• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Organic carbon content and carbon isotope variations across the Permo-Triassic boundary in the Gartnerkofel-1 borehole,Carnic Alps,Austria

    2018-07-04 11:28:14BrookfieldWolbachStebbinsGilmourRoegge
    Acta Geochimica 2018年3期
    關鍵詞:楊鵬圍屋內向

    M.E.Brookfield?W.S.Wolbach?A.G.Stebbins?I.Gilmour ?D.R.Roegge

    1 Introduction

    The Gartnerkofel borehole is one of the most thoroughly studied and described Permo-Triassic sections in the world(summary in Holser et al.1989,1991).Although Klein(1991)included organic carbon contents in his more inclusive study of elements,the results of detailed organic carbon isotope studies across the PTr boundary in the core have only been reported in a brief abstract(Wolbach et al.1994).In view of the importance of such studies in other Permo-Triassic sections,this paper summarizes these analyses of the total Gartnerkofel organic carbon,organic carbon isotopes,together with carbonate carbon and oxygen isotopes from Magaritz and Holser(1991),compares them with the total organic carbon analyses of Klein(1991)on the same samples,and compares our Gartnerkofel carbon patterns to other Permo-Triassic Tethyan sections.

    2 Geology

    The Gartnerkofel core was drilled in 1986 near the western end of the Permian Tethys Sea in a shallow-water shelf area interpreted as a currently eastward facing carbonate ramp(Brandner et al.2009)(Figs.1,2).

    Over most of its outcrop,the Late Permian Bellerophon Formation consists of thick carbonate-sulphate succession deposited in marginal(sabkha)to shallow shelf marine conditions with the top~1 m(Bulla member)consisting of more normal marine highly fossiliferous dark bioclastic wackestone,packstone and interbedded thin marls limestone with calcareous algae,foraminifera,mollusks and brachiopods(Noé1987;Farabegoli et al.2007).A top erosional surface on the Bulla Member is sharply overlain by the Tesero member of the Werfen Formation,which consists of diverse micrite,microbialites and marls interbedded with oolitic,peloidal and bioclastic packstones(Farabegoli et al.2007).The Tesero member blankets the underlying diverse Bulla Member facies,and varies little and irregularly(between 3 and 5 m)across the entire area,though it is absent between Bulla and Gartnerkofel(Noé1987).

    Fig.1 Late Permian palaeogeography(courtesy Ron Blakey)with places cited

    The previously proposed carbonate ramp interpretation of the Tesero oolite section(Brandner et al.2009)is incompatible with the limited thickness and facies variations shown in the sections,and with the juxtaposition of very different sections across Alpine thrusts,with large translations of tens of km,within the Dolomites(Doglioni 1987).Thusthe Tesero ooliteismissing in the San Antonio section though present in the thrust sheets on either side(Fig.2).Furthermore the ramp interpretation(as shown in Fig.2b)is arbitrarily based on arranging Tesero oolite sections and the burrowed datum on which they rest,in a line downstepping to the east:the thinning of the lowermost oolite from Tramin to Gartnerkofel(interrupted by the fault-enclosed San Antonio section)is typical of carbonate platforms like the Bahama Bank,where marginal oolite shoals thin and pass into pelletoidal finer sediments towards the interior of the platform(Harris et al.2015).A flat carbonate platform environment fits the lack of horizontal but marked vertical facies change(during sea level variations)far better,and was the interpretation shown by Noé(1987)in the first comprehensive study of the PTr boundary sections in the area(Fig.2c).

    Furthermore,the Permian paleomagnetism of the Dolomites shows around 50°anticlockwise rotations of the southern Alps relative to central Europe during large post-Permian lateral movements and disruption of the Adria block(Muttoni et al.2013)and can thus not be compared to units now adjacent to it,like the Lombardy Verrucano to the west across the Judicaria fault(Gaetani 2010).

    The biodiversity drops markedly at the Bulla/Tesero contact but Permian brachiopods and bivalves persist into the Tesero Member(Posenato 2009).The first appearance datum(FAD)of the conodont Hindeodus parvus which defines the base of the Triassic is at 6 m above the base of the Tesero Member at Gartnerkofel,but only 2 m above the base at Bulla(Sch?nlaub 1991)(Fig.2).

    The main lithological change(the Late Permian Event Horizon,LPEH)from the Bulla to the Tesero Members thus does not co-incide with the main extinction,nor with the base of the Triassic as defined by H.parvus.The strata between the LPEH and the base of the Triassic are thus of great interest for interpreting environmental changes associated with the extinction.

    3 Materials and methods

    One set of PTr samples were used for all Gartnerkofel geochemical analyses(Klein 1991).

    3.1 Wolbach and Gilmour methods

    To cover the PTr boundary adequately,bulk C residues were isolated from samples between 115.95 and 330 m depth in the core,using HCl and HF–HCl procedures of Wolbach and Anders(1989).Organic carbon wasseparated from any elemental carbon using extended acid dichromate oxidation(Wolbach and Anders 1989).Residues were combusted to CO2for mass-spectrometric analysis,yielding isotopic data,and weights for organic carbon.Carbon isotopes were measured on a VG SWIRA 24 mass spectrometer using sealed-tube combustion.

    Fig.2 a Location of Gartnerkofel and other PTr sections in the Dolomites,southern Alps.b Reconstructed cross-section of the Early Triassic carbonate ramp at the end of Tesero oolite deposition(after Brandner et al.2009,Fig.8),with representative sections.Note that the only the Tramin,Tesero and Bulla sections are in the same tectonic unit,the other sections are across thrust faults,and actual thickness variation is nowhere greater than 5 m across a horizontal distance of over 130 km.c Thickness variation and persistence of Bulla and Tesero Oolite facies from west to east(from Noé1987).Source:Stratigraphic columns:Tramin:Brandner et al.(2012);Tesero:Posenato(2009);Bulla:Farabegoli and Tonidandel(2012),Posenato(2009);San Antonio;Brandner(1988);Kraus et al.(2013);Dierico:Buggisch and Noé(1986);Gartnerkofel:Holser et al.(1991)

    3.2 Klein(1991)methods

    The carbon content was analyzed on separate aliquots of the powdered samples.For determination of total carbon(Ctot)a 100 mg portion was weighed into a ceramic crucibleby electronic balance.With aglassspoon about 2 g of LECOCEL(a Sn-W alloy)and 1 g of steel(7 ppm C,14 ppm S)were added.The mixture was combusted in a furnaceat 1400 °C,using oxygen(> 99.5%pure)ascarrier gas.The evolved gas CO2was measured in infrared cells by integrating its peaks.The system was calibrated with LECO calibration samples and with internal laboratory standard Bellerophon Dolomite A/1.

    Each sample was analyzed two to four times.The relative standard deviations were<1%for C.For determination of organic carbon(Corg),500 mg of powder were weighed into a porous filter crucible,leached three times with 8 mL 2 M HCl,rinsed ten times with deionized water,and filtered with a filtering flask.The crucibles were dried in an oven at 150°overnight.Measurements were carried out as for total C.Acid-soluble carbon(Ccarb)was calculated by difference.

