• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Subdivision of Uniform ωB-Spline Curves and Two Proofs of Its Ck?2-Continuity

    2018-07-11 08:01:24JingTangMeiFangandGuozhaoWang
    關鍵詞:賦值權重公式

    Jing Tang, Mei-e Fang, * and Guozhao Wang

    1 Introduction

    Polynomial B-splines and NURBS are important modeling tools in CAD/CAM. But polynomial B-splines are not able to exactly represent often-used conics (except for parabola), trigonometric functions and hyperbolic functions etc. NURBS can represent conics, but its ration form results in complicated computations about differential and integral. Then all kinds of B-like splines are proposed [Fang and Wang (2008); Zhang(1996); Vasov and Sattayatham (1999); Mainar and Pe?na (2002)]. In paper [Wang, Chen and Zhou (2004)], we further unified these B-like splines into ωB-splines, which are constructed over. ω can be non-negative real number and pure imaginary number. If taking the value of ω as a constant 0,1 or i, we will get usual polynomial B-splines, trigonometric polynomial B-splines and hyperbolic polynomial B-splines respectively. ωB-splines inherit most of optimal properties from polynomial B-splines, including the subdivision property. Due to optimal properties of these B-like splines, many applications are studied in recent years [Mannia, Pelosi and Speleers (2012); Xu, Sun, Xu et al. (2017)]. In this paper, we perfect the subdivision method and theory of ωB-splines in order to apply them better in the future.

    Subdivision is a standard technique of recursively generating smooth curves/surfaces from an initial polygon/mesh. Please see paper [Chaikin (1974); Doo and Sabin (1978);Catmull and Clark (1978); Dyn (1992); Stam (2001); Jena, Shunmugaraj and Das(2002);Jena, Shunmugaraj and Das (2003); Andersson, Lars-Erik, Stewart et al. (2010); Conti and Romani (2011); Conti, Cotronei and Sauer (2017)] for more details. This kind of modeling method is popularly applied in geometric modelling and 3D animation because of its numerical stability, simple implement and suitability for arbitrary topology. But most of subdivision curves and surfaces lack exactly mathematical representations, which are the fundamental of all kinds of differential/integral computations. So subdivision methods which have spline backgrounds are very interesting. Subdivision models with spline backgrounds include all merits mentioned above. For example, Doo-Sabin method[Doo and Sabin (1978)], Catmull-Clark method [Catmull and Clark (1978)], and the subdivision method proposed in paper [Stam (2001)] respectively have their spline backgrounds of B-splines of degree 2, cubic B-splines, polynomial B-splines of arbitrary order. These subdivision methods are all stationary, i.e, their subdivision rules persist unchanged in each level of subdivision. While stationary subdivision can not generate ωB-spline curves with frequency parameters.

    In this paper, we introduce a parameter relative to the frequency parameter to build a nonstationary subdivision method with the background of ωB-splines. Then this kind of modeling method has the merits of both subdivision and ωB-splines. Concretely, we consider the subdivision of uniform ωB-splines with uniform knot intervals and ω taking a certain constant. At first, we derive the definition of uniform ωB-spline bases and curves according to the corresponding definitions in paper [Wang, Chen and Zhou (2004)].

    Definition 1.1(uniform ωB-spline bases) LetTbe a given uniform knot sequencebe the length of uniform knot intervals,krefers to the order of splines .ωbe a given frequency parameter, where ω can take value as a non-negative real numberin this case) or a pure imaginary number whose imaginary part is positive.constructed by the following formula are called uniform ωB-spline bases in the span of.We first define uniform ωB-spline basic functions of orderk=2 as follows.

    In formula (1.1), when ω = 0, we compute it by the L’Hospital rule about ω.

    Definition 1.2(uniform ωB-spline curves) Letbe uniform ωB-spline bases of orderkcorresponding to the partitionthe parameter axis.

    Thencalled an uniform ωB-spline curve of orderkcorresponding to the knot vectorT.are control points.ωB-spline curves can reproduce conics, trigonometric and hyperbolic curves. They also have many useful properties for geometry modelling, including those inherited from common B-spline curves and some special merits. Please refer to paper [Fang and Wang(2008)] for details. But we can see that the basic functions need to be recursively computed by integration from their definition, which results in low efficiency of evaluation. In this paper, we devote to build a high-efficiency subdivision method of generating ωB-spline curves.

    The rest of this paper is organized as follows. In Section 2, we derive the relation formula of control points between two representations of the same uniform ωB-spline curve of orderkrespectively with the original knot intervals and their bisections. Then the explicit subdivision rule is constructed based on this. By this kind of subdivision rule of orderk, a sequence of control polygons generates from the original control polygon of an uniform ωB-spline curve of orderk.We directly prove that the limit of this sequence converges to the-continuous uniform ωB-spline curve in Section 3. But this kind of proof method is hard to be applied in the corresponding proof of the continuity for the case of surface subdivision. So in Section 4, we reconsider the proof from the aspect of subdivision masks and provide a more general proof of the continuity of subdivision which will be easier to be extended to the case of surface subdivision. Because our proposed surface scheme is non-stationary, we use the theories of asymptotic equivalence between non-stationary subdivision and the corresponding stationary subdivision with the rule in limit status to complete the proof. The approximation order of the proposed subdivision scheme is also discussed. Section 5 makes a conclusion.

