London Mathematical Society J.Comput.Math.,6(2003),297-313.

    [18]P.E.Kloedn and E.Platen,Numerical solution of stochastic differential equations,Springer-Verlag Berlin Heidelberg.,1999.

    [19]X.Mao,The truncated Euler-Maruyama method for stochastic differential equations,J.Comput.Appl.Math.,290(2015),370-384.

    [20]N.Mariko and N.Syoiti,A new high-order weak approximation scheme for stochastic differential equations and the Runge-Kutta method,Finance Stoch.,13(2009),415-443.

    [21]S.Mcdonald,Finite difference approximation for linear stochastic partial differential equations with method of lines,Munich Personal RePEc Archive,2006.

    [22]B.?ksendal,Stochastic differential equations.Springer-Verlag Berlin Heidelberg,2005.

    [23]L.R.Rabiner,A tutorial on hidden Markov models and selected applications in speech secognition,Proceedings of IEEE.,77(2)(1989),257-286.

    [24]T.Shardlow,Numerical methods for stochastic parabolic PDEs.Numer.Funct.Anal.Optim.,20(1999),121-145.

    [25]J.Shen,T.Tang and L.L.Wang,Spectral methods:algorithms,analysis and applications,volume 41 of Series in Computational Mathematics.Springer-Verlag,Berlin,Heidelberg.,2011.

    [26]T.G.Theting,Solving Wick-stochastic boundary value problems using a finite element method.Stochastics Stochastics Rep.,70(3-4)(2000),241-270.

    [27]T.G.Theting,Solving parabolic Wick-stochastic boundary value problems using a finite element method,Stochastics Stochastics Rep.,75(1-2)(2003),49-77.

    [28]J.B.Walsh,Finite element methods for parabolic stochastic PDES,Poten.Anal.,23(2005),1-43.

    [29]Y.Yan,Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise,BIT.Numer.Math.,4(2004),829-847.

    [30]Z.W.Yin and S.Q.Gan,Chebyshev spectral collocation method for stochastic delay differential equations,Adv.Difference Equ.,1(2015),1-12.

    [31]R.Zeghdane,L.Abbaoui and A.Tocino.,Higher-order semi-implicit Taylor schemes for It? stochastic differential equations,J.Comput.Appl.Math.,236(2011),1009-1023.