    4 Results

    Total organic carbon and organic carbon isotopes of our study,together with the total organic carbon of Klein(1991),and carbonate carbon and oxygen isotope resultsof Magaritz and Holser(1991),plus the Sandδ34Sresults of Pak and Holser(1991)are shown on Table 1 and Fig.3.In our study,the brown color of all carbonaceous residues and rapid disappearance of residue aliquots on dichromate oxidation,together with their carbon content(~100%);indicate that the residues were composed entirely of organic carbon.The organic carbon content of the sediments was relatively low(<2000 ppm)except at 216 m(> 5000 ppm),and at 215 and 268 m(> 2000 ppm)(Table 1,Fig.3).These high valuescorrespond with lower negativeδ13Corgvalues,which are in keeping with their inferred oceanic origin,as these samples were easily oxidized by dichromate—residual land-derived organic matter is much more difficult to destroy(Wolbach et al.1994).The total organic carbon results of Klein(1991)are divergent from ours and tend to be an order of magnitude higher(Table 1).The reasons for this are not entirely clear(we could not contact Peter Klein for comment),but could be due to:(a)sampling differences—unlikely,as we analyzed the same layers;(b)mineral acid differences—2 M HCl for Klein,9 M HCl followed by 15 M HF/1 M HCl for Wolbach,more aliphatic organic carbon would be destroyed by these methods—which would explain the lower Wolbach values;(c)destruction of silicates—by dissolving silicates,Wolbach freed up any carbon bound by the silicate crystal structure itself that carbon fraction would have been measured by Wolbach,but not by Klein—again this does not explain the lower Wolbach values;(d)oxidation—Wolbach made a concerted effort to destroy organics,then determine their isotopic values by difference whereas Klein measured organics directly,which might have missed silicate-encapsulated organics,but included any elemental carbon present with his Corgdata and assumed it to be organic.

    Nevertheless,the trends are the same in both analyses and the total organic values are all low in any case(Table 1,Fig.3).

    Our organic carbon isotopestudiesshow anegativebase shift of-24‰ to-28‰ in the upper Bellerophon Formation to-26‰ to-28‰ in the Tesero Member,which latter values persists into the earliest Triassic Mazzin Member,after which it decreases slightly to-26‰(Table 1,Fig.3).Superimposed on this are two sharp negative peaks of> -38‰ in the Latest Permian(at 286.33 and 252 m depth)and a broader negative peak of>-31‰ (215.07–207.14 m depth)in the Early Triassic(Fig.3).The two negative peaks in the upper Bellerophon Formation are not recorded in Wolbach et al.(1994)as they did not plot the values below 242 m.

    Theδ13Ccarbvalues show a gradual drop from the Bellerophon through the Tesero Member into the lower Mazzin Member,followed by subdued fluctuations(Fig.3).This is consistent with the general average worldwide drop of-2‰across the PTr boundary(Korte et al.2001).

    Theδ18Ocarbvalues also show a gradual drop from the Bellerophon into the Tesero Member after which they remain fairly constant until some zigzags in the lower Mazzin Member at the same level as the organic carbon zigzag(Fig.3).Although these beds show both Early and Late dolomitization(Boeckelmann and Magaritz 1991),and the oxygen isotopes therefore unlikely to be primary,and though the Gartnerkofel values are whole rock values,the significant fluctuations suggest that the oxygen isotopes in the section have not been homogenized.Under meteoric diagenesis Phanerozouc carbonate rocksshow elevated Mn and decreasing Sr contents due to dissolution of primary carbonate and precipitation of carbonate cements(Brand and Veizer 1980):carbonate samples with Mn/Sr ratio of<10 might still retain their primary isotopic signatures(Kaufman and Knoll 1995).All Gartnerkofel samples studied have Mn/Sr ratios of<5(data of Klein 1991).

    It isinteresting that thegeneral warming trend acrossthe Tesero Member is compatible with the warming across thePermian–Triassic boundary in China inferred from conodont apatite(Sun et al.2012).The calculated seawater temperatures for Gartnerkofel based on Sun et al.’s(2012)methods,but using bulkδ18Ocarbvalues,show a low of-10 °C in the Ostracod unit rising to+6 to+26 °C in the overlying units.The Ostracod unit temperatures are unreasonably low,but may be caused by variable salinities in this sabkha-type environment(Mette and Roozbahani 2012).The higher temperatures are not inconsistent with a modern tropical carbonate environment like the Persian Gulf,where the lagoons and the open ocean can reach 24–32 °C and the coastal sabkhas can occasionally dip as low as 0°C(Al-Farraj 2005;Warren 2006).

    Table 1 Carbon,carbonate and organic carbon isotope,and su8lfur and sulfur isotope data for the Gartnerkofel core

    Table 1 continued

    Fig.3 Late Permian to Early Triassic section of Gartnerkofel core(Holser et al.1991;Sch?nlaub 1991);organic carbon and organic carbon isotope plots(this study);organic carbon plots from data in Klein 1991);carbonate and oxygen isotope plots from data in Magaritz and Holser(1991);Sand Sisotope plots from data in Klein(1991),Pak and Holser(1991)(see Table 1).Note expanded scale from 232 to 222 m depth

    δ34S values of pyrite reflect the relative abundance of pyrite that formed within the water-column(syngenetic)and within the sediments(diagenetic),with lower values generally reflecting an increase in syngenetic pyrite due to anoxic or euxinic waters.The Tesero Member of the Bulla PTr section contains two relative minima inδ34Svalues of sulfide around-30‰with increases in S concentrations and S/Corgratios(Gorjan et al.2007).The values in these intervals reflect an anoxic or euxinic water-column in the Tesero Member(Gorjan et al.2007),and similar valuesare recorded at multiple locations after the LPEH(Shen et al.2016 and references therein).At Gartnerkofel,the sharp increase in Sconcentrations and low values ofδ34Sin the Mazzin Member suggests an additional anoxic or euxinic interval in the Early Triassic,extending the record of transient anoxic intervals from the Tesero Member of the Bulla section.

    5 Discussion and comparisons

    Carbon isotope fluctuations in marine carbonates and marine plankton reflect the dissolved inorganic carbon reservoir in seawater.Organic carbon isotope fluctuations reflect the proportions contributed by marine and continental organic matter as well as by the contribution of green sulfur bacteria growing in anoxic conditions—negative trends in organic carbon isotope values have been used to infer anoxia(Berner 2005).

    The strong fluctuations inδ13Corgvalues across the Permian–Triassic boundary in Alpine sections are readily attributable to variations in the proportions of marine versusterrestrial organic matter(Krauset al.2013).Therange of values ofδ13Corgreported for modern terrestrial higher plants(average-26.1‰),differs greatly from those for modern marine phytoplankton(average-17.7‰)(Wickman 1952;Craig 1953;Smith and Epstein 1971).Changes in δ13Corgvalues of up to 6.0‰,(from ~ -19‰ to-25‰)were measured across the Pleistocene–Holocene boundary in cores from the Gulf of Mexico abyssal plain,reflecting increased transport of terrestrial plant remains from re-established Holocene lowland forests to the Gulf basin(Newman et al.1973).In the Quaternary,therefore,increased land plant input is marked by more negative δ13Corgvalues.