    2 The subdivision method of uniform ωB-spline curves

    According to Definition 1.1 and Definition 1.2, we find that an uniform ωB-spline curve can also be equivalently represented by another uniform ωB-spline curve with knot intervals after bisection.

    So the conclusion holds fork+ 1.

    Based on this, an uniform ωB-spline curve can be generated by continuously using formula (4) from its initial control polygon. Letthe following definition of generating uniform ωB-spline curves by subdivision (ωBS for short).

    Definition 2.1(ωBS scheme) Letbe the initial control polygon andbe the tension parameter. The subdivision rule of ωBS curves of order

    is defined as:

    式中:ak>0,取am=1.根據(jù)rkm的定義,當ak的賦值準確時,設評價指標xjk的權重系數(shù)wk,各指標的權重可以由以下公式確定:

    Using the subdivision rule,the iterative process of ωBS is described as below.

    Table 1: The time report of generating ωBS curves and ωB-spline curves from the same control polygon

    Figure 1: The subdivision rules (a)(b)(c) and an example (d)(e)(f).

    In Fig. 1 (a),is computed by formula (5) from the initial control polylineis computed by formula (5) fromSimilarlycan be computed by formula (5) fromIn Fig. 1(c),the black poly lines are respectively the results after one level and two levels of subdivision from the initial control poly line whenk=5,u=3. The red curve is the results after six levels of subdivision which can be seen as the approximation of the limit curve.The green and purple curves respectively correspond to the cases ofk=5,u=1 andk=5,u=0.5. In Fig. 1(d), the profile of an industrial model which consists of three pieces of circular arcs (red), some line segments and some cushioning curves. In Fig. 1(e), the control polygon of the profile is computed according to the ωB-spline representation proposed in paper [Fang and Wang (2008)]. In Fig. 1(f), the profile is reproduced by subdividing the control polygon according to the proposed method in this paper,

    Comparing Definition 2.2 with Definition 1.1 and 1.2, we can see that ωBS curves only include linear computations, which is much simpler and more efficient than those recursive integral computations included in the definition of uniform ωB-spline bases.This is very important for real-time rendering and hierarchically displaying curves and surfaces. Taking the control polygon illustrated in Fig. 1(e) with 33 control points as an example, Tab. 1 shows the comparison of the efficiency of both methods to render the curve jointed with the same number (about 300) of points. Apparently, the efficiency of rendering ωBS curves is much faster than rendering ωB-spline curves. And with the increase of order, the difference between them becomes bigger and bigger.

    From Theorem 2.1, we know ωBS curve is derived by the knot interpolation method of uniform ωB-spline curves. The sequence of control polygons formed by continuous bisections of knot intervals will converge to smooth ωB-spline curves, which are-continuous. That is to say, ωB-spline curve is the limit curve of ωBS curve with the same control polygon when the subdivision level tends to infinity. In the next two sections, we prove that ωBS curves are alsocontinuous using two proving methods.

    3 One proof of C k?2 -continuity of ωBS curves

    Theorem 2.1 shows how the new control polygon can be obtained from the old control polygon after a round of subdivision. We have the following theorem.

    Proof. Based on Definition 2.1 and Theorem 3.1, we can conclude that ωBS curves of orderk(k≥3) converge to uniform ωB-spline curves of order k whose-continuity are obvious according to the definition of ωB-spline basis functions and paper [Wang,Chen and Zhou (2004)]. So the conclusion holds.

    4 Another proof of -continuity of ωBS curves

    The proof in Section 3 is simple. But this proof method is difficult to be extended to the case of surface subdivision, especially non-tensor product surface subdivision. So we provide another proof method for-continuity of ωBS curves based on those theories upon subdivision masks, which will be advantageous to be applied in the proof of our further surface subdivision.

    From the steps of ωBS described in Definition 2.2, we can see that the tension parameter is changing with the subdivision level, so ωBS is a non-stationary subdivision scheme.For convenience of proving its continuity, we introduce the corresponding notions of the mask of ωBS at first.

    It can be easily checked that the support of the maskis indeed the same as the one of the classical B-spline of orderk[Stam (2001)].

    It’s difficult to directly prove the continuity of a kind of non-stationary subdivision scheme. So we prove-continuity of ωBS curves according to the theorems including asymptotic equivalence proposed in paper [Dyn and Levin (1995)]. Here we cite the notion of asymptotic equivalence between two schemes defined in paper [Dyn and Levin (1995)].