    国产精品爽爽va在线观看网站| 最近中文字幕2019免费版| 久久久久久久久久成人| 欧美日韩综合久久久久久| 成年版毛片免费区| 熟女电影av网| 精品一区二区三区人妻视频| av在线观看视频网站免费| 欧美bdsm另类| 国产免费福利视频在线观看| 亚洲久久久久久中文字幕| 女的被弄到高潮叫床怎么办| 日韩电影二区| 国产亚洲精品av在线| 大陆偷拍与自拍| 99视频精品全部免费 在线| ponron亚洲| 神马国产精品三级电影在线观看| 国产爱豆传媒在线观看| 只有这里有精品99| 免费播放大片免费观看视频在线观看| 国产精品人妻久久久影院| 亚洲内射少妇av| 麻豆国产97在线/欧美| 国产一区亚洲一区在线观看| 亚洲av男天堂| 看十八女毛片水多多多| 国产又色又爽无遮挡免| 色尼玛亚洲综合影院| 国产在线男女| 亚州av有码| 亚洲欧洲国产日韩| 蜜臀久久99精品久久宅男| 免费av毛片视频| 一级片'在线观看视频| 国产亚洲最大av| 久久久久久国产a免费观看| av一本久久久久| 一级a做视频免费观看| 国产亚洲精品av在线| 看十八女毛片水多多多| 人体艺术视频欧美日本| 欧美三级亚洲精品| 日韩国内少妇激情av| 亚洲色图av天堂| 午夜福利网站1000一区二区三区| 自拍偷自拍亚洲精品老妇| 国产成年人精品一区二区| 久久久国产一区二区| 天美传媒精品一区二区| 好男人视频免费观看在线| 国产精品国产三级国产专区5o| 亚洲电影在线观看av| 国产成人免费观看mmmm| 精品一区二区三区视频在线| 亚洲av电影不卡..在线观看| 国产熟女欧美一区二区| 国产精品国产三级国产av玫瑰| 性插视频无遮挡在线免费观看| 熟妇人妻不卡中文字幕| 精品国产一区二区三区久久久樱花 | 亚洲最大成人中文| 亚洲怡红院男人天堂| 亚洲婷婷狠狠爱综合网| 丝袜喷水一区| 国产精品综合久久久久久久免费| or卡值多少钱| 久久草成人影院| 日韩,欧美,国产一区二区三区| 亚洲熟女精品中文字幕| 国产av不卡久久| 国产精品久久视频播放| 国产精品蜜桃在线观看| 欧美一级a爱片免费观看看| 亚洲欧美一区二区三区黑人 | 91精品一卡2卡3卡4卡| 免费高清在线观看视频在线观看| 校园人妻丝袜中文字幕| 欧美高清性xxxxhd video| 人人妻人人澡人人爽人人夜夜 | 婷婷色av中文字幕| 久久精品国产亚洲av涩爱| 亚洲成人精品中文字幕电影| 69人妻影院| 特大巨黑吊av在线直播| av福利片在线观看| 国产成人精品婷婷| 非洲黑人性xxxx精品又粗又长| 午夜免费男女啪啪视频观看| 国产午夜精品久久久久久一区二区三区| 一级二级三级毛片免费看| 国产单亲对白刺激| 九九在线视频观看精品| 男女边吃奶边做爰视频| 97精品久久久久久久久久精品| 国产又色又爽无遮挡免| 日韩伦理黄色片| 国产成人a∨麻豆精品| 老师上课跳d突然被开到最大视频| 欧美日韩一区二区视频在线观看视频在线 | av在线天堂中文字幕| 麻豆av噜噜一区二区三区| 色5月婷婷丁香| 精品人妻视频免费看| 久久99热这里只频精品6学生| 欧美极品一区二区三区四区| 亚洲欧美精品自产自拍| 淫秽高清视频在线观看| 久久久久久久大尺度免费视频| .