• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic mechanical behaviors of high-nitrogen austenitic stainless steel under high temperature and its constitutive model

    2018-07-04 01:08:18WANGYanliJIAGuzhaiZHANGTingWANMingmingJIWeiMUXiaoming
    爆炸與沖擊 2018年4期
    關鍵詞:材料科學兵器奧氏體

    WANG Yanli, JIA Guzhai, ZHANG Ting, WAN Mingming, JI Wei, MU Xiaoming

    (No. 52 Institute of China Ordnance Industries, Yantai 264003, Shandong, China)

    High-nitrogen austenitic stainless steels (HNS) are becoming important engineering materials. Their excellent properties, such as high strength, ductility, toughness and work hardening, non-magnetism, good corrosion resistance and reduced tendency to grain boundary sensitization are of great interest for sea water systems, chemical and nuclear industries, and military application[1]. As a potential armor protective material, High-nitrogen stainless steels will suffer from various dynamic loads such as explosive blast or projectile impact. In the process of projectile impact, the materials will endure high strain rates and high temperatures. In these conditions, the mechanical properties of materials could be different from quasi-static mechanical properties. Therefore, it is significant to find out about the mechanical behaviors of HNS in both low and high rates deformation processes.

    Investigations of HNS’s mechanical behavior have been carried out for many years, and some achievements have been made. Tomotaetal.[2]discovered a trans-granular cleavags like fracture facet in Cr-Mn-N austenitic stainless steels, which is a totally different fracture mechanism. Speideletal.[3]studied the dynamic mechanical behavior of high-nitrogen steel by ballistic tests, and the results show that the material’s strength increases strongly under high strain rate impact. The material exhibits an obvious impact hardening phenomenon in the projectile impact area, which can enhence its protection capability obviously. Frechardetal.[1]discovered that B66 high-nitrogen steel has high-strain hardening rate, good ductility and great rate sensitivity. They also studied the temperature sensitivity of the material over a large temperature range from 77 K to 673 K. Pengetal.[4]studied two kinds of high-nitrogen steels (air cooling and water cooling separately), and found that the flow stresses of two materials are much sensitive to the strain rate. The materials present the strain hardening behaviors, but the dynamic yield stress of the materials has relatively weak strain rate sensitivity. Chenetal.[5]studied the ballistic capability of high-nitrogen steel plates (with the mass fraction of nitrogen of 0.56%) of various thicknesses, and found that the impact hardening behaviors of the material is obvious, and the material has shown excellent protection capability. But up to now, few studies are documented on the dynamic mechanical behavior and constitutive relation of HNS under high temperature tests.

    In this study, dynamic tensile tests were performed to investigate the deformation behavior of HNS over a large range of strain rates and temperatures. The sensitivities of HNS to temperature and strain rate are investigated, and a modified Johnson-Cook constitutive model of HNS was established.

    1 Experimental procedure

    1.1 Material

    The high-nitrogen austenitic stainless steel used in this study was manufactured byBeijingIron&SteelResearchAcademy. The nominal chemical composition of as-received ingots is shown in Table 1. The as-received material was supplied as plates of 20 mm thickness.

    表1 實驗用高氮奧氏體不銹鋼的主要化學成分Table 1 Chemical composition of the as-received high-nitrogen austenitic stainless steel

    1.2 Tests

    Quasi-static tensile tests were performed on a material test system (MTS) at deformation rates of 0.5, 2, 5, 20, 40 and 60 mm/min, respectively. Quasi-static tensile properties of HNS were measured on two kinds of smooth cylindrical specimens, with diameter 10mm-gauge length 70 mm and diameter 4mm-gauge length 30 mm, respectively.