    This is the mask of the Chaikin’s corner cutting algorithm and it generateslimit curve(see Chaikin [Chaikin (1974); Dyn and Levin (1995)]). Now, to estimate the-smoothness of the proposed scheme of order 3, it is necessary to estimate the difference betweenand. From (9), we see that

    Following the D’Alembert criteria for convergence of positive series and in view of (13),the claim (14) is proved.

    We are now ready to prove the smoothness of the proposed scheme of orderk>3. In the following analysis, we will see that it is convenient to represent a subdivision rule with the maskin terms of the symbol

    wherehe symbol of the ωBS scheme of order 3 with the mask(10).By Theorem 4.1, the scheme associated to the Laurent polynomialHence, applying Lemma 4.2 inductively, we can conclude that the proposed scheme of order k is.

    The approximation order of the proposed non-stationary subdivision is also important. In the following, we discuss this problem. Theorem 4.3 shows that it is of approximation orderk-1, wherekrefers to the order of the corresponding ωB-splines.

    Theorem 4.3 For the ωBS schemef orderk≥ 3, the approximation order of this non-stationary subdivision isk-1.

    Proof.Based on Lemma 4.1, the proposed non-stationary subdivision scheme is asymptotically equivalent to a stationary schemeconverges to ωB-splines of orderk, with a constant frequency sequence, which can reproduce polynomials of orderk-1.According to the results concluded in paper [Conti, Dyn, Manni et al. (2015); Conti,Romani and Yoon (2016)], we know a non-stationary subdivision implies approximation order k-1 (k-1 refers to the degree of ωB-splines) asymptotic similarity to stationary scheme is assumed. So based on the above, the conclusion of Theorem 4.3 is proved.

    5 Conclusion

    In this paper, we proposed the subdivision scheme for uniform ωB-spline curves. Then a uniform ωB-spline curve has both perfect mathematical representation and efficient generation method. We also provide two proofs of-continuity ωBS curves ofkorder in two different aspects and discuss its approximation order. The first method is direct and simple. The second kind of proof is based on subdivision masks and some corresponding theories, which will be advantageous to prove the corresponding conclusions of surface subdivision. In the future, we will extend the subdivision scheme to the case of surfaces with tensor product form and further arbitrary topology as well. In addition, we will apply ωB-splines and especially the subdivision scheme in the all kinds of applications relative to finite element method (FEM) and isogeometric analysis (IGA)to improve the accuracy during modeling and analysis [Wang, Shen, Zou et al. (2018);

    Guo and Nairn (2017); Xu, Sun, Xu et al. (2017)].

    Acknowledgement:The work described in this article is partially supported by the National Natural Science Foundation of China (61772164, 61761136010) and the Natural Science Foundation of Zhejiang Province (LY17F020025).

    Andersson, L. E.; Stewart, N. F.(2010): Introduction to the mathematics of subdivision surfaces.Society for Industrial and Applied Mathematics, Philadelphia.

    Catmull, E.; Clark, J.(1978): Recursively generated B-spline surfaces on arbitrary topological meshes.Computer Aided Design, vol. 10, no. 6, pp. 350-355.

    Chaikin, G. M.(1974): An algorithm for high speed curve generation.Computer Graphics and Image Processing, vol. 3, no. 4, pp. 346-349.

    Conti, C.; Dyn, N.; Manni, C.; Mazure, M. L.(2015): Convergence of univariate nonstationary subdivision schemes via asymptotic similarity.Computer Aided Geometric Design,vol. 37, no. 6, pp. 1-8.

    Conti, C.; Romani, L.(2011): Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction.Journal of Computational and Applied Mathematics,vol. 236, no. 4, pp. 543-556.

    Conti, C.; Romani, L.; Yoon, J.(2016): Approximation order and approximate sum rules in subdivision.Journal of Approximation Theory, vol. 207, no. 2, pp. 380-401.

    Conti, C.; Cotronei, M.; Sauer, T.(2017): Convergence of level-dependent hermite subdivision schemes.Applied Numerical Mathematics, vol. 116, no. 1, pp. 119-128.

    Doo, D.; Sabin, M.(1978): Behaviour of recursive subdivision surfaces near extraordinary points.Computer Aided Design, vol. 10, no. 6, pp. 356-360.

    Dyn, N.(1992): Subdivision schemes in computer-aided geometric design. In:Advances in numerical analysis: Volume II: Wavelets, subdivision algorithms and radial basis functions.Clarendon Press, Oxford.

    Dyn, N.; Levin, D.(1995): Analysis of asymptotically equivalent binary subdivision schemes.Journal of Mathematicl Analysis and Application, vol. 193, no. 2, pp. 594-621.

    Fang, M.; Wang, G.(2008):ωB-splines.Science in China Series F: Information Sciences, vol. 51, no. 8, pp. 985-1102.