国产精品久久| 亚洲一级一片aⅴ在线观看| 成年人午夜在线观看视频 | 亚洲精品色激情综合| 亚洲欧美中文字幕日韩二区| 波多野结衣巨乳人妻| 免费看a级黄色片| 69人妻影院| 亚洲av在线观看美女高潮| 在线天堂最新版资源| 久久人人爽人人爽人人片va| 国产黄色视频一区二区在线观看| 少妇熟女aⅴ在线视频| 亚洲国产av新网站| 精品一区二区三区视频在线| 色5月婷婷丁香| 久久精品久久久久久噜噜老黄| 亚洲婷婷狠狠爱综合网| 午夜免费观看性视频| 人人妻人人澡欧美一区二区| 国产高清有码在线观看视频| 国产日韩欧美在线精品| 国产精品无大码| 欧美成人a在线观看| 久久久久久久亚洲中文字幕| 午夜日本视频在线| 亚洲aⅴ乱码一区二区在线播放| 直男gayav资源| 午夜福利在线观看免费完整高清在| 国产国拍精品亚洲av在线观看| 亚洲精品成人av观看孕妇| 十八禁网站网址无遮挡 | 大又大粗又爽又黄少妇毛片口| 亚洲精品亚洲一区二区| 久久99热这里只频精品6学生| 伊人久久国产一区二区| 免费高清在线观看视频在线观看| videossex国产| 欧美一级a爱片免费观看看| 婷婷色麻豆天堂久久| 天美传媒精品一区二区| 亚洲在线自拍视频| 亚洲av国产av综合av卡| 日本爱情动作片www.在线观看| 国产乱人偷精品视频| 两个人的视频大全免费| 国产高清有码在线观看视频| 男女那种视频在线观看| av播播在线观看一区| 亚洲高清免费不卡视频| 欧美变态另类bdsm刘玥| 亚洲怡红院男人天堂| 精品一区二区三区视频在线| 久久久久久久久久成人| 一级毛片 在线播放| 午夜爱爱视频在线播放| 一个人看的www免费观看视频| 国产精品人妻久久久影院| 国产精品国产三级国产专区5o| 免费无遮挡裸体视频| 精品一区二区免费观看| 韩国av在线不卡| 白带黄色成豆腐渣| 亚洲精品色激情综合| 99热这里只有是精品在线观看| 国产白丝娇喘喷水9色精品| 亚洲av免费在线观看| 秋霞在线观看毛片| 九九在线视频观看精品| 欧美性猛交╳xxx乱大交人| 亚洲美女搞黄在线观看| 亚洲精品日韩在线中文字幕| 国产精品久久视频播放| 久久久久免费精品人妻一区二区| 国产 亚洲一区二区三区 | 精品一区二区三区视频在线| 白带黄色成豆腐渣| 国产精品三级大全| 精品99又大又爽又粗少妇毛片| 大话2 男鬼变身卡| 卡戴珊不雅视频在线播放| 免费观看精品视频网站| 日韩中字成人| 最近2019中文字幕mv第一页| 成人亚洲欧美一区二区av| 国产成人福利小说| 国产久久久一区二区三区| 成人毛片60女人毛片免费| 午夜亚洲福利在线播放| 欧美潮喷喷水| 久久久成人免费电影| 国产精品美女特级片免费视频播放器| 欧美最新免费一区二区三区| 丰满乱子伦码专区| 日日啪夜夜爽| 国产亚洲5aaaaa淫片| videossex国产| 久久久欧美国产精品| 亚洲美女视频黄频| 麻豆av噜噜一区二区三区| 99视频精品全部免费 在线| 我要看日韩黄色一级片| 亚洲av成人精品一区久久| 中文欧美无线码| 久久国内精品自在自线图片| 白带黄色成豆腐渣| 免费看美女性在线毛片视频| 啦啦啦韩国在线观看视频| 亚洲精品日韩av片在线观看| 久99久视频精品免费| 岛国毛片在线播放| 乱人视频在线观看| 亚洲在线自拍视频| 亚洲国产av新网站| 又爽又黄无遮挡网站| 寂寞人妻少妇视频99o| 少妇裸体淫交视频免费看高清| 十八禁国产超污无遮挡网站| 国产 一区精品| 午夜精品在线福利| 国产高清不卡午夜福利| 搡老妇女老女人老熟妇| 小蜜桃在线观看免费完整版高清| 久久久久久久久久黄片| 国产91av在线免费观看| 国产三级在线视频| 国产精品久久久久久精品电影小说 | 欧美 日韩 精品 国产| 成人毛片60女人毛片免费| 国产免费视频播放在线视频 | 国产av国产精品国产| 国产欧美日韩精品一区二区| 亚洲av.av天堂| 