韓繼偉 邵軍
摘要:目前國內(nèi)外對明渠時(shí)差法流量計(jì)流量計(jì)算方法研究較少,對時(shí)差法流量計(jì)流量計(jì)算方法進(jìn)行系統(tǒng)完整的研究,從時(shí)差法測驗(yàn)原理、理論標(biāo)定系數(shù)[WTB1X]k1的計(jì)算方法、水道斷面面積的計(jì)算方法、現(xiàn)場標(biāo)定系數(shù)k2的計(jì)算方法,詳細(xì)闡述了明渠時(shí)差法流量計(jì)流量計(jì)算方法,提出了線性插值計(jì)算理論標(biāo)定系數(shù)k1的方法。以南水北調(diào)輸水?dāng)嗝孢\(yùn)河站為例采用線性插值計(jì)算理論標(biāo)定系數(shù)k1的方[WTBZ]法,進(jìn)行時(shí)差法流量計(jì)流量計(jì)算,計(jì)算結(jié)果與流速儀法對比顯示兩者一致性較好,誤差可控。進(jìn)而為工程技術(shù)人員提供參考;為國產(chǎn)化時(shí)差測流裝置提供重要技術(shù)支撐;為我國重點(diǎn)通航河道和低流速實(shí)時(shí)在線流量監(jiān)測提供技術(shù)保障。
關(guān)鍵詞:時(shí)差法流量計(jì);流量計(jì)算方法;理論標(biāo)定系數(shù);現(xiàn)場標(biāo)定系數(shù)
中圖分類號(hào):TV13文獻(xiàn)標(biāo)志碼:A文章編號(hào):
16721683(2018)02019606
Abstract:
At present there is few research on the ultrasonic flow meter method for flow calculation.This paper presents a systematic study on this method.It elaborates on the ultrasonic flow meter method for flow calculation in terms of the principle of ultrasonic test,the calculation method for theoretical calibration coefficient [WTB1X]k1[WTBZ],the calculation method for channel crosssection area, and the calculation method for field calibration coefficient [WTB1X]k2[WTBZ].It puts forward the linear interpolation method for calculating theoretical calibration coefficient [WTB1X]k1[WTBZ].Taking the Yunhe station of the SouthtoNorth Water Transfer Project as a case study, we used linear interpolation to calculate the theoretical calibration coefficient [WTB1X]k1[WTBZ],and calculated the flow by the ultrasonic flowmeter method.The calculation results were compared with the results of the current meter method.The comparison showed good consistency and controllable error.This study can provide a reference for engineering and technical personnel,provide important technical support to the localization of ultrasonic measurement devices,and provide technical support to the realtime online flow monitoring of key navigable channels and low velocity in China.
Key words:
ultrasonic flow meter; flow calculation method; theoretical calibration coefficient; field calibration coefficient