    In contrast to modern organics,Permian plant material has heavier carbon isotope values(δ13C=-24‰)compared with Permian plankton such as acritarchs(δ13C=-30‰)(Faure et al.1990;Strauss and Peters-Kottig 2003;Herrmann et al.2012).The difference from modern situations is because plants with C4 metabolism(all angiosperms)which have higherδ13Corgvalues between-8‰ and-15‰,did not evolve until the Cretaceous(O’Leary 1988).Kraus et al.(2013)noted that the Alpine PTr sectionsfrom near shoreto offshoreshowed the same organic carbon isotope trends but that the more offshore sections showed lighter,more negative values,consistent with greater plankton and lesser land plant input.Furthermore,their zigzag fluctuations inδ13Corgof up to 4‰in the Tesero Member are most plausibly caused by variations in land versus marine organic content,especially as theδ13Ccarbvalues do not change much.In contrast to Kraus et al.’s(2013)results,however,our main zigzag fluctuations occur lower down in the Bulla Formation,while their fluctuations in the Tesero member(admittedly based on much closer spaced samples)are not seen in our Tesero Member samples(Table 1,Fig.3).

    The two very negativeδ13Corgpeaks at 251/2(-35‰,-39‰)and 286 m(-38‰)depth at Gartnerkofel suggest marine incursions into the variable salinity Bellerophon sabkha environment.These extreme negativeδ13Corgvalues are,however,beyond the range of both mantlederived(δ13C=-5‰)and organic carbon,including sulphur bacteria(δ13C< -30‰)sources and require methane input(δ13C=-60‰)(Summons et al.1994;Higgins and Schrag 2006;Retallack and Krull 2006;Taipale et al.2015).Even the overlying Bulla and Werfen values need either almost pure marine organic sources or methane input—but the methane would need to be metabolized by organisms.One possibility is that the recently discovered ‘methane-eating’Methylobakter is responsible(Ettwig et al.2010).Since these use nitrate reduction in their metabolism,then they might be detected from nitrogen isotope studies(to be done).

    Smallerδ13Corgfluctuations also occur above 222 m depth where pyrite,sulfur and,shortly above,carbon content increase,with a marked shift to lighter,more negative marineδ13Corgvalues(Holser et al.1989),consistent with the continuing Early Triassic marine transgression.The subsequent shift to heavier less negative values above 207 m suggests input of land plant material during the earliest Triassic which is recorded in other Alpine sections(Sephton et al.2002;Gorjan et al.2008).

    The Val Badia section shows greatδ13Corgfluctuations during Late Permian Tesero Member times with a more detailed sampling than Gartnerkofel(Fig.4).In fact,all the PTr boundary section along both the southern and northern sides of the Neotethys and on the South China microcontinent show marked positive shiftsinδ13Corgvaluesthough not necessarily at the same time if the correlations are accurate(Figs.4,5).If caused by greater land plant input,however,and if they are synchronous,then the positive shift is consistent with the destruction of land ecosystems and vegetation burning at this time,and with the marked negative shift inδ13Ccarbat this time(Grasby et al.2011;Retallack 2013).

    In Kashmir In the transitional beds equivalent to the lower Tesero Member,zigzags inδ13Corgvalues(from-27‰ to-23‰)(Algeo et al.2007)are due to values from the background clays(more negative)and bioclastic beds introduced from shallower water(less negative)(Fig.4).In China,both Meishan and Shangsi show similar negative shifts in δ13Ccarbbut the δ13Corgshows somewhat divergent trends(Fig.5).The Meishan section is,however,very condensed with several erosion surfaces which juxtapose very different isotope values:missing sediments needs to be taken into account(Zheng et al.2013).

    楊鵬幼時所居住的房子,是一座四百多平方米的圍屋。童年時的楊鵬,性格很內向,也很孤獨,因此,這一時期的他特別愛幻想。小小的孩子,大大的房間,難免心生恐懼之感。孤獨內向的孩子,向外很難尋求慰藉,只能向內尋求力量。害怕之時,又有哪個孩子不希望有個英雄能來拯救自己呢?又有哪個孩子不想讓自己成為拯救他人的英雄呢?好在,書本給了楊鵬戰(zhàn)勝孤獨與恐懼的力量。

    In all Tethyan sections noted here,the δ13Corg–δ13Ccarbvalues are greater in the shallower water sections like Gartnerkofel and Val Badia than in the deeper shelf sections at Guryul ravine,Shangsi and Meishan(Figs.4,5),which is in keeping with the decreasing continental input noted in the Alps(Kraus et al.2013).

    If the zigzags in the organic carbon isotope curves between the LPEH and the base of the Triassic are due to different proportions of land-and marine-derived organic matter,then either a number of marine transgressions and regressions need to be considered(as they have in the past—e.g.Brandner et al.2009)or climatically-or eventcontrolled variations need to be considered.

    Though rapid eustatic changes of sea-level occur in glacial times,there is no evidence of a Latest Permian glaciation and,in fact,the evidence is for rapid and significant ocean warming at the time(Sun et al.2012;Song et al.2014),which would raise sea-level by many metres due to thermal expansion since a 1°C rise in mean ocean temperature raises sea-level by 2 m(Southam and Hay 1981).Rising sea level during warming and bringing more marine conditions over the area during deposition of the Tesero Member would explain the gradually lighter trends in both δ13Corgand δ13Ccarb.Climate warming is thus a possible control—but a marine transgression in the Latest Permian does not explain the spasmodic input of landderived vegetation at thetime,nor theextremenegativeδ13Corgvalues.

    Input by backwash of land-derived material during storms,or even tsunamis,may explain some of the positive δ13Corgshiftsassociated with land vegetation input,even as far as the apparently isolated Bahamian-type Tesero oolite platform.Tsunami deposits have been identified in the Latest Permian in Kashmir,India(Brookfield et al.2013).Vast amounts of land-derived floating material were transported into and across the Pacific Ocean by the relatively small 2011 Japanese tsunami(Lebreton and Borrero 2013).The Tesero oolitic beds,with their hummocky cross-stratification and great extent(Brandner et al.2009)are also possible tsunamirather than simple storm deposits.

    Fig.4 Comparison of Late Permian to Early Triassic organic carbon and carbonate Cisotopeplotsfor Gartnerkofel with variouslocalities along southern Tethyan margin(modified from Korte et al.2010)with additions and changes for Val Badia(Kraus et al.2013),Guryul(Baud et al.1996;Algeo et al.2007).Height between LPEH and base of the Triassic has been standardized for all sections

    Fig.5 Comparison of Late Permian to Early Triassic organic carbon and carbonate Cisotopeplotsfor Gartnerkofel with variouslocalities along northern Tethyan margin and South China(modified from Korte et al.2010),with additions and changes for Djulfa(Kozur 2007;Ghaderi et al.2014),Shangsi(Wignall et al.1995;Jiang et al.2011;Riccardi et al.2007)Heping(Krull et al.2004).Height between LPEH and base of the Triassic has been standardized for all sections

    6 Conclusions

    A detailed carbon isotope curve across the Permian–Triassic boundary for the thoroughly studied Gartnerkofel coreshowsδ13Corgvaluesgenerally becomemorenegative upwards in parallel with theδ13Ccarbvalues showing that atmospheric and oceanic carbon dioxide controlled both.Several extremeδ13Corgexcursions,expressed in the δ13Corg–δ13Ccarbvalues are attributed to periodic input of land vegetation either by storms or tsunamis.The overall trend of both δ13Corgand δ13Ccarbvalues follow the other studied sections in the Alps and both northern and southern edges of the NeoTethys Ocean.