啦啦啦啦在线视频资源| 男的添女的下面高潮视频| 男女视频在线观看网站免费| 高清视频免费观看一区二区 | 久久精品国产亚洲av涩爱| 久久久国产一区二区| 高清毛片免费看| av在线蜜桃| 久久97久久精品| 80岁老熟妇乱子伦牲交| 亚洲18禁久久av| 中文字幕免费在线视频6| 91午夜精品亚洲一区二区三区| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品av在线| 亚洲精品色激情综合| 国产91av在线免费观看| 91av网一区二区| 久99久视频精品免费| 欧美日韩综合久久久久久| 午夜亚洲福利在线播放| 日韩成人伦理影院| 亚洲国产欧美人成| 99热这里只有是精品50| 色综合亚洲欧美另类图片| 啦啦啦啦在线视频资源| 国产亚洲5aaaaa淫片| 午夜精品在线福利| 亚洲国产高清在线一区二区三| 成人午夜高清在线视频| 中国美白少妇内射xxxbb| 国产亚洲91精品色在线| 亚洲人成网站高清观看| 免费av毛片视频| 99久国产av精品| 91午夜精品亚洲一区二区三区| 日本一二三区视频观看| 99视频精品全部免费 在线| 日日干狠狠操夜夜爽| 免费av观看视频| 一级片'在线观看视频| 又爽又黄a免费视频| 精华霜和精华液先用哪个| 午夜激情福利司机影院| 1000部很黄的大片| 2021少妇久久久久久久久久久| 久久久久久久久久久免费av| 日日摸夜夜添夜夜爱| 亚洲精华国产精华液的使用体验| 久久久久久久午夜电影| 日韩欧美一区视频在线观看 | 亚洲精华国产精华液的使用体验| 国产精品日韩av在线免费观看| videos熟女内射| 日韩伦理黄色片| 啦啦啦啦在线视频资源| 国产精品福利在线免费观看| 国产精品一二三区在线看| 国产高潮美女av| 国产精品久久久久久av不卡| 国产精品一区二区三区四区免费观看| 日本av手机在线免费观看| 亚洲av中文字字幕乱码综合| 国产亚洲午夜精品一区二区久久 | 日韩欧美 国产精品| videossex国产| 黄色一级大片看看| 久久6这里有精品| av在线亚洲专区| 国产精品三级大全| av专区在线播放| 亚洲熟妇中文字幕五十中出| 中文字幕久久专区| 国产成人91sexporn| 中文字幕亚洲精品专区| 日韩中字成人| 中文字幕免费在线视频6| 日韩欧美精品v在线| 少妇熟女欧美另类| 国产极品天堂在线| av女优亚洲男人天堂| 亚洲电影在线观看av| 午夜福利在线观看吧| 国产成人精品福利久久| 91久久精品国产一区二区成人| 免费看不卡的av| 一级a做视频免费观看| 精品久久久噜噜| 久久久久久伊人网av| 高清毛片免费看| 日韩伦理黄色片| 如何舔出高潮| 黄片wwwwww| 麻豆av噜噜一区二区三区| 亚洲精品日韩在线中文字幕| 久久精品国产亚洲网站| 自拍偷自拍亚洲精品老妇| 非洲黑人性xxxx精品又粗又长| 国产爱豆传媒在线观看| 免费黄色在线免费观看| 男女啪啪激烈高潮av片| 亚洲精品成人av观看孕妇| 久久久亚洲精品成人影院| 国产淫片久久久久久久久| 午夜福利在线观看免费完整高清在| 一本久久精品| 亚洲av日韩在线播放| 高清欧美精品videossex| 三级男女做爰猛烈吃奶摸视频| 午夜福利视频精品| 国产高清不卡午夜福利| 午夜福利在线观看吧| 国产精品一区二区在线观看99 | 特级一级黄色大片| 免费观看性生交大片5| 国产伦一二天堂av在线观看| 日日干狠狠操夜夜爽| 亚洲欧美日韩东京热| 国产黄色小视频在线观看| 欧美人与善性xxx| 99九九线精品视频在线观看视频| 