    Guo, Y.; Nairn, J.(2017): RETRACTED: Simulation of Dynamic 3D crack propagation within the material point method.Computer Modeling in Engineering & Sciences,vol.113, no. 4, pp. 389-410.

    Jena, M. K.; Shunmugaraj, P.; Das, P. C.(2003): A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes.Computer Aided Geometric Design, vol. 20, no. 2, pp. 61-77.

    Jena, M. K.; Shunmugaraj, P.; Das, P. C.(2002): A subdivision algorithm for trigonometric spline curves.Computer Aided Geometric Design, vol. 19, no. 1, pp. 71-88.

    Mainar, E.; Pe?na, J. M.(2002): A basis of C-Bezier splines with optimal properties.Computer Aided Geometric Design, vol. 19, no. 4, pp. 161-175.

    Manni, C.; Pelosi, F.; Speleers, H.(2012): Local hierarchical h-refinements in IgA based on generalized B-Splines.International Conference on Mathematical Methods for Curves & Surfaces, vol. 8177, no. 4, pp. 341-363.

    Stam, J.(2001): On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree.Computer Aided Geometric Design, vol. 18, no. 5, pp. 383-396.

    Vasov, B. K.; Sattayatham, P.(1996): GB-splines of arbitrary order.Journal of Computational and Applied Mathematics, vol. 1, no. 1, pp. 155-173.

    Wang, C.; Shen, Q.; Zou, Y.; Li, T.; Feng X.(2018): Stiffness degradation characteristics cestructive testing and finite-element analysis of prestressed concrete T-beam.Computer Modeling in Engineering & Sciences, vol. 114, no. 1, pp. 75-93.

    Wang, G.; Chen, Q.; Zhou, M.(2004): NUAT B-spline curves.Computer Aided Geometric Design, vol. 21, no. 2, pp. 193-205.

    Xu, G.; Sun, N.; Xu, J.; Hui, K.; Wang, G.(2017): A unified approach to construct generalized B-Splines for isogeometric applications.Journal of Systems Science &Complexity, vol. 30, no. 4, pp. 983-998.

    Zhang, J.(1996): C-curves: an extension of cubic curves.Computer Aided Geometric Design, vol. 13, no. 3, pp. 199-217.