    AcknowledgementsWe thank R.Schmitt for donating the samples and J.Gibson for making the Cisotope measurements.We appreciate the comments of Elke Schneebeli-Hermann on an earlier draft of the manuscript.

    Compliance with ethical standards

    Conflict of interestAll authors declare that they have no conflict of interest.

    Al-Farraj A(2005)An evolutionary model for sabkha development on the north coast of the UAE.JArid Environ 63:740–755

    Algeo TJ,Hannigan R,Rowe H,Brookfield ME,Baud A,Krystyn L,Ellwood B(2007)Sequencing events across the Permian–Triassic boundary,Guryul Ravine(Kashmir,India).Palaeogeogr Palaeoclimatol Palaeoecol 252:328–346

    Baud A,Atudorei V,Sharp Z(1996)Late Permian and Early Triassic evolution of the northern Indian margin:carbon isotope and sequence stratigraphy.Geodinamica Acta(Paris)9:57–77

    Berner RA(2005)The carbon and sulfur cycles and atmospheric oxygen from Middle Permian to Middle Triassic.Am J Sci 69:3211–3217

    Boeckelmann K,Magaritz M(1991)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):dolomitization of the Permian–Triassic sequence.Abh Geologischen Bundesanstalt 45:61–68

    Brand U,Veizer J(1980)Chemical diagenesis of a multicomponent carbonate system,1.Trace elements.J Sediment Petrol 50:1219–1236

    Brandner R(1988)The Permian–Triassic boundary in the Dolomites(Southern Alps,Italy),San Antonio section.Ber Geologischen Bundesanstalt 15:49–56

    Brandner R,Horacek M,Keim L,Scholger R(2009)The Pufels/Bulla road section:deciphering environmental changes across the Permian–Triassic boundary to Olenekian by integrated litho-,magneto-and isotope stratigraphy.A field guide.Geol Alp 6:116–132

    Brandner R,Horacek M,Keim L(2012)Permian–Triassic-boundary and lower Triassic in the Dolomites,Southern Alps(Italy).JAlp Geol 55:375–400

    Brookfield ME,Algeo TJ,Hannigan R,Williams J,Bhat GM(2013)Shaken and stirred:seismites and Tsunamites at the Permian–Triassic boundary,Guryul Ravine,Kashmir,India.Palaios 28:568–582

    Buggisch W,NoéS(1986)Upper Permian and Permian–Triassic boundary of the Carnian(Bellerophon Formation,Tesero horizon,northern Italy).Mem Soc Géol d’Italia 34:91–106

    Craig H(1953)The geochemistry of the stable carbon isotopes.Geochim Cosmochim Acta 3:53–92

    Doglioni C(1987)Tectonics of the Dolomites(Southern Alps,northern Italy).JStruct Geol 9:181–193

    Ettwig KF,Butler MK,Le Paslier D,Pelletier E,Mangenot S,Kuypers MMM,Schreiber F,Dutilh BE,Zedelius J,De Beer D,Gloerich J,Wessels HJCT,Van Alen T,Luesken F,Wu ML,Van De Pas-Schoonen KT,Op Den Camp HJM,Janssen-Megens EM,Francoijs KJ,Stunnenberg H,Weissenbach J,Jetten MSM,Strous M(2010)Nitrite-driven anaerobic methane oxidation by oxygenic bacteria.Nature 464:543–548

    Farabegoli E,Tonidandel D(2012)Stratigrafia e facies al limite Permianao-Triassico nell dolomite occidentali(Provincia di Bolzano,Italia):una revisione.Geol Alp 9:120–155

    Farabegoli E,Perri MC,Posenato R(2007)Environmental and biotic changes across the Permian–Triassic boundary in western Tethys:the Bulla parastratotype,Italy.Glob Planet Change 55:109–135

    Faure G,Mensing TM,Taylor EL(1990)Carbon isotope composition of Permian and Triassic plants in silicified peat,Transantarctic Mountains.Antarct JRev 1990:26–27

    Gaetani M(2010)From Permian to Cretaceous:Africa as pivotal between extensions and rotations of Tethys and Atlantic Oceans.JVirtual Explor.https://doi.org/10.3809/jvirtex.2010.00235

    Ghaderi A,Leda L,Schobben M,Korn D,Ashouri AR(2014)Highresolution stratigraphy of the Changhsingian(Late Permian)successions of NW Iran and the Transcaucasus based on lithological features,conodonts and ammonoids.Foss Rec 17:41–57

    Gorjan P,Kaiho K,Kakegawa T,Niitsuma S,Chen ZQ,Kajiwara Y,Nicora A(2007)Paleoredox,biotic and sulfur-isotopic changes associated with the end-Permian mass extinction in the western Tethys.Chem Geol 244:483–492

    Gorjan P,Kaiho K,Chen ZQ(2008)A carbon-isotope study of an end Permian mass-extinction horizon,Bulla,northern Italy:a negativeδ13C shift prior to the marine extinction.Terra Nova 20:253–258

    Grasby SE,Sanei H,Beauchamp B(2011)Catastrophic dispersion of coal fly ash into oceansduring the Latest Permian extinction.Nat Geosci 4:104–107

    Harris PM,Purkis SJ,Ellis J,Swart PK,Reijmer JJG(2015)Mapping bathymetry and depositional facies on Great Bahama Bank.Sedimentology 62:566–589

    Herrmann E,Hochuli PA,Bucher H,Roohi G(2012)Uppermost Permian to Middle Triassic palynology of the Salt Range and Surghar Range,Pakistan.Rev Palaeobot Palynol 169:61–965

    Higgins JA,Schrag DP(2006)Beyond methane:towardsatheory for the Paleocene–Eocene thermal maximum.Earth Planet Sci Lett 245:523–537

    Holser WT,Sch?nlaub H-P,Attrep M Jr,Boeckelmann K,Klein P,Magaritz M,Orth CJ,Fenninger A,Jenny C,Kralik M,Mauritsch H,Pak E,Schramm J-M,Statteger K,Schm?ller R(1989)A unique geochemical record at the Permian/Triassic boundary.Nature 337:39–44

    Holser WT,Sch?nlaub H-P,Boeckelmann K,Magaritz M(1991)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):synthesis and conclusions.Abh Geologischen Bundesanstalt 45:213–232

    Jiang H,Lai X,Yan C,Aldridge RJ,Wignall P,Sun Y(2011)Revised conodont zonation and conodont evolution across the Permian–Triassic boundary at the Shangsi section,Guangyuan,Sichuan,South China.Glob Planet Change 77:103–115

    Kaufman AJ,Knoll AH(1995)Neoproterozoic variations in the C-isotopic composition of seawater:stratigraphic and biogeochemical implications.Precambr Res 73:27–49

    Klein P(1991)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):geochemistry of common and trace elements 1—ICP,AAS and LECO.Abh Geologischen Bundesanstalt 45:109–121

    Korte Ch,Veizer J,Leythaeuser D,Below R,Schwartz L(2001)Evolution of Permian and lower Triassicδ13C in marine and terrigenous organic material.Terra Nostra 4:30–34