欧美激情国产日韩精品一区| av在线播放精品| 日韩,欧美,国产一区二区三区| 嫩草影院新地址| 伊人久久精品亚洲午夜| 卡戴珊不雅视频在线播放| 搞女人的毛片| 久久人人爽人人爽人人片va| 久久精品国产亚洲av天美| 欧美极品一区二区三区四区| 黄色日韩在线| 亚洲欧美成人综合另类久久久| 在线免费观看不下载黄p国产| 欧美最新免费一区二区三区| 欧美一区二区亚洲| 在线观看人妻少妇| 2021天堂中文幕一二区在线观| av卡一久久| 黄色欧美视频在线观看| 美女主播在线视频| 久久久色成人| 精品酒店卫生间| 激情五月婷婷亚洲| 国产乱人偷精品视频| 亚洲乱码一区二区免费版| 国产在视频线精品| 天天一区二区日本电影三级| 午夜激情久久久久久久| 99久久人妻综合| 日本与韩国留学比较| 亚洲精品日本国产第一区| 欧美不卡视频在线免费观看| 精品一区在线观看国产| 国产精品麻豆人妻色哟哟久久 | 亚洲欧美清纯卡通| 免费看光身美女| 色综合站精品国产| 欧美一级a爱片免费观看看| 七月丁香在线播放| 99久久人妻综合| 亚洲精品成人久久久久久| 日本欧美国产在线视频| 国产精品综合久久久久久久免费| 国产乱来视频区| 黄片无遮挡物在线观看| 亚洲国产成人一精品久久久| 亚洲av.av天堂| 亚洲在线观看片| 日韩av免费高清视频| 少妇的逼水好多| 精品一区在线观看国产| 天天一区二区日本电影三级| 97热精品久久久久久| 亚洲电影在线观看av| 亚洲国产色片| 国产黄频视频在线观看| 欧美成人午夜免费资源| xxx大片免费视频| 日韩欧美一区视频在线观看 | 波野结衣二区三区在线| 国产亚洲精品久久久com| 日韩欧美 国产精品| 非洲黑人性xxxx精品又粗又长| 亚洲欧美精品专区久久| 中文字幕亚洲精品专区| 最近最新中文字幕免费大全7| 亚洲经典国产精华液单| 国产亚洲精品久久久com| 中文天堂在线官网| 超碰97精品在线观看| 少妇被粗大猛烈的视频| 真实男女啪啪啪动态图| 色综合站精品国产| 欧美人与善性xxx| 色播亚洲综合网| 国产精品久久久久久久电影| 久99久视频精品免费| 国产亚洲5aaaaa淫片| 中文字幕亚洲精品专区| 只有这里有精品99| 美女高潮的动态| 最新中文字幕久久久久| 又黄又爽又刺激的免费视频.| 国产国拍精品亚洲av在线观看| 国产又色又爽无遮挡免| 女人十人毛片免费观看3o分钟| 欧美日韩综合久久久久久| 在线 av 中文字幕| 自拍偷自拍亚洲精品老妇| 中文字幕免费在线视频6| 美女黄网站色视频| 中文字幕av在线有码专区| 日本av手机在线免费观看| 黄色日韩在线| 国产精品久久久久久精品电影小说 | 又黄又爽又刺激的免费视频.| 男女边吃奶边做爰视频| 免费av观看视频| 女人十人毛片免费观看3o分钟| 国产熟女欧美一区二区| 非洲黑人性xxxx精品又粗又长| av国产免费在线观看| videos熟女内射| 国国产精品蜜臀av免费| 人妻制服诱惑在线中文字幕| 99久久精品国产国产毛片| 亚洲激情五月婷婷啪啪| 亚洲国产成人一精品久久久| av又黄又爽大尺度在线免费看| 欧美变态另类bdsm刘玥| 一二三四中文在线观看免费高清| 三级国产精品欧美在线观看| 日本黄色片子视频| 国产成人免费观看mmmm| 久久久欧美国产精品| 欧美zozozo另类| 免费无遮挡裸体视频| 毛片一级片免费看久久久久| 白带黄色成豆腐渣| 日韩精品有码人妻一区| 女人十人毛片免费观看3o分钟| 欧美日本视频| 国产精品一区二区三区四区久久| 中文在线观看免费www的网站| 