    猜你喜歡
    賦值權重公式
    關于1 1/2 … 1/n的一類初等對稱函數(shù)的2-adic賦值
    L-代數(shù)上的賦值
    排列數(shù)與排列數(shù)公式
    組合數(shù)與組合數(shù)公式
    等差數(shù)列前2n-1及2n項和公式與應用
    權重常思“浮名輕”
    當代陜西(2020年17期)2020-10-28 08:18:18
    為黨督政勤履職 代民行權重擔當
    人大建設(2018年5期)2018-08-16 07:09:00
    強賦值幺半群上的加權Mealy機與加權Moore機的關系*
    例說:二倍角公式的巧用
    基于公約式權重的截短線性分組碼盲識別方法
    電信科學(2017年6期)2017-07-01 15:44:57
    一边亲一边摸免费视频| 水蜜桃什么品种好| 自拍欧美九色日韩亚洲蝌蚪91 | 免费av不卡在线播放| 男女无遮挡免费网站观看| 亚洲精品国产av蜜桃| 极品教师在线视频| a级毛色黄片| 国产老妇伦熟女老妇高清| 好男人视频免费观看在线| 欧美性感艳星| 成人特级av手机在线观看| 国产成人免费观看mmmm| 日韩伦理黄色片| 日韩中字成人| 男人舔奶头视频| 在线看a的网站| 99视频精品全部免费 在线| 久久久久久久久久久免费av| 欧美高清成人免费视频www| 免费人成在线观看视频色| 亚洲国产毛片av蜜桃av| 极品少妇高潮喷水抽搐| 欧美成人精品欧美一级黄| 99热这里只有是精品在线观看| 国产免费视频播放在线视频| 亚洲欧洲精品一区二区精品久久久 | 欧美精品高潮呻吟av久久| 国产一级毛片在线| 少妇人妻精品综合一区二区| av女优亚洲男人天堂| 亚洲国产最新在线播放| 最近手机中文字幕大全| 毛片一级片免费看久久久久| 日韩成人av中文字幕在线观看| 亚洲国产欧美在线一区| 久久久久久久久大av| 精品久久久久久电影网| 人人妻人人澡人人看| 亚洲av男天堂| 日日撸夜夜添| 在线观看三级黄色| 激情五月婷婷亚洲| 国产亚洲午夜精品一区二区久久| 自拍偷自拍亚洲精品老妇| 中文天堂在线官网| 我的老师免费观看完整版| 亚洲第一区二区三区不卡| 欧美三级亚洲精品| 日韩人妻高清精品专区| 午夜日本视频在线| 91aial.com中文字幕在线观看| 日韩,欧美,国产一区二区三区| 欧美老熟妇乱子伦牲交| 日韩欧美一区视频在线观看 | 日本与韩国留学比较| 蜜臀久久99精品久久宅男| 深夜a级毛片| 免费播放大片免费观看视频在线观看| 国产亚洲5aaaaa淫片| 免费高清在线观看视频在线观看| 黄色一级大片看看| 精品少妇黑人巨大在线播放| 久久久国产精品麻豆| 亚洲成色77777| 国产有黄有色有爽视频| 午夜福利网站1000一区二区三区| 国产成人精品久久久久久| 国产女主播在线喷水免费视频网站| 免费av不卡在线播放| 肉色欧美久久久久久久蜜桃| 交换朋友夫妻互换小说| 久久99精品国语久久久| 日韩不卡一区二区三区视频在线| 国产午夜精品久久久久久一区二区三区| 免费观看在线日韩| 欧美精品人与动牲交sv欧美| 日韩欧美 国产精品| 亚洲真实伦在线观看| 国产 一区精品| 国产欧美日韩综合在线一区二区 | 欧美少妇被猛烈插入视频| 亚洲情色 制服丝袜| 一区二区三区四区激情视频| av卡一久久| 国产精品久久久久成人av| 午夜福利影视在线免费观看| 亚洲欧美中文字幕日韩二区| 人妻系列 视频| 中文字幕亚洲精品专区| 黑人巨大精品欧美一区二区蜜桃 | 精华霜和精华液先用哪个| 亚洲精品日韩在线中文字幕| 街头女战士在线观看网站| 丰满饥渴人妻一区二区三| 热re99久久国产66热| 国产成人a∨麻豆精品| 大片免费播放器 马上看| 欧美日韩国产mv在线观看视频| 一二三四中文在线观看免费高清| 有码 亚洲区| av在线播放精品| 六月丁香七月| av不卡在线播放| 国产美女午夜福利| 纯流量卡能插随身wifi吗| 乱码一卡2卡4卡精品| 久久这里有精品视频免费| 亚洲在久久综合| 老司机影院毛片| 亚洲精品aⅴ在线观看| 91午夜精品亚洲一区二区三区| 美女大奶头黄色视频| 亚洲天堂av无毛| 国产一区二区在线观看av| 亚洲精品色激情综合| 久久久久人妻精品一区果冻| 男男h啪啪无遮挡| 下体分泌物呈黄色| 成人二区视频| 久久精品国产亚洲av天美| 免费黄频网站在线观看国产| 午夜免费观看性视频| 亚洲中文av在线| 欧美日韩一区二区视频在线观看视频在线| 国产欧美亚洲国产| 国产免费福利视频在线观看| 国产亚洲5aaaaa淫片| 日韩不卡一区二区三区视频在线| 免费观看a级毛片全部| 亚洲一级一片aⅴ在线观看| 中国国产av一级| av国产久精品久网站免费入址| 