近年來,河流流量在線測驗(yàn)成為水文工作者研究的熱點(diǎn),目前有接觸式的有水平固定式ADCP、時(shí)差法、二線能坡法;非接觸式有雷達(dá)測流、激光粒子圖像測流等[1,3]。非接觸主要是測量表面流速,影響因素較多,主要應(yīng)用于高洪流量測驗(yàn),精度稍差;接觸式測量的水層流速或垂線流速,影響因素較少,主要應(yīng)用于常規(guī)流速測量以及水資源計(jì)量測量,南水北調(diào)不少輸水?dāng)嗝婢褪遣捎媒佑|式時(shí)差法在線流量測量系統(tǒng),也稱為明渠時(shí)差法在線測量系統(tǒng)或者超聲波時(shí)差法在線流量測量系統(tǒng)。明渠時(shí)差法測流的優(yōu)點(diǎn)是能夠測得全斷面的瞬時(shí)流速、流量及其連續(xù)變化過程,并且可以數(shù)字或過程線的形式顯示;原理簡單,人工內(nèi)外業(yè)工作量少;無需過河設(shè)備,操作安全,勞動(dòng)強(qiáng)度低,還適用于受回水頂托、冰凌、潮汐和受水工建筑物影響的河段的測流;測速范圍大,有測低速和高速的能力;便于遙測,為迅速提供江河水情、及時(shí)做出洪水預(yù)報(bào)為防洪搶險(xiǎn)指揮創(chuàng)造了有利條件[46 ]。因此明渠時(shí)差法是一種江河自動(dòng)化測流最有前途的方法[7]。明渠時(shí)差法流量計(jì)測驗(yàn)計(jì)算方法關(guān)系到流量測驗(yàn)精度;關(guān)系到水資源計(jì)量的準(zhǔn)確性;關(guān)系到水生態(tài)水安全的治理;關(guān)系到水環(huán)境質(zhì)量;關(guān)系到人們的生產(chǎn)生活。繼而明渠時(shí)差法流量測驗(yàn)計(jì)算方法最值得水文學(xué)者關(guān)注研究。本文從關(guān)注其測驗(yàn)原理開始。
1時(shí)差流量測驗(yàn)原理
時(shí)差法測速布置如圖1所示。在河流兩岸邊A、B兩點(diǎn)水下某深度處,相對地裝置一對電聲可逆的換能器,其間距為L,該層水流平均流速為[WTB1X]v[WTBX],水流方向與AB的夾角為θ,水流在AB方向的分速度為[WTB1X]v1[WTBX],超聲波在靜水中傳播速度為c[WTBZ]。
2時(shí)差法流量計(jì)算
時(shí)差法流量計(jì)流量計(jì)算采用流速面積法,分為單聲路系統(tǒng)和多聲路系統(tǒng)。兩種系統(tǒng)均是采用斷面平均流速與斷面面積相乘計(jì)算,多聲路系統(tǒng)流量計(jì)算相對簡單,具體可參考國際標(biāo)準(zhǔn)ISO 6416。本文主要研究單聲路系統(tǒng)流量計(jì)算,[JP2]依據(jù)傳感器測量水層平均流速[WTB1X]v[WTBX]和由測量水位Z計(jì)算過水?dāng)嗝婷娣eA以及理論流速標(biāo)定系數(shù) [WTB1X]k1[WTBZ]計(jì)算平底明[JP]渠斷面流量,參見ISO 6416;非平底明渠流量Q按式(3)計(jì)算。
Q=[WTB1X]k1k2v[WTBX]A[JY](3)
式中:Q表示時(shí)差法計(jì)算流量(m3/s);[WTB1X]k1[WTBX]表示理論流速計(jì)算的標(biāo)定系數(shù);[WTB1X]k2為現(xiàn)場安裝造成的標(biāo)定系數(shù); v[WTBZ]為時(shí)差法傳感器實(shí)測水層平均流速(m/s);A表示過水?dāng)嗝婷娣e(m2)。
[BT3][STHZ]2.1[STBZ][WTB1X]k1[WTBZ]的確定
[JP2]依據(jù)ISO 6416:2004(E)的測量規(guī)范[4],許多寬闊的天然河流,流速分布與水位有一定的關(guān)系[1520]。理論流速計(jì)算的標(biāo)定系數(shù) [WTB1X]k1[WTBZ]對于不同的安裝水深有不同的數(shù)值。這些值是在規(guī)則梯形渠道上,其斷面形態(tài)見圖2;平均水深在1939 m到2201 m范圍內(nèi),深度為0149 m到[JP]1613 m之間的確定的7條單獨(dú)的超聲波線速度的野外觀測結(jié)果。每條單獨(dú)的超聲波線速度做了15組實(shí)驗(yàn),經(jīng)統(tǒng)計(jì)分析得各個(gè)相對位置的流量理論標(biāo)定系數(shù)[WTB1X]k1值,詳見表1。以換能器相對位置為橫坐標(biāo),理論標(biāo)定系數(shù) k1為縱坐標(biāo),繪制換能器相對位置與 k1的[WTBZ]關(guān)系見圖3。
2.2水道斷面面積的計(jì)算
由測量的斷面數(shù)據(jù)起點(diǎn)距DQDJ(i)和河底高程HHD(i),以及垂線號(hào)i=1,2,3,…,n;目前時(shí)差法是采用水位面積曲線來查算水道斷面面積的,或者將水位面積曲線建立回歸模型進(jìn)而計(jì)算水道斷面面積。這兩種計(jì)算方法和實(shí)際的過水?dāng)嗝婷娣e有一定的計(jì)算誤差,為減小這種誤差這里提出采用實(shí)時(shí)水位計(jì)算相應(yīng)的水道斷面面積的方法。