日本wwww免费看| 国产69精品久久久久777片| 亚洲精品久久久久久婷婷小说| 麻豆成人午夜福利视频| 午夜福利在线观看免费完整高清在| 六月丁香七月| 白带黄色成豆腐渣| av在线播放精品| 国产成人freesex在线| 日本av手机在线免费观看| 亚洲在久久综合| 99九九线精品视频在线观看视频| 91精品一卡2卡3卡4卡| 乱人视频在线观看| 亚洲国产日韩欧美精品在线观看| 久久久精品欧美日韩精品| 赤兔流量卡办理| 激情五月婷婷亚洲| 久久久欧美国产精品| 舔av片在线| 国产伦一二天堂av在线观看| 青青草视频在线视频观看| 中文资源天堂在线| 国产一区二区亚洲精品在线观看| 国产探花在线观看一区二区| 久久久久久久午夜电影| 小蜜桃在线观看免费完整版高清| 国产av不卡久久| 免费看不卡的av| 亚洲高清免费不卡视频| 男人舔奶头视频| 亚洲久久久久久中文字幕| 国产黄a三级三级三级人| 国产成人freesex在线| 午夜精品在线福利| 日本午夜av视频| 日韩视频在线欧美| 两个人视频免费观看高清| 身体一侧抽搐| 久久久久久久大尺度免费视频| 国产亚洲91精品色在线| 久久久久国产网址| 国产片特级美女逼逼视频| 五月伊人婷婷丁香| 一级毛片aaaaaa免费看小| 欧美激情在线99| 成人毛片a级毛片在线播放| 国产精品伦人一区二区| 亚洲自偷自拍三级| 国产精品不卡视频一区二区| 久久久久九九精品影院| av播播在线观看一区| 十八禁国产超污无遮挡网站| 观看美女的网站| 身体一侧抽搐| 成人亚洲精品av一区二区| 亚洲内射少妇av| 欧美不卡视频在线免费观看| 久久精品夜色国产| 亚洲av男天堂| 久久久久久久久久成人| 五月天丁香电影| 久久精品国产自在天天线| 国产欧美日韩精品一区二区| 大片免费播放器 马上看| 久久精品人妻少妇| 极品少妇高潮喷水抽搐| 免费看美女性在线毛片视频| 日本黄大片高清| 成人亚洲精品av一区二区| 一级a做视频免费观看| 亚洲经典国产精华液单| 久久精品国产亚洲网站| 精华霜和精华液先用哪个| 别揉我奶头 嗯啊视频| 国产男人的电影天堂91| 欧美不卡视频在线免费观看| 亚洲成人久久爱视频| 国产av在哪里看| 亚洲国产成人一精品久久久| 亚洲国产欧美在线一区| 色综合色国产| 麻豆乱淫一区二区| 美女黄网站色视频| 成人高潮视频无遮挡免费网站| 乱系列少妇在线播放| 亚洲欧美成人综合另类久久久| 国产成人午夜福利电影在线观看| 亚洲综合精品二区| 精品人妻视频免费看| 成人一区二区视频在线观看| 久久午夜福利片| 黄片无遮挡物在线观看| 青春草视频在线免费观看| 天天躁日日操中文字幕| 国产三级在线视频| 欧美97在线视频| 嫩草影院入口| 亚洲乱码一区二区免费版| 免费观看精品视频网站| 美女内射精品一级片tv| 国产黄频视频在线观看| 日韩电影二区| 国模一区二区三区四区视频| 亚洲国产精品sss在线观看| av专区在线播放| 精品久久久精品久久久| 欧美日韩在线观看h| 可以在线观看毛片的网站| 精品久久久久久久末码| 国产精品无大码| 久久这里有精品视频免费| 性色avwww在线观看| 国产精品无大码| 日韩欧美一区视频在线观看 | 欧美日韩综合久久久久久| 亚洲精品中文字幕在线视频 | 99热这里只有是精品50| 丝袜美腿在线中文| 久久久午夜欧美精品| 又黄又爽又刺激的免费视频.| 欧美激情在线99| 国产av在哪里看| 成人一区二区视频在线观看| 丰满少妇做爰视频| 精品久久久久久久久亚洲| 亚洲欧美成人精品一区二区| 亚洲av免费高清在线观看|