亚洲婷婷狠狠爱综合网| 国产精品久久久久成人av| 欧美xxxx性猛交bbbb| 在线亚洲精品国产二区图片欧美 | 久久精品熟女亚洲av麻豆精品| 久久这里有精品视频免费| 久久久久国产网址| 欧美精品人与动牲交sv欧美| av福利片在线| 国产欧美另类精品又又久久亚洲欧美| 久久久亚洲精品成人影院| 国产极品粉嫩免费观看在线 | 不卡视频在线观看欧美| 一级毛片黄色毛片免费观看视频| 久久女婷五月综合色啪小说| 久久免费观看电影| 亚洲美女视频黄频| 国产男女内射视频| 欧美日韩国产mv在线观看视频| 老司机亚洲免费影院| 亚洲精品中文字幕在线视频 | 18+在线观看网站| 人妻制服诱惑在线中文字幕| 永久网站在线| 久久国产乱子免费精品| 亚洲欧洲日产国产| 久久 成人 亚洲| 久久精品亚洲熟妇少妇任你| 99热全是精品| 午夜福利视频在线观看免费| 热99久久久久精品小说推荐| 香蕉丝袜av| 1024视频免费在线观看| 老司机午夜十八禁免费视频| 成人影院久久| 一本综合久久免费| 少妇粗大呻吟视频| 国产又色又爽无遮挡免| 亚洲精品国产精品久久久不卡| 免费女性裸体啪啪无遮挡网站| 亚洲精华国产精华精| 最黄视频免费看| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美日韩高清在线视频 | 啦啦啦在线免费观看视频4| 水蜜桃什么品种好| www.自偷自拍.com| 亚洲男人天堂网一区| 久久精品成人免费网站| 黑人猛操日本美女一级片| 免费在线观看视频国产中文字幕亚洲 | 动漫黄色视频在线观看| 国产真人三级小视频在线观看| 国产精品二区激情视频| 免费观看人在逋| 久久免费观看电影| 少妇的丰满在线观看| netflix在线观看网站| 在线观看www视频免费| 国产精品久久久av美女十八| 美女高潮到喷水免费观看| 亚洲五月婷婷丁香| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区四区激情视频| 国产精品一区二区精品视频观看| 欧美人与性动交α欧美软件| 婷婷成人精品国产| 真人做人爱边吃奶动态| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜免费观看性视频| 欧美午夜高清在线| 免费观看人在逋| 久久久久国内视频| av又黄又爽大尺度在线免费看| 久久青草综合色| 久久久久网色| 精品人妻一区二区三区麻豆| 深夜精品福利| 亚洲精品中文字幕一二三四区 | 日韩大码丰满熟妇| 可以免费在线观看a视频的电影网站| 91大片在线观看| 亚洲专区字幕在线| 亚洲精品国产区一区二| 美女午夜性视频免费| 女人久久www免费人成看片| 欧美激情高清一区二区三区| 性少妇av在线| 精品少妇久久久久久888优播| 亚洲欧美清纯卡通| 日韩欧美国产一区二区入口| 久久天堂一区二区三区四区| 满18在线观看网站| 久久久国产成人免费| 欧美另类一区| 五月天丁香电影| 国产亚洲精品第一综合不卡| 久久久久精品人妻al黑| 久久精品成人免费网站| 色综合欧美亚洲国产小说| 精品少妇内射三级| 动漫黄色视频在线观看| 成年动漫av网址| 国产精品一区二区在线观看99| 欧美亚洲 丝袜 人妻 在线| 成人三级做爰电影| 精品久久久精品久久久| 12—13女人毛片做爰片一| 国产不卡av网站在线观看| 天天操日日干夜夜撸| 爱豆传媒免费全集在线观看| 99九九在线精品视频| 亚洲精品在线美女| 国产精品久久久人人做人人爽| 中文字幕人妻丝袜制服| 少妇人妻久久综合中文| 久久久久视频综合| 99久久综合免费| 男人舔女人的私密视频| 1024香蕉在线观看| 国产精品 国内视频| 亚洲精品乱久久久久久| 91精品国产国语对白视频| 亚洲熟女毛片儿| kizo精华| 欧美精品人与动牲交sv欧美| 自拍欧美九色日韩亚洲蝌蚪91| 久久青草综合色| 久久久久久免费高清国产稀缺| 青春草视频在线免费观看| 日韩视频一区二区在线观看| 69精品国产乱码久久久| 男女高潮啪啪啪动态图| 国产精品熟女久久久久浪| 极品少妇高潮喷水抽搐| 国内毛片毛片毛片毛片毛片| 久久这里只有精品19| 天天躁日日躁夜夜躁夜夜| 欧美+亚洲+日韩+国产| 19禁男女啪啪无遮挡网站| 99热国产这里只有精品6| 黄色怎么调成土黄色| 久久久精品区二区三区| 两个人免费观看高清视频| 亚洲精品日韩在线中文字幕| 大码成人一级视频| 午夜福利影视在线免费观看| av线在线观看网站| 成年人免费黄色播放视频| av福利片在线| 亚洲国产欧美网| 无遮挡黄片免费观看| 成在线人永久免费视频| 在线av久久热| 美女国产高潮福利片在线看| 天天影视国产精品| 亚洲欧美精品自产自拍| 