    Korte C,Pande P,Kalia P,Kozur HW,Joachimski MM,Oberh?nsli H(2010)Massive volcanism at the Permian–Triassic boundary and its impact on the isotope composition of the ocean and atmosphere.JAsian Earth Sci 37:293–311

    Kozur HW(2007)Biostratigraphy and event stratigraphy in Iran around the Permian–Triassic Boundary(PTB):implications for the causes of the PTB biotic crisis.Glob Planet Change 55:155–176

    Kraus SH,Brandner R,Heubeck C,Kozur HW,Struck U,Korte C(2013)Carbon isotope signatures of Latest Permian marine successions of the Southern Alps suggest a continental runoff pulse enriched in land plant material.Foss Rec 16:97–109.https://doi.org/10.1002/mmng201300004

    Krull ES,Lehrmann DJ,Druke D,Kessel B,Yu YY,Li R(2004)Stable carbon isotope stratigraphy across the Permian–Triassic boundary in shallow marine carbonate platforms,Nanpanjiang basin,south China.Palaeogeogr Palaeoclimatol Palaeoecol 204:297–315.https://doi.org/10.1016/S0031-0182(03)00732-6

    Lebreton CCM,Borrero JC(2013)Modeling the transport and accumulation of floating debris generated by the 12 March,2011 Tohoku tsunami.Mar Pollut Bull 66:53–58

    Magaritz M,Holser WT(1991)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):carbon and Oxygen isotope variations.Abh Geologischen Bundesanstalt 45:149–163

    Magaritz M,Krishnamurthy RV,Holser WT(1992)Parallel trends in organic and inorganic carbon isotopes across the Permian/Triassic boundary.Am JSci 292:727–739

    Mette W,Roozbahani P(2012)Late Permian(Changsinghian)ostracods of the Bellerophon Formation at Seis (Siusi)(Dolomites,Italy).JMicropaleontol 31:73–87

    Muttoni G,Dallanave E,Channell JET(2013)The drift history of Adria and Africa from 280 Ma to present,Jurassic true polar wandering,and zonal climate control on Tethyan sedimentary facies.Palaeogeogr Palaeoclimatol Palaeoecol 386:415–435

    Newman JW,Parker PL,Behrens EW(1973)Organic carbon isotope ratios in Quaternary cores from the Gulf of Mexico.Geochim Cosmochim Acta 37:225–238

    NoéSU(1987)Facies and palaeogeography of the marine Upper Permian and of the Permian–Triassic boundary in the southern Alps (Bellerophon Formation, Tesero horizon). Facies 16:89–142

    O’Leary MH(1988)Carbon isotopes in photosynthesis.Bioscience 38:328–336

    Pak EN,Holser WT(1991)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):sulfur isotopes.Abh Geologischen Bundesanstalt 45:165–167

    Posenato R(2009)Survival patterns of macrobenthic marine assemblages during the end-Permian mass extinction in the western Tethys(Dolomites,Italy).Palaeogeogr Palaeoclimatol Palaeoecol 280:150–167

    Retallack GJ(2013)Permian and Triassic greenhouse crises.Gondwana Res 24:90–103

    Retallack GJ,Krull ES(2006)Carbon isotopic fractionation in lipids from methanotrophic bacteria:relevancefor interpretation of the geochemical record of biomarkers.Geol Soc Am Spec Pap 399:249–268

    Riccardi A,Kump LR,Arthur MA,D’Hondt S(2007)Carbon isotope evidence for chemocline upward excursions during the end-Permian event. Palaeogeogr Palaeoclimatol Palaeoecol 248:73–81

    Sch?nlaub H-P(1991)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):conodont biostratigraphy.Abh Geologischen Bundesanstalt 45:79–98

    Sephton MA,Looy CV,Veefkind RJ,Brinkhuis H,De Leeuw JW,Visscher H(2002)Synchronous record ofδ13C shift in the oceans and atmosphere at the end of the Permian.Geol Soc Am Spec Pap 356:455–462

    Shen J,Feng Q,Algeo TJ,Li C,Planavsky NJ,Zhou L,Zhang M(2016)Two pulses of oceanic environmental disturbance during the Permian–Triassic boundary crisis.Earth Planet Sci Lett 443:139–152

    Smith BN,Epstein S(1971)Two categories ofδ13C ratios for higher plants.Plant Physiol 47:380–384

    Song H,Wignall PB,Daoliang C,Tong J,Sun Y,Song H,He W,Tian L(2014)Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath.Sci Rep.https://doi.org/10.1038/srep04132

    Southam JR,Hay WW(1981)Global sedimentary mass balance and sealevel changes.In:Emiliani C(ed)Thesea,vol 7.Wiley,New York,pp 1617–1684

    Strauss H,Peters-Kottig W(2003)The Paleozoic to Mesozoic carbon cycle revisited:the carbon isotopic composition of terrestrial organic matter.Geochem Geophys Geosyst 4:1–15.https://doi.org/10.1029/2003GC000555

    Summons RE,Jahnke LL,Roksandic Z(1994)Carbon isotopic fractionation in lipids from methanotrophic bacteria:relevance for interpretation of the geochemical record of biomarkers.Geochim Cosmochim Acta 58:2853–2863

    Sun Y,Joachimski MM,Wignall PB,Yan Chumbo,Chen Yanlong,Jiang Haishul,Lai Xulong(2012)Lethally hot temperatures during the early Triassic greenhouse.Science 338:366–370

    Taipale SJ,Peltomaa E,Hiltunen M,Jones RI,Hahn MW,Biasi C,Brett MT(2015)Inferring phytoplankton,terrestrial plant and bacteria bulkδ13C values from compound specific analyses of lipids and fatty acids.PLoS ONE 10(7):e0133974.https://doi.org/10.1371/journal.pone.0133974

    Warren JK(2006)Evaporites:sediments,resources and hydrocarbons.Springer,Berlin

    Wickman FE(1952)Variations in the relative abundance of the carbon isotopesin plants.Geochim Cosmochim Acta 2:243–252

    Wignall PB,Hallam A,Xulong Lai,Fengqing Yang(1995)Palaeoenvironmental changes across the Permian/Triassic at Shangsi(N.Sichuan,China).Hist Biol 10:175–189

    Wilkin RT,Barnes HJ,Brantley SL(1996)The size distribution of framboidal pyrite in modern sediments:an indicator of redox conditions.Geochim Cosmochim Acta 60:3897–3912

    Wolbach WS,Anders E(1989)Elemental carbon in sediments:determination and isotopic analysis in the presence of Kerogen.Geochim Cosmochim Acta 53:1637–1647.https://doi.org/10.1016/0016-7037(89)90245-7

    Wolbach WS,Roegge DR,Gilmour I(1994)The Permian–Triassic of the Gartnerkofel-1 core(Carnic Alps,Austria):organic carbon isotope variation.In:Conference on new developments regarding the K/T event and other catastrophes in earth history.Lunar and Planetary Institute,Houston,pp 133–134

    Zheng QF,Cao CQ,Zhang MY(2013)Sedimentary features of the Permian–Triassic boundary sequence of the Meishan section in Changxing County,Zhejiang Province.Sci China Earth Sci 56:56–969