(1)測深垂線的確定。
測深垂線的選擇(布設(shè))要滿足水道斷面形狀的要求,布設(shè)宜均勻,并能控制河床的轉(zhuǎn)折點(diǎn),使部分水道斷面面積無大割補(bǔ)情況。依據(jù)實(shí)測水位從測量的斷面數(shù)據(jù)中選取起點(diǎn)距DQDJ(j)和河底高程HHD(j),j=1,2,3,…,l。
(2)間距的計(jì)算。
3.3時(shí)差法流量的計(jì)算結(jié)果分析
水位從2293 m到2415 m變幅122 m;時(shí)差法流量177~1 318 m3/s;對應(yīng)流速儀流量174~1 130 m3/s。相對誤差17%~187%,所有值都在20%以內(nèi),最小值僅17%;時(shí)差法流量計(jì)測的最小流量是177 m3/s,流速儀測得的最小流量是174 m3/s,兩者相差3 m3/s,相對誤差17%;時(shí)差法流量計(jì)測的最大流量是1 311 m3/s,流速儀測得的最大流量是1 130 m3/s,兩者相差181 m3/s,相對誤差1603%;水位2415 m時(shí),相對誤差最大1874%。
綜上所述,單聲路時(shí)差法測流系統(tǒng)不適合水位變幅較大的河流,高洪測驗(yàn)誤差稍大。
運(yùn)河站水位大于2422 m時(shí)是復(fù)式斷面[21],漫灘面積較大,時(shí)差法測驗(yàn)誤差稍微大。計(jì)算時(shí)[WTB1X]k2實(shí)際比測僅4次,也就是4個(gè)控制點(diǎn),15測次的k2是[WTBZ]采用4個(gè)控制點(diǎn)計(jì)算出來的;隨著比測次數(shù)增加時(shí)差法測驗(yàn)精度會(huì)逐漸降低,也就是說,通過增加比測次數(shù),可以降低測驗(yàn)誤差。總體看來,時(shí)差法和流速儀法一致性較好,精度可控。
4結(jié)論
(1)采用線性插值計(jì)算理論標(biāo)定系數(shù)[WTB1X]k1[WTBZ]的時(shí)差法流量計(jì)能滿足一般河流流量測驗(yàn)要求,其與流速儀法一致性較好,精度可控。
(2)時(shí)差法測流在復(fù)式斷面上尚可使用精度稍差,單式斷面使用效果更佳。
(3)通過增加現(xiàn)場比測可以提高復(fù)式斷面的測驗(yàn)精度,但復(fù)式斷面單聲路時(shí)差法流量計(jì)流量計(jì)算方法有待于進(jìn)一步研究。因此本文的方法有一定的適用條件,水位變幅不太大的非平底且無復(fù)式斷面的明渠應(yīng)用效果較好。
(4)以上研究成果可為工程技術(shù)人員提供參考;為國產(chǎn)化時(shí)差測流裝置提供重要的技術(shù)支撐,進(jìn)而為我國的重點(diǎn)通航河道和低流速的實(shí)時(shí)在線流量監(jiān)測提供技術(shù)保障。
參考文獻(xiàn)(References):
[1]姚永煕.水文儀器與水利自動(dòng)化[M].南京:河海大學(xué)出版社,2001:9798.(YAO Y X.Hydrological instruments and automated water[M].Nan jing:Hohai University Press,2001:9798.(in Chinese))
[2]劉雅鳴.水利技術(shù)標(biāo)準(zhǔn)匯編水文卷水文測驗(yàn)[M].北京:中國水利水電出版社,2002:11021106.(LIU Y M.Water conservancy technical standard assembly hydrological volume hydrological[M].Beijing:China Water Conservancy and Hydropower Press,2002:11021106.(in Chinese))
[3]林祚頂,朱春龍,余達(dá)征,姜永富.水利現(xiàn)代化與水文新技術(shù)[M].北京:中國水利水電出版社,2008:109113(LIN Z D,ZHU C L YU D Z,JIANG Y F.New technology of water conservancy modernization and hydrological[M].Beijing:China Water Conservancy and Hydropower Press,2008:109113.(in Chinese))
[4]ISO 6416,HydrometryMeasurement of discharge by the ultrasonic(acoustic) method[S].