    Dynamic tests were carried out at the strain rates of 102-103s-1by using a split Hopkinson tension bar equipment (SHTB)[6-8]. The illustraiton of the SHTB equipment is shown in Fig.1. The equipment consists of a gas gun, an incident bar, a transmitted bar, a striker, a buffer bar, a shock absorber, and strain gauge circuits to measure the strain signals in the bars. In the tests, the gas gun launches the tubular striker to impact the incident bar. The transfer flange transfers the incoming elastic compressive stress wave into the elastic tensile stress, which then travels through the incident bar toward the specimen. When the tensile stress wave propagates to the interface between the bar and the specimen, part of the wave is transmitted through the transmission bar as a tensile wave, and the rest is reflected back to the incident bar as a compressive wave. The stress wave reverberates in the specimen until a nominally homogeneous stress state is achieved. The strain signals were transferred into electrical signals by high dynamic strain indicator; the electrical signals were recorded by the multi-channel transient digital recorder.

    For the temperature testing, the specimens were enclosed in a clamshell radiant-heating furnace with an internal diameter of 100 mm and with a heating wire of 500 mm in length. The specimen’s temperature was monitored by a thermocouple placed inside the furnace and contacted with the specimen’s surface. A variable transformer was used to control the temperature of the furnace. In order to reduce the temperature’s influence on the strain gauges, a circulating water device was used to cool the ends of the bar which is heated.

    2 Results and discussion

    2.1 Effects of strain rate

    True stress-strain curves of HNS obtained from tensile tests at various strain rates under room temperature are presented in Fig.2. The curves show nearly the same flow-stress trend for both dynamic tests and quasi-static tests. But the strain hardening is more evident in the quasi-static tests than that in the dynamic tests. At high strain rate, the flow stress increases little as the plastic strain increases; the curve is nearly parallel to the strain axis when the strain rate exceeds 103s-1. It also shows that, as the strain rate increases, the flow stress increases accordingly. The dynamic curves show a distinct strain rate effect on the flow stress compared with the quasi-static curves. The yield stress is about 857.1 MPa at the strain rate 4.8×10-3s-1, and the Young’s modulus of HNS is 204 GPa. The flow stress level at high strain rate is about 500 MPa higher than that obtained at low strain rate.

    Since the stress-strain curves from the dynamic tests show no evident yield platform and it is not accurate enough for their elastic sections, it is not easy to locate the yield point in a curve directly. In this study, two straight lines were used to assign the yield point, one fitted with the plastic section of the stress-strain curve, and the other plotted at strain of 0.2%, the slope of which is the value of HNS’s Young’s modulus (204 GPa). The stress value of the cross point of the two straight lines was defined as the yield stress. This method is shown in Fig.3.

    It can be seen that the dynamic strain rate sensitivity is higher than the low strain rate sensitivity. This difference in slope implies that different deformation mechanisms govern in these two ranges. The dominant rate-controlling mechanism is thermally activated at low strain rate and it tends towards a dislocation of viscous damping when the strain rate increases continuously.

    2.2 Effects of temperature

    Fig.5 shows the curves of true stress via true strain at various temperatures from 293 K to 873 K, at the same striker driving-pressure (1.3 MPa). It also gives the values of strain rates corresponding to the tests at each temperature. It shows that as the temperature increases, the strain rate increases as well though under the same driving-pressure. That is caused by the high deformation rate in dynamic tests at high temperature. Thus, for the dynamic tests under high temperatures, the deformation behavior of the material is influenced simultaneously by both strain rate and temperature.

    The yield stress of each test at high temperature was obtained by using the same method introduced in Chapeter 2.1. Fig.6 presents the influence of strain rate and temperature on yield stress. The projections of data points on the vertical coordinate plane were acquired. From that, the yield stress increases rapidly with the decreasing of temperature. it means that the thermal softening effect plays a key role in the dynamic deformation process in high temperature tests. Namely, the strain rate hardening effect was very weak in these conditions because all the high temperature tests were under the same striker driving-pressure, and the changes of strain rates of the tests were not much. It can be inferred that, over a large range of strain rate and temperature, the material’s deforming mechanism was dominated by the competitive relation between the thermal softening effect and the strain rate hardening effect.