    猜你喜歡
    楊鵬圍屋內向
    黔中訪古·榕江客家圍屋
    內向的你
    呼喚生命
    贛南圍屋與閩中土堡的建筑比較研究
    稱呼
    對內向人的8個誤解
    文苑(2018年17期)2018-11-09 01:29:30
    做最好的內向者
    文苑(2018年17期)2018-11-09 01:29:28
    你回避社交,真不是因為內向
    文苑(2018年17期)2018-11-09 01:29:28
    Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target
    圍屋的月光
    嶺南音樂(2017年1期)2017-03-18 06:44:50
    在线播放国产精品三级| 丰满的人妻完整版| 欧美最黄视频在线播放免费 | 日韩欧美在线二视频 | 欧美 亚洲 国产 日韩一| 99久久精品国产亚洲精品| 欧美激情极品国产一区二区三区| 精品亚洲成国产av| 成年人午夜在线观看视频| 国产成人av激情在线播放| 午夜福利在线观看吧| 欧美在线黄色| 一边摸一边做爽爽视频免费| 国产在线精品亚洲第一网站| 在线观看日韩欧美| 两个人免费观看高清视频| 不卡一级毛片| 黄色成人免费大全| 欧洲精品卡2卡3卡4卡5卡区| 日本一区二区免费在线视频| 欧美激情高清一区二区三区| 久久久精品免费免费高清| 女同久久另类99精品国产91| 久久ye,这里只有精品| 免费少妇av软件| 亚洲 国产 在线| 亚洲精品国产区一区二| 精品国产超薄肉色丝袜足j| 999精品在线视频| 纯流量卡能插随身wifi吗| 久久婷婷成人综合色麻豆| 国产精品98久久久久久宅男小说| 亚洲欧美精品综合一区二区三区| 国产乱人伦免费视频| 少妇 在线观看| 不卡av一区二区三区| 欧美国产精品va在线观看不卡| 亚洲午夜理论影院| 精品久久久精品久久久| 欧美性长视频在线观看| av不卡在线播放| 女性被躁到高潮视频| 777久久人妻少妇嫩草av网站| 欧美激情久久久久久爽电影 | 午夜亚洲福利在线播放| 精品久久久久久久毛片微露脸| 久久中文字幕人妻熟女| 天天添夜夜摸| 欧美日韩亚洲综合一区二区三区_| 国产伦人伦偷精品视频| 久久亚洲真实| 久久九九热精品免费| 一区二区三区精品91| 欧美乱妇无乱码| 一区在线观看完整版| 极品人妻少妇av视频| 99久久精品国产亚洲精品| 少妇的丰满在线观看| 欧美中文综合在线视频| 欧美精品av麻豆av| 亚洲情色 制服丝袜| 亚洲成人手机| 91九色精品人成在线观看| 91精品国产国语对白视频| 免费一级毛片在线播放高清视频 | 精品免费久久久久久久清纯 | 日韩免费高清中文字幕av| 高清欧美精品videossex| 成年版毛片免费区| 成年版毛片免费区| 午夜精品国产一区二区电影| 91成人精品电影| 午夜91福利影院| 夫妻午夜视频| 亚洲情色 制服丝袜| 国产成人免费无遮挡视频| 在线观看舔阴道视频| 精品卡一卡二卡四卡免费| 亚洲午夜精品一区,二区,三区| 变态另类成人亚洲欧美熟女 | 成人手机av| 亚洲欧美一区二区三区黑人| 男女免费视频国产| av超薄肉色丝袜交足视频| 免费看十八禁软件| 国产精品成人在线| 国产欧美日韩综合在线一区二区| 性少妇av在线| 国产高清videossex| 欧美精品av麻豆av| 精品高清国产在线一区| 精品卡一卡二卡四卡免费| 成人永久免费在线观看视频| 手机成人av网站| 国产精品1区2区在线观看. | 亚洲精品美女久久av网站| 久久久久精品人妻al黑| 欧美在线一区亚洲| 亚洲av欧美aⅴ国产| 电影成人av| 国产精品 国内视频| 中国美女看黄片| 如日韩欧美国产精品一区二区三区| 美女 人体艺术 gogo| 日本撒尿小便嘘嘘汇集6| 熟女少妇亚洲综合色aaa.| 欧美精品av麻豆av| 亚洲精品久久午夜乱码| 亚洲午夜理论影院| 老司机深夜福利视频在线观看| 91九色精品人成在线观看| 少妇猛男粗大的猛烈进出视频| netflix在线观看网站| 久久精品亚洲熟妇少妇任你| 色播在线永久视频| 久久草成人影院| 99香蕉大伊视频| 久热爱精品视频在线9| 久久精品国产综合久久久| 免费在线观看视频国产中文字幕亚洲| 国产精品一区二区精品视频观看| 欧美日韩黄片免| 欧美+亚洲+日韩+国产| 一级a爱片免费观看的视频| 亚洲成人国产一区在线观看| 亚洲精品美女久久久久99蜜臀| 大香蕉久久网| 国产成人精品久久二区二区91| 国产欧美日韩一区二区精品| 日韩一卡2卡3卡4卡2021年| 成人国语在线视频| 最新美女视频免费是黄的| 国精品久久久久久国模美| 老司机深夜福利视频在线观看| 黑人巨大精品欧美一区二区mp4| 黑人巨大精品欧美一区二区蜜桃| 日韩成人在线观看一区二区三区| 国产不卡一卡二| 久久久精品免费免费高清| 在线天堂中文资源库| 亚洲国产精品一区二区三区在线| 两性夫妻黄色片| 国产亚洲欧美98| 多毛熟女@视频| 亚洲av片天天在线观看| 亚洲国产精品合色在线| 美女视频免费永久观看网站| 精品亚洲成a人片在线观看| a级片在线免费高清观看视频| 国产免费现黄频在线看| 一夜夜www| 青草久久国产| 99久久精品国产亚洲精品| 色尼玛亚洲综合影院| 在线观看免费高清a一片| 97人妻天天添夜夜摸| 丝袜在线中文字幕| 亚洲少妇的诱惑av| 免费在线观看完整版高清| 久久精品人人爽人人爽视色| 18在线观看网站| 热99re8久久精品国产| 国产精品一区二区在线不卡| 看片在线看免费视频| 国产精品国产高清国产av | 精品一区二区三区av网在线观看| 欧美国产精品一级二级三级| 亚洲三区欧美一区| 亚洲精品久久成人aⅴ小说| 久久久精品免费免费高清| 大香蕉久久网| 黄频高清免费视频| 亚洲精品自拍成人| 99热网站在线观看| 婷婷丁香在线五月| 成人18禁高潮啪啪吃奶动态图| 黄色a级毛片大全视频| netflix在线观看网站| 一边摸一边抽搐一进一出视频| 老司机在亚洲福利影院| 日韩中文字幕欧美一区二区| 99国产极品粉嫩在线观看| 在线观看一区二区三区激情| 亚洲片人在线观看| 亚洲av成人av| 天天添夜夜摸| 大香蕉久久成人网| 人人妻人人澡人人看| 日韩欧美在线二视频 | 午夜影院日韩av| 