[5]趙德友.運(yùn)河水文站流量自動(dòng)監(jiān)測系統(tǒng)建立與實(shí)現(xiàn)技術(shù)[J].水利信息化,2011,6(3):6872.( ZHAO D Y.Canal hydrologic flow of automatic monitoring system establishment and implementation technology[J].Water Information,2011,6 (3) :6872.(in Chinese))
[6]姚永煕,陸燕.聲學(xué)時(shí)差法流量計(jì)在明渠流量測驗(yàn)中的應(yīng)用[J].水利水文自動(dòng)化,2006,3(1):15.(YAO Y X ,LU Y.Acoustic time difference method flowmeter in the application of open channel flow test[J].Water Conservancy Hydrological Automatic,2006,3 (1) :15.(in Chinese))
[7]王彥芳,王小平,宋萬民,等.時(shí)差法超聲波流量計(jì)的高精度測量技術(shù)[J].微計(jì)算機(jī)測控自動(dòng)化,2006,22(6):198200.( WANG Y F,WANG X P,SONG W M,et al.High precision method of time difference ultrasonic flowmeter measurement technology[J].Micro Computer Letter Measurement and Control Automation,2006,22 (6) :198200.(in Chinese))
[8]王慧.時(shí)差法超聲波流量計(jì)數(shù)據(jù)處理方法的研究[D].大連:大連理工大學(xué),2010.( WANG H.The method of time difference ultrasonic flowmeter data processing method research[D].Dalian:Dalian University of Technology,2010.(in Chinese))
[9]張學(xué)慶.流量測量的意義及流量傳感器的現(xiàn)狀[J].石油化工自動(dòng)化,2005(5):99101.(ZHANG X Q .The significance of the flow measurement and the current situation of the flow sensor[J].Journal of Petrochemical Industry Automation,2005(5) :99101.(in Chinese))[ZK)]
[10][ZK(#]梁國偉,蔡武昌.流量測量技術(shù)及儀表[M].北京:機(jī)械工業(yè)出版社,2002.(LIANG G W,CAI W C.Flow measurement technology and instrument[M].Beijing:China Machine Press,2002.(in Chinese))
[11]閻明.高精度微功耗時(shí)差法超聲波流量計(jì)的設(shè)計(jì)[D].大連:大連理工大學(xué),2007.(YAN M.The design of high precision micro power consumption time difference method ultrasonic flowmeter[D].Dalian:Dalian University of Technology,2007.(in Chinese))
[12]吳斌,趙剛,夏冰.淺談超聲波流量計(jì)的分類和實(shí)際應(yīng)用[J].現(xiàn)代計(jì)量儀器與技術(shù),2006(11):
5355.(WU B,ZHAO G,XIA B.Introduction to the classification of the ultrasonic flowmeter and the actual application[J].Modern Measurement Instruments and Techniques,2006 (11) :5355.(in Chinese))
[13]蘭純純.時(shí)差法超聲波流量計(jì)的研究[D].重慶:重慶大學(xué),2006年.(LAN C C.The study of the method of time difference ultrasonic flowmeter[D].Chongqing:Chongqing University,2006.(in Chinese))
[14]李廣峰,劉防,高勇.時(shí)差法超聲波流量計(jì)的研究[J].電測與儀表,2000(9):1319.(LI G F,LIU FANG,GAO Y.The study of the method of time difference ultrasonic flowmeter[J].Electric Measurement and Instrument,2000 (9) :1319.(in Chinese))
[15]PARDO E,SAN EMETERIO J L,RODRIGUEZ M A,et al.Noise reduction in ultrasonic NDT using undecimated wavelet transforms[J].Ultrasonies,2006,(44):e1063e1067.