    2.3 Constitutive model

    The Johnson-Cook model relates the three mechanisms, i.e. the work hardening, the strain rate hardening, and the thermal softening, that are responsible for the deformation behavior of materials. The main advantage of this model is that, it is relatively easy to correlate with the minimum of experimental data in the form of stress-strain curves at different strain rates and temperatures. The Johnson-Cook model assumes that the slope of the flow stress curve is independently affected by strain hardening, strain rate hardening, and thermal softening behaviors[9]and the law is given as

    (1)

    Fig.7 gives the plots of the influence of strain rate on the yield stress, and the fitted curve by the Johnson-Cook model. The value of the parameterCis obtained as 0.046. From Fig.7, it can be seen that the Johnson-Cook model cannot be fitted with the test data very well, because the material has different sensitivities at low strain rates and high strain rates. In this study, a modified model was used, the data obtained from low strain rate tests and high strain rate tests were fitted separately by two straight lines. The parametersC1=0.021 andC2=0.318 were used to represent the slopes of the two straight line respectively.

    From Chapter 2.2, it can be known that, the deformation behavior of the material is influenced by strain rate and temperature simultaneously in the dynamic tests under high temperatures. Thus, the yield stress, which acquired directly from test data, contains the effect of strain rate, though the strain rate of the tests were not much different. In the Johnson-Cook model, it is assumed that the slope of the flow stress curve is independently affected by the strain hardening, the strain rate hardening, and the thermal softening behaviors. Thus the yield stress, influenced by temperature, can be obtained by using the Johnson-Cook model to uncouple the strain rate effect. Fig.8 plots the influence of dimensionless temperature on yield stress. By fitting the data withσeq=A(1-T*m), the parameterm=0.55 is obtained.

    In this study, the yield stress data at low and intermediate strain rates were not provided, for the lacking of appropriate experimental means. The Johnson-Cook model of HNS obtained above, which described the mechanical behavior at quasi-static and high strain rate, can help predict the flow behavior of HNS under low and intermediate strain rate range.

    2.4 Verification of constitutive model

    The Johnson-Cook model of HNS was obtained by correlating the tests data, which contains two expressions at different strain rates. The modified Johnson-Cook model is given as follows:

    (2)

    By comparing the equivalent stress-strain curve from the tests with the modified Johnson-Cook model, the accuracy of the model can be verified. Fig.9 shows the test curves at different strain rates at room temperature and the relevant curves obtained from the modified Johnson-Cook model. In the Johnson-Cook model, the necking phenomenon is not taken into account, thus only the comparison of the curves before necking makes sense. It is noted that the model presicts well about the test results when the strain rate is below 103s-1. As the strain rate inceases, there is obvious high frequency oscillation in the test curves, which is caused by the screw connection between the specimen and the Hopkinson bars. It causes the flow stress value of the curves’ initial part higher than the predicted value from the model. Fig.10 plots the curves of tests at high temperatures and the relevant curves obtained from the modified Johnson-Cook model. It can be seen that the modified model can predict the material’s dynamic mechanical behavior at high temperature very well.

    Generally the modified Johnson-Cook model can describe the dynamic mechanical behavior of HNS properly.

    3 Conclusion

    It has been shown that the flow stress of HNS is strongly influenced by strain rate and temperature. This material exhibits a great strain rate hardening effect, and its sensitivity at high strain rates is much higher than that at low strain rates. The thermal softening effect seems to be a key role than strain rate hardening effect in dynamic tests at high temperature. The modified Johnson-Cook model of HNS was obtained. Verified with test data, this model describes the observed flow behavior of HNS quite satisfactorily.

    Reference

    [1] FRECHARD S, REDJAIMIA A. Dynamical behaviour and microstructural evolution of a nitrogen-alloyed austenitic stainless steel[J]. Materials Science & Engineering, 2008,480(2008):89-95. DOI: 10.1016/j.msea.2007.07.014.