1024香蕉在线观看| 国产亚洲欧美在线一区二区| 亚洲av第一区精品v没综合| 亚洲一区二区三区欧美精品| 18禁黄网站禁片午夜丰满| 亚洲综合色网址| 人人妻人人添人人爽欧美一区卜| 水蜜桃什么品种好| 欧美 日韩 精品 国产| 日韩欧美国产一区二区入口| 亚洲国产精品sss在线观看 | 国精品久久久久久国模美| xxxhd国产人妻xxx| 亚洲自偷自拍图片 自拍| 12—13女人毛片做爰片一| 在线视频色国产色| 日韩欧美一区二区三区在线观看 | 18在线观看网站| 69精品国产乱码久久久| bbb黄色大片| 在线av久久热| 欧美精品av麻豆av| 国产成人精品久久二区二区免费| av免费在线观看网站| 免费在线观看影片大全网站| 亚洲视频免费观看视频| 亚洲黑人精品在线| 久久人妻熟女aⅴ| 新久久久久国产一级毛片| 日韩中文字幕欧美一区二区| 黑人巨大精品欧美一区二区蜜桃| 另类亚洲欧美激情| 视频区欧美日本亚洲| 电影成人av| av福利片在线| 18禁裸乳无遮挡动漫免费视频| 欧美中文综合在线视频| 精品国产国语对白av| 激情视频va一区二区三区| videos熟女内射| 亚洲男人天堂网一区| 国产欧美亚洲国产| 男女免费视频国产| 在线观看免费午夜福利视频| 亚洲欧洲精品一区二区精品久久久| 好看av亚洲va欧美ⅴa在| 精品国产亚洲在线| 亚洲av成人不卡在线观看播放网| 久久天堂一区二区三区四区| 日韩欧美免费精品| 一级,二级,三级黄色视频| 日本wwww免费看| 久久国产精品人妻蜜桃| 久久精品国产a三级三级三级| 黄色 视频免费看| 亚洲片人在线观看| 黄频高清免费视频| 精品一区二区三区四区五区乱码| av天堂久久9| 国产精品久久久久成人av| 午夜精品国产一区二区电影| 亚洲精品久久成人aⅴ小说| 亚洲av日韩精品久久久久久密| 日韩人妻精品一区2区三区| 老司机午夜十八禁免费视频| 中文字幕最新亚洲高清| 久久 成人 亚洲| 激情在线观看视频在线高清 | 亚洲,欧美精品.| 亚洲欧美一区二区三区黑人| 欧美日韩一级在线毛片| 免费av中文字幕在线| 一二三四在线观看免费中文在| 欧美在线黄色| 成在线人永久免费视频| 在线观看免费午夜福利视频| 久久久久精品国产欧美久久久| 欧美成狂野欧美在线观看| bbb黄色大片| 久久人人爽av亚洲精品天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 麻豆成人av在线观看| 美女视频免费永久观看网站| 国产成人系列免费观看| 午夜福利在线免费观看网站| 两性夫妻黄色片| 真人做人爱边吃奶动态| 又黄又粗又硬又大视频| 十八禁高潮呻吟视频| 国产精品.久久久| 欧美日韩成人在线一区二区| 国内久久婷婷六月综合欲色啪| 欧美 亚洲 国产 日韩一| 精品人妻1区二区| 亚洲av第一区精品v没综合| 成熟少妇高潮喷水视频| 黑人操中国人逼视频| 91字幕亚洲| 99在线人妻在线中文字幕 | 久久久久国产精品人妻aⅴ院 | 免费观看a级毛片全部| 国产高清videossex| 亚洲色图av天堂| 午夜福利欧美成人| 久久精品国产亚洲av高清一级| 在线av久久热| 好看av亚洲va欧美ⅴa在| 国产日韩欧美亚洲二区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av日韩在线播放| 在线观看免费午夜福利视频| 亚洲色图综合在线观看| 欧美日韩亚洲高清精品| 在线免费观看的www视频| av超薄肉色丝袜交足视频| 日韩欧美在线二视频 | 啦啦啦免费观看视频1| 18禁美女被吸乳视频| 亚洲成a人片在线一区二区| 国产成+人综合+亚洲专区| 久久婷婷成人综合色麻豆| 日韩欧美三级三区| 国产熟女午夜一区二区三区| 国产精品一区二区免费欧美| 悠悠久久av| 在线天堂中文资源库| 99热国产这里只有精品6| 看免费av毛片| 精品国产亚洲在线| 深夜精品福利| 波多野结衣一区麻豆| 日日摸夜夜添夜夜添小说| 12—13女人毛片做爰片一| 老汉色av国产亚洲站长工具| 香蕉国产在线看| 真人做人爱边吃奶动态| 欧美+亚洲+日韩+国产| 久久中文字幕一级| 成熟少妇高潮喷水视频| 亚洲欧美日韩另类电影网站| 欧美激情 高清一区二区三区| 亚洲色图 男人天堂 中文字幕| 久久热在线av| 一进一出抽搐gif免费好疼 | 国产91精品成人一区二区三区| 高清毛片免费观看视频网站 | 黄色丝袜av网址大全| 成人永久免费在线观看视频| 国产一区有黄有色的免费视频| 大陆偷拍与自拍| 欧美一级毛片孕妇| 老司机在亚洲福利影院| 国产精品国产av在线观看| 欧美成狂野欧美在线观看| 精品国产乱子伦一区二区三区| 欧美 日韩 精品 国产| 亚洲精品美女久久久久99蜜臀| 18禁黄网站禁片午夜丰满| 亚洲成人手机| 欧美在线黄色| 日韩大码丰满熟妇| 欧美精品av麻豆av| 成人av一区二区三区在线看| 成年人免费黄色播放视频| 免费在线观看亚洲国产| 老司机深夜福利视频在线观看| 国产又色又爽无遮挡免费看| 亚洲aⅴ乱码一区二区在线播放 | 涩涩av久久男人的天堂| 久久中文字幕人妻熟女| 可以免费在线观看a视频的电影网站| 成人永久免费在线观看视频| 一级a爱片免费观看的视频| 99国产精品一区二区三区| 欧美日韩亚洲高清精品| 亚洲av电影在线进入| 两人在一起打扑克的视频| 欧美性长视频在线观看| av视频免费观看在线观看| 亚洲人成电影观看| 真人做人爱边吃奶动态| 免费黄频网站在线观看国产| 交换朋友夫妻互换小说| 伦理电影免费视频| 亚洲精品国产区一区二| 俄罗斯特黄特色一大片| 成年女人毛片免费观看观看9 | 涩涩av久久男人的天堂| 91av网站免费观看| 午夜成年电影在线免费观看| 动漫黄色视频在线观看| 亚洲av电影在线进入| 高清av免费在线| 国产亚洲av高清不卡| 国产三级黄色录像| 欧美丝袜亚洲另类 | 51午夜福利影视在线观看| 欧美成人免费av一区二区三区 | 美女午夜性视频免费| 18禁裸乳无遮挡免费网站照片 | 国产欧美日韩一区二区精品| 国精品久久久久久国模美| videos熟女内射| 国产伦人伦偷精品视频| 亚洲国产中文字幕在线视频| 亚洲三区欧美一区| 色94色欧美一区二区| 婷婷丁香在线五月| 国产一区二区三区视频了| 90打野战视频偷拍视频| 