[16]VACLAV M,RADISLAV S,STANISLAV S,et al.Signaltonoise ratio enhancement based on wavelet filtering in ultrasonic testing[J].Ultrasonics,2009,49(8):752759.
[17]GUILHERME C,JAFAR S.Adaptive thresholding teehnique for denoising ultrasonic Signals[C].IEEE Ultrasonics Symposium,2005(1):544547.
[18]LZARO J C ,SANEMETERIO J L,RAMOS A,et al.Influence of thresholding procedures in ultrasonic grain noise reduetion.using wavelets[J].Ultrasonics,2002,40(1):263267.
[19]LI W,QUE P W.Optimal scale wavelet transform for the identification of weak ultrasonics signals[J].Measurement,2009,(42):164169.
[20]MANDARD E,KOUAME E,BATTAULT R,etal.Transit time ultrasonic flowmeter:velocity profile estimation[C].2005 IEEE International Ultrasonics Symposium.2005:763766.
[21]周沛永,鄭長陵.運(yùn)河站水文站時(shí)差法流量測驗(yàn)效果分析[J].科技與生活,2012(6):99100.(ZHOU P Y ZHENG C L.Canal hydrologic time difference method flow test stand effect analysis[J].Science and Technology and Life,2012.(6) :99100.(in Chinese))
[22]譚德強(qiáng).氣體超聲波流量計(jì)的應(yīng)用與研究[J].儀器儀表標(biāo)準(zhǔn)化與計(jì)量,2013 (4):3435.(TAN D Q.Application and research of gas ultrasonic flow meter[J].Instrumentation Standardization and Measurement,2013 (4) :3435.(in Chinese))
[23]王茹.超聲波流量計(jì)和電磁流量計(jì)特點(diǎn)及區(qū)別比較分析[J].科技與企業(yè),2012 (15):357357.(WANG R.Characteristics and differences of ultrasonic flow meters and electromagnetic flowmeters[J].Technology and Enterprises,2012 (15) :357357.(in Chinese))
[24]鄒蓬,呂傳玉,李鳳名.時(shí)差法超聲波流量計(jì)的原理和設(shè)計(jì)[J].建設(shè)科技,2012 (4):8889.(ZOU P,LYU C Y,LI F M.The principle and design of ultrasonic flowmeter of jet lag method[J].Construction Technology,2012 (4) :8889.(in Chinese))
[25]王梅.便攜式超聲波流量計(jì)在循環(huán)水管道上的應(yīng)用[J].數(shù)字技術(shù)與應(yīng)用,2012 (6):113113.(WANG M.Application of portable ultrasonic flowmeter in circulating water pipeline[J].Digital Technology and Application,2012 (6) :113113.(in Chinese))
[26]李超.超聲波流量計(jì)在能源計(jì)量中的應(yīng)用[J].江蘇現(xiàn)代計(jì)量,2013(11):3133.(LI C.Application of ultrasonic flowmeter in energy measurement[J].Jiangsu Modern Metrology,2013 (11) :3133.(in Chinese))
[27]李玉華.超聲波流量計(jì)和電磁流量計(jì)各自特點(diǎn)及區(qū)別比較[J].能源與節(jié)能,2012 (9):9496.( LI Y H.Characteristics and differences of ultrasonic flow meters and electromagnetic flowmeters[J].Energy and Energy Conservation,2012 (9) :9496.(in Chinese))
[28]陳中華.超聲波流量測量技術(shù)在企業(yè)中的實(shí)踐應(yīng)用[J].廣東科技,2012,21(9):126127.
(CHEN Z H.The practical application of ultrasonic flow measurement technology in enterprises[J].Guangdong Science and Technology,2012,21 (9) :126127.(in Chinese))