    [2] TOMOTA Y, NAKANO J, XIA Y, et al. Unusual strain rate dependence of low temperature fracture behavior in high nitrogen bearing austenitic steels[J]. Acta Materialia, 1998,46(9):3099-3108. DOI: 10.1016/S1359-6454(98)00005-6.

    [3] SPEIDEL M O, KOWANDA C, DIENER M. High nitrogen steel 2003[M]. Swiss: Institute of Metallurgy, 2003:63.

    [4] PENG X. Dynamic pressure tests and constitution relation of high-nitrogen alloy steel[D]. Chengdu: Southwest Jiaotong University, 2009:23-38.

    [5] 陳巍,劉燕林,齊志望,等.高氮奧氏體裝甲鋼抗彈性能研究[J].兵器材料科學與工程,2009,32(6):51-55.

    CHEN Wei, LIU Yanlin, QI Zhiwang, et al. Research on ballistic behavior of high nitrogen austenitic armor steel[J]. Ordnance Material Science and Engineering, 2009,32(6):51-55.

    [6] GRAY G T. High-strain-rate testing of materials: the split-Hopkinson pressure bar[M]. 2nd ed. New York: John Wiley Press, 2000:96-110. DOI: 10.1002/0471266965.com023.

    [7] NICHOLAS T. Tensile testing of materials at high rates of strain[J]. Experimental Mechanics, 1981,21(5):177-185. DOI: 10.1007/BF02326644.

    [8] TANG X, PRAKASH V, LEWANDOWSKI J. Dynamic tensile deformation of aluminum alloy 6061-T6 and 6061-OA[J]. Journal of Experimental Mechanics, 2007,22(3/4):305-313.

    [9] OWOLABI G, ODOH D, ODESHI A, ET AL. Occurrence of dynamic shear bands in AISI 4340 steel under impact loads[J]. World Journal of Mechanics, 2013,211(3):139-145. DOI: 10.4236/wjm.2013.32011.