首页视频小说图片口味搜索| www日本在线高清视频| 国产淫语在线视频| 大型av网站在线播放| 日韩中文字幕视频在线看片| 亚洲自偷自拍图片 自拍| 无遮挡黄片免费观看| 男女之事视频高清在线观看| 成年女人毛片免费观看观看9 | 丰满饥渴人妻一区二区三| 深夜精品福利| 18禁黄网站禁片午夜丰满| 精品卡一卡二卡四卡免费| 成人国产一区最新在线观看| 亚洲精品美女久久av网站| 久久久国产成人免费| 免费一级毛片在线播放高清视频 | 永久免费av网站大全| 久久久久久亚洲精品国产蜜桃av| 正在播放国产对白刺激| 精品国产超薄肉色丝袜足j| 亚洲av美国av| 欧美精品人与动牲交sv欧美| 精品一区在线观看国产| 超碰97精品在线观看| 国产成人系列免费观看| 满18在线观看网站| 99久久精品国产亚洲精品| 超碰成人久久| 悠悠久久av| 丁香六月欧美| 岛国毛片在线播放| 日本a在线网址| 成人18禁高潮啪啪吃奶动态图| 熟女少妇亚洲综合色aaa.| 国产成人精品无人区| 热re99久久精品国产66热6| 在线av久久热| 黄色毛片三级朝国网站| 侵犯人妻中文字幕一二三四区| 精品人妻在线不人妻| 91国产中文字幕| 99国产精品99久久久久| videos熟女内射| 国产成人精品无人区| 久久热在线av| 狠狠精品人妻久久久久久综合| av有码第一页| 人人妻人人澡人人看| 高清欧美精品videossex| 巨乳人妻的诱惑在线观看| 国产精品久久久久久人妻精品电影 | 蜜桃在线观看..| 欧美亚洲 丝袜 人妻 在线| 中文字幕av电影在线播放| 91字幕亚洲| 国产精品一区二区在线观看99| 免费不卡黄色视频| av免费在线观看网站| 亚洲国产日韩一区二区| 少妇人妻久久综合中文| 一本综合久久免费| 国产精品久久久人人做人人爽| 桃红色精品国产亚洲av| 亚洲中文日韩欧美视频| 啦啦啦免费观看视频1| 大香蕉久久成人网| 国产亚洲午夜精品一区二区久久| 国产精品1区2区在线观看. | 精品福利永久在线观看| 大码成人一级视频| 丰满饥渴人妻一区二区三| 国产亚洲欧美在线一区二区| 十分钟在线观看高清视频www| 欧美日韩精品网址| 一本一本久久a久久精品综合妖精| bbb黄色大片| 久久久久国产精品人妻一区二区| 日本欧美视频一区| 亚洲国产精品一区二区三区在线| 久久这里只有精品19| 国产精品一区二区精品视频观看| 国产精品国产av在线观看| 日本av免费视频播放| 啦啦啦中文免费视频观看日本| 亚洲精品中文字幕在线视频| 亚洲九九香蕉| svipshipincom国产片| 在线亚洲精品国产二区图片欧美| 久久女婷五月综合色啪小说| 91麻豆av在线| 久久久久久免费高清国产稀缺| 亚洲精品粉嫩美女一区| 亚洲精品乱久久久久久| 九色亚洲精品在线播放| 成人免费观看视频高清| 国产亚洲欧美精品永久| 777久久人妻少妇嫩草av网站| 国产精品久久久人人做人人爽| 国产精品偷伦视频观看了| 久久 成人 亚洲| 午夜福利乱码中文字幕| tocl精华| 无限看片的www在线观看| 18禁国产床啪视频网站| 国产一区二区在线观看av| 老司机在亚洲福利影院| 国产在线视频一区二区| 最新在线观看一区二区三区| 亚洲成人免费电影在线观看| 视频区欧美日本亚洲| 久久久久视频综合| 秋霞在线观看毛片| 亚洲国产日韩一区二区| 高清av免费在线| 精品亚洲成国产av| 日韩大码丰满熟妇| 亚洲av成人一区二区三| kizo精华| 在线av久久热| 999久久久精品免费观看国产| 午夜福利在线免费观看网站| 国产精品 欧美亚洲| 亚洲全国av大片| 亚洲一区二区三区欧美精品| 丝袜美足系列| 国产免费av片在线观看野外av| 久久精品亚洲av国产电影网| 精品卡一卡二卡四卡免费| 久久毛片免费看一区二区三区| 亚洲色图 男人天堂 中文字幕| 王馨瑶露胸无遮挡在线观看| 美女中出高潮动态图| 久久久国产成人免费| 99国产精品一区二区三区| 1024香蕉在线观看| 夜夜夜夜夜久久久久| 啦啦啦啦在线视频资源| 黑丝袜美女国产一区| 黑人猛操日本美女一级片| av线在线观看网站| 亚洲美女黄色视频免费看| 超碰成人久久| 日韩三级视频一区二区三区| 国产精品免费大片| 亚洲精品一区蜜桃| 亚洲人成电影观看| 日韩免费高清中文字幕av| 人人妻人人爽人人添夜夜欢视频| 麻豆国产av国片精品| 老司机在亚洲福利影院| 成在线人永久免费视频| xxxhd国产人妻xxx| 啦啦啦免费观看视频1| 免费在线观看黄色视频的| 一级黄色大片毛片| 免费观看人在逋| 国产成人免费无遮挡视频| 久久精品熟女亚洲av麻豆精品| 操美女的视频在线观看| 一级毛片精品| 他把我摸到了高潮在线观看 | 日本av免费视频播放| 