亚洲综合色网址| 动漫黄色视频在线观看| 亚洲av电影在线进入| 黑人猛操日本美女一级片| 久久婷婷成人综合色麻豆| 亚洲av第一区精品v没综合| 丰满迷人的少妇在线观看| 新久久久久国产一级毛片| 亚洲aⅴ乱码一区二区在线播放 | 国产三级黄色录像| 18禁裸乳无遮挡动漫免费视频| 精品少妇一区二区三区视频日本电影| 久久久久精品人妻al黑| 18禁黄网站禁片午夜丰满| 免费久久久久久久精品成人欧美视频| 欧美成人午夜精品| 一区二区日韩欧美中文字幕| 成年人黄色毛片网站| 日韩免费高清中文字幕av| 国产蜜桃级精品一区二区三区 | 侵犯人妻中文字幕一二三四区| 五月开心婷婷网| 日韩欧美在线二视频 | 后天国语完整版免费观看| 精品高清国产在线一区| 在线观看一区二区三区激情| 天天操日日干夜夜撸| 国精品久久久久久国模美| 午夜影院日韩av| 狠狠狠狠99中文字幕| 欧美国产精品一级二级三级| 飞空精品影院首页| 在线看a的网站| 国产99久久九九免费精品| 欧美精品高潮呻吟av久久| 久久精品亚洲av国产电影网| 高清欧美精品videossex| 免费在线观看完整版高清| 日本撒尿小便嘘嘘汇集6| 亚洲欧美精品综合一区二区三区| 午夜福利免费观看在线| 亚洲成国产人片在线观看| 亚洲精品在线美女| 国产免费现黄频在线看| 亚洲avbb在线观看| 欧美日韩亚洲高清精品| 人成视频在线观看免费观看| 国产成人免费无遮挡视频| 一级a爱片免费观看的视频| bbb黄色大片| √禁漫天堂资源中文www| 悠悠久久av| 久久天躁狠狠躁夜夜2o2o| 一级毛片高清免费大全| 黄色女人牲交| 亚洲欧美激情综合另类| 亚洲五月色婷婷综合| 午夜亚洲福利在线播放| av国产精品久久久久影院| 精品视频人人做人人爽| 久99久视频精品免费| 女同久久另类99精品国产91| 中文字幕另类日韩欧美亚洲嫩草| 午夜免费鲁丝| 一区福利在线观看| 亚洲人成伊人成综合网2020| 天堂俺去俺来也www色官网| 久久人妻熟女aⅴ| 久久 成人 亚洲| 久久中文看片网| 中出人妻视频一区二区| 好男人电影高清在线观看| a在线观看视频网站| 欧美不卡视频在线免费观看 | 国产精品1区2区在线观看. | 99香蕉大伊视频| 在线观看免费高清a一片| 宅男免费午夜| 大片电影免费在线观看免费| 极品少妇高潮喷水抽搐| 国产欧美日韩一区二区精品| 女性被躁到高潮视频| 人人妻人人澡人人爽人人夜夜| 久久热在线av| 久久亚洲精品不卡| 在线av久久热| 精品电影一区二区在线| av超薄肉色丝袜交足视频| 国产亚洲精品一区二区www | 精品第一国产精品| 午夜福利欧美成人| 老司机午夜十八禁免费视频| 不卡一级毛片| 一边摸一边抽搐一进一小说 | 日韩欧美免费精品| 看片在线看免费视频| 日韩欧美三级三区| 国产男女内射视频| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久久久久久大奶| 黑人欧美特级aaaaaa片| 在线观看免费视频日本深夜| 国产主播在线观看一区二区| 宅男免费午夜| 日韩大码丰满熟妇| 色综合欧美亚洲国产小说| 国产精品乱码一区二三区的特点 | 人人妻人人澡人人看| 久热爱精品视频在线9| 国内毛片毛片毛片毛片毛片| 99精品在免费线老司机午夜| 18禁国产床啪视频网站| 国产男女内射视频| 国产成人系列免费观看| 久久这里只有精品19| 亚洲专区中文字幕在线| 久久久国产成人免费| 国产亚洲精品久久久久久毛片 | 中文字幕高清在线视频| 午夜福利,免费看| 国内久久婷婷六月综合欲色啪| 精品亚洲成国产av| 国产精品秋霞免费鲁丝片| 身体一侧抽搐| 亚洲av熟女| 成人永久免费在线观看视频| 国产亚洲欧美在线一区二区| 91老司机精品| a级片在线免费高清观看视频| 高清av免费在线| 久久国产精品男人的天堂亚洲| 99热网站在线观看| 中文亚洲av片在线观看爽 | 欧美日韩瑟瑟在线播放| 俄罗斯特黄特色一大片| 日日摸夜夜添夜夜添小说| 精品乱码久久久久久99久播| √禁漫天堂资源中文www| 国产精品久久久av美女十八| av片东京热男人的天堂| 老熟女久久久| 日韩有码中文字幕| 女同久久另类99精品国产91| 最近最新中文字幕大全免费视频| 国产在视频线精品| 黄色视频,在线免费观看| 成人精品一区二区免费| 国产精品二区激情视频| 国产精品永久免费网站| 久久狼人影院| 日本欧美视频一区| 在线av久久热| 波多野结衣av一区二区av| 性少妇av在线| 丝瓜视频免费看黄片| 精品一区二区三区四区五区乱码| 精品电影一区二区在线| 国产欧美日韩一区二区精品| 精品国产亚洲在线| 国产精品成人在线| 久久久精品区二区三区| 欧美日韩视频精品一区| 国产无遮挡羞羞视频在线观看| 麻豆av在线久日| 变态另类成人亚洲欧美熟女 | 一级黄色大片毛片| 日韩人妻精品一区2区三区| 国产精品99久久99久久久不卡| 精品福利永久在线观看| 美女国产高潮福利片在线看| 99国产精品一区二区蜜桃av | 狠狠婷婷综合久久久久久88av| 无限看片的www在线观看| 亚洲av第一区精品v没综合| 亚洲va日本ⅴa欧美va伊人久久| 99国产精品一区二区蜜桃av | 亚洲欧美一区二区三区黑人| 免费日韩欧美在线观看| 99国产精品一区二区蜜桃av | 亚洲黑人精品在线| 97人妻天天添夜夜摸| 久久久久国内视频| 精品国产超薄肉色丝袜足j| 午夜精品久久久久久毛片777| 午夜精品国产一区二区电影| 99久久国产精品久久久| 亚洲少妇的诱惑av| 可以免费在线观看a视频的电影网站| 天天影视国产精品| 日韩欧美在线二视频 | 午夜久久久在线观看| 久久狼人影院| 搡老乐熟女国产| 久久久久精品人妻al黑| 国产激情欧美一区二区| 国产精品.久久久| 咕卡用的链子| 大型av网站在线播放| 欧美精品亚洲一区二区| 1024视频免费在线观看| 午夜两性在线视频| 国产欧美日韩一区二区精品| 自线自在国产av| 国产97色在线日韩免费| 国产一区在线观看成人免费| 多毛熟女@视频| 99国产精品免费福利视频| 在线观看免费高清a一片| 极品教师在线免费播放| 欧美激情久久久久久爽电影 | 纯流量卡能插随身wifi吗| 性少妇av在线| 亚洲片人在线观看| 丰满迷人的少妇在线观看| 女人久久www免费人成看片|