    猜你喜歡
    材料科學兵器奧氏體
    中海油化工與新材料科學研究院
    材料科學與工程學科
    福建工程學院材料科學與工程學科
    《材料科學與工藝》2017年優(yōu)秀審稿專家
    兵器圖解
    兵器圖解
    GGG-NiMn13 7無磁奧氏體球墨鑄鐵熔煉工藝研究
    Ghosts in the shell: identif i cation of microglia in the human central nervous system by P2Y12 receptor
    兵器重要編譯報告
    超級奧氏體不銹鋼254SMo焊接接頭耐蝕性能
    焊接(2016年9期)2016-02-27 13:05:20
    中文欧美无线码| 老熟妇仑乱视频hdxx| 欧美 日韩 精品 国产| 欧美+亚洲+日韩+国产| 国产一区有黄有色的免费视频| 久久久精品免费免费高清| 成年人免费黄色播放视频| 男女之事视频高清在线观看| 久久天躁狠狠躁夜夜2o2o| 免费在线观看亚洲国产| 91老司机精品| 丝袜美足系列| 日韩中文字幕欧美一区二区| 国产一区有黄有色的免费视频| 亚洲中文av在线| 最近最新免费中文字幕在线| 精品久久蜜臀av无| 真人做人爱边吃奶动态| 欧美性长视频在线观看| 18禁观看日本| 在线免费观看的www视频| 国产欧美亚洲国产| av超薄肉色丝袜交足视频| 国产欧美日韩综合在线一区二区| 99riav亚洲国产免费| 国产单亲对白刺激| 少妇猛男粗大的猛烈进出视频| www日本在线高清视频| 身体一侧抽搐| 无遮挡黄片免费观看| 精品国产一区二区三区四区第35| 精品人妻1区二区| 国产不卡一卡二| 国产精品香港三级国产av潘金莲| 国产有黄有色有爽视频| 两性夫妻黄色片| 最新在线观看一区二区三区| 最新在线观看一区二区三区| 多毛熟女@视频| 久久久久久久久免费视频了| 真人做人爱边吃奶动态| 两性午夜刺激爽爽歪歪视频在线观看 | a级毛片黄视频| 国产精品99久久99久久久不卡| 免费在线观看影片大全网站| 日韩制服丝袜自拍偷拍| 免费少妇av软件| 91麻豆精品激情在线观看国产 | 欧美国产精品一级二级三级| 久久国产精品影院| 亚洲av美国av| 国产成人一区二区三区免费视频网站| 亚洲自偷自拍图片 自拍| 精品亚洲成国产av| 国产成人精品无人区| 久久久久国产一级毛片高清牌| 美国免费a级毛片| av中文乱码字幕在线| 亚洲av成人av| 日韩欧美一区二区三区在线观看 | 亚洲国产精品合色在线| 岛国在线观看网站| 久久国产精品影院| 亚洲成人免费电影在线观看| 午夜视频精品福利| 日韩制服丝袜自拍偷拍| 一a级毛片在线观看| 国产蜜桃级精品一区二区三区 | 久久午夜综合久久蜜桃| 色综合婷婷激情| 成年人午夜在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 老司机靠b影院| 久久国产乱子伦精品免费另类| 一区福利在线观看| 91成年电影在线观看| 久久精品亚洲av国产电影网| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看亚洲国产| 可以免费在线观看a视频的电影网站| 亚洲第一av免费看| 最新美女视频免费是黄的| 国产精品免费大片| 91老司机精品| 日日爽夜夜爽网站| 精品高清国产在线一区| 欧美 亚洲 国产 日韩一| 成人av一区二区三区在线看| 久久人人97超碰香蕉20202| 精品国产一区二区三区四区第35| 欧美黑人欧美精品刺激| 日韩视频一区二区在线观看| 国产精品自产拍在线观看55亚洲 | 中文字幕av电影在线播放| 超碰成人久久| 精品一区二区三区视频在线观看免费 | 中文字幕精品免费在线观看视频| 一区二区日韩欧美中文字幕| 一级作爱视频免费观看| 色综合婷婷激情| 免费黄频网站在线观看国产| 国产黄色免费在线视频| 免费一级毛片在线播放高清视频 | 国产成人欧美| 天天添夜夜摸| 人妻久久中文字幕网| 欧美精品亚洲一区二区| 人妻一区二区av| av福利片在线| 久久精品亚洲精品国产色婷小说| 国产不卡一卡二| 视频在线观看一区二区三区| 精品一区二区三区av网在线观看| 日韩制服丝袜自拍偷拍| 