777久久人妻少妇嫩草av网站| 国产欧美日韩精品亚洲av| 亚洲国产中文字幕在线视频| 新久久久久国产一级毛片| 免费观看a级毛片全部| 精品少妇一区二区三区视频日本电影| 成人亚洲精品一区在线观看| 91大片在线观看| 亚洲国产毛片av蜜桃av| bbb黄色大片| 免费在线观看影片大全网站| 大型av网站在线播放| 精品国产国语对白av| 19禁男女啪啪无遮挡网站| 国产片内射在线| 男女无遮挡免费网站观看| 午夜老司机福利片| 建设人人有责人人尽责人人享有的| 欧美日韩亚洲综合一区二区三区_| 成人18禁高潮啪啪吃奶动态图| 男女午夜视频在线观看| 99热国产这里只有精品6| 欧美日韩黄片免| 黄片大片在线免费观看| 男人爽女人下面视频在线观看| 国产在线免费精品| 91大片在线观看| av欧美777| 777米奇影视久久| 午夜免费成人在线视频| 国产熟女午夜一区二区三区| 另类精品久久| 波多野结衣一区麻豆| 亚洲精品中文字幕在线视频| 午夜精品久久久久久毛片777| 国产日韩欧美视频二区| 在线观看免费日韩欧美大片| 老司机在亚洲福利影院| 久久99一区二区三区| 人妻人人澡人人爽人人| 女性生殖器流出的白浆| 午夜免费鲁丝| 午夜免费观看性视频| av又黄又爽大尺度在线免费看| 午夜视频精品福利| 久久性视频一级片| 97人妻天天添夜夜摸| 免费女性裸体啪啪无遮挡网站| 啦啦啦中文免费视频观看日本| 人妻 亚洲 视频| 午夜激情久久久久久久| 精品亚洲成a人片在线观看| 视频区图区小说| 欧美 日韩 精品 国产| 91国产中文字幕| 国产精品1区2区在线观看. | 精品久久蜜臀av无| 午夜免费成人在线视频| 一区二区av电影网| 亚洲国产成人一精品久久久| 后天国语完整版免费观看| 动漫黄色视频在线观看| 黄片大片在线免费观看| 亚洲欧美激情在线| 在线观看免费日韩欧美大片| 激情视频va一区二区三区| 亚洲熟女精品中文字幕| 欧美日韩亚洲高清精品| 久久精品亚洲av国产电影网| 亚洲五月色婷婷综合| cao死你这个sao货| 高清欧美精品videossex| 大陆偷拍与自拍| 热re99久久国产66热| 成年人免费黄色播放视频| 一级毛片女人18水好多| 亚洲第一青青草原| 成人影院久久| 国产又色又爽无遮挡免| 欧美国产精品一级二级三级| 在线观看免费视频网站a站| 久久久久国产一级毛片高清牌| 免费在线观看影片大全网站| 日本av免费视频播放| 丰满饥渴人妻一区二区三| 桃红色精品国产亚洲av| 亚洲中文字幕日韩| 桃红色精品国产亚洲av| 亚洲成人免费电影在线观看| 免费人妻精品一区二区三区视频| 岛国在线观看网站| 亚洲国产精品一区二区三区在线| 在线观看舔阴道视频| 肉色欧美久久久久久久蜜桃| 搡老熟女国产l中国老女人| 日韩视频一区二区在线观看| 人妻人人澡人人爽人人| 天堂中文最新版在线下载| 在线十欧美十亚洲十日本专区| 日韩视频一区二区在线观看| 天天躁日日躁夜夜躁夜夜| 午夜福利免费观看在线| 欧美日韩国产mv在线观看视频| 国产免费现黄频在线看| 精品少妇内射三级| 大陆偷拍与自拍| 一本久久精品| 狠狠狠狠99中文字幕| 美女国产高潮福利片在线看| 美女大奶头黄色视频| 一二三四在线观看免费中文在| 人成视频在线观看免费观看| 欧美性长视频在线观看| 狠狠狠狠99中文字幕| 欧美精品亚洲一区二区| 超色免费av| 老熟妇仑乱视频hdxx| 99久久精品国产亚洲精品| 亚洲欧美色中文字幕在线| 亚洲国产欧美在线一区| 男人添女人高潮全过程视频| 法律面前人人平等表现在哪些方面 | 一二三四社区在线视频社区8| 亚洲国产精品一区三区| 十八禁网站免费在线| 免费一级毛片在线播放高清视频 | 黑人巨大精品欧美一区二区mp4| 满18在线观看网站| 欧美日韩精品网址| 免费人妻精品一区二区三区视频| a级毛片黄视频| av超薄肉色丝袜交足视频| 热re99久久精品国产66热6| 青草久久国产| 纯流量卡能插随身wifi吗| 国产97色在线日韩免费| 搡老岳熟女国产| 精品一区在线观看国产| 高清视频免费观看一区二区| 国产av国产精品国产| 成在线人永久免费视频| 热99国产精品久久久久久7| 母亲3免费完整高清在线观看| 亚洲国产精品成人久久小说| 男女边摸边吃奶| 亚洲精品在线美女| 69精品国产乱码久久久| 极品少妇高潮喷水抽搐| 欧美日韩亚洲国产一区二区在线观看 | 久久久精品免费免费高清| 2018国产大陆天天弄谢| 18禁国产床啪视频网站| 啦啦啦中文免费视频观看日本| 女性生殖器流出的白浆| 亚洲专区字幕在线| 色精品久久人妻99蜜桃| 动漫黄色视频在线观看| 99久久国产精品久久久| 在线观看一区二区三区激情| 国产亚洲午夜精品一区二区久久| 日本欧美视频一区| 久久热在线av|