久久亚洲真实| 日日爽夜夜爽网站| 亚洲国产看品久久| 1024视频免费在线观看| 怎么达到女性高潮| 色在线成人网| 桃红色精品国产亚洲av| 男男h啪啪无遮挡| 亚洲成人免费av在线播放| 欧美在线一区亚洲| av国产精品久久久久影院| 99国产极品粉嫩在线观看| 久久人妻福利社区极品人妻图片| 国产亚洲欧美精品永久| 免费在线观看影片大全网站| 99精国产麻豆久久婷婷| 黄色丝袜av网址大全| 国产成人欧美| 精品国产乱码久久久久久男人| 校园春色视频在线观看| 一进一出抽搐gif免费好疼 | 久久草成人影院| 欧美精品啪啪一区二区三区| 国产精品二区激情视频| 老司机午夜福利在线观看视频| 久热爱精品视频在线9| 亚洲男人天堂网一区| 国产精品美女特级片免费视频播放器 | 中文字幕色久视频| 国产亚洲一区二区精品| 99精国产麻豆久久婷婷| av天堂久久9| 午夜视频精品福利| 亚洲黑人精品在线| 少妇猛男粗大的猛烈进出视频| 国产在线观看jvid| 后天国语完整版免费观看| 在线观看舔阴道视频| 免费少妇av软件| 最新的欧美精品一区二区| 91精品国产国语对白视频| 天天影视国产精品| 日韩大码丰满熟妇| 欧美日韩国产mv在线观看视频| 美女午夜性视频免费| 99riav亚洲国产免费| 一级毛片高清免费大全| 少妇被粗大的猛进出69影院| 99精品久久久久人妻精品| 无限看片的www在线观看| 他把我摸到了高潮在线观看| 欧美日韩一级在线毛片| 成年人午夜在线观看视频| 人妻一区二区av| 日本vs欧美在线观看视频| 老司机在亚洲福利影院| 国产三级黄色录像| www.熟女人妻精品国产| 极品少妇高潮喷水抽搐| 视频在线观看一区二区三区| 成人永久免费在线观看视频| 日本精品一区二区三区蜜桃| 久久久国产一区二区| 999久久久精品免费观看国产| 国产成人精品在线电影| 法律面前人人平等表现在哪些方面| 999精品在线视频| 中文字幕另类日韩欧美亚洲嫩草| 国产高清国产精品国产三级| 国产日韩欧美亚洲二区| 久久精品成人免费网站| 欧美 亚洲 国产 日韩一| 亚洲,欧美精品.| 热99re8久久精品国产| 亚洲国产精品合色在线| 在线天堂中文资源库| 中文字幕色久视频| 午夜精品国产一区二区电影| 国产精品久久视频播放| 精品久久久精品久久久| 午夜福利一区二区在线看| 欧美精品人与动牲交sv欧美| 精品无人区乱码1区二区| 99精国产麻豆久久婷婷| 桃红色精品国产亚洲av| 亚洲综合色网址| 精品国内亚洲2022精品成人 | 亚洲专区中文字幕在线| 在线永久观看黄色视频| 欧美日韩亚洲综合一区二区三区_| 男人操女人黄网站| 国产高清videossex| av免费在线观看网站| 日韩欧美一区二区三区在线观看 | 丰满迷人的少妇在线观看| 窝窝影院91人妻| 午夜免费成人在线视频| 美女午夜性视频免费| 满18在线观看网站| 欧美日韩亚洲国产一区二区在线观看 | 纯流量卡能插随身wifi吗| 国产真人三级小视频在线观看| 精品国产乱码久久久久久男人| 婷婷丁香在线五月| 激情在线观看视频在线高清 | 成人18禁高潮啪啪吃奶动态图| 精品福利观看| 一区二区日韩欧美中文字幕| 啪啪无遮挡十八禁网站| 高清av免费在线| 午夜91福利影院| 欧美 日韩 精品 国产| 精品电影一区二区在线| 欧美老熟妇乱子伦牲交| av超薄肉色丝袜交足视频| 日韩一卡2卡3卡4卡2021年| 中文字幕高清在线视频| 午夜影院日韩av| 不卡一级毛片| 夫妻午夜视频| 纯流量卡能插随身wifi吗| 国产成人精品无人区| 在线观看免费日韩欧美大片| 看免费av毛片| 欧美亚洲日本最大视频资源| 五月开心婷婷网| 国产精品秋霞免费鲁丝片| 久久青草综合色| 成人18禁高潮啪啪吃奶动态图| 一边摸一边做爽爽视频免费| 欧美黄色片欧美黄色片| 热99re8久久精品国产| 看免费av毛片| 涩涩av久久男人的天堂| 啪啪无遮挡十八禁网站| 91麻豆av在线| 亚洲午夜精品一区,二区,三区| 一a级毛片在线观看| 中国美女看黄片| 人人澡人人妻人| 又黄又爽又免费观看的视频| 涩涩av久久男人的天堂| 日韩视频一区二区在线观看| 丝袜人妻中文字幕| 国产精品久久电影中文字幕 | 麻豆成人av在线观看| 高清视频免费观看一区二区| 午夜精品在线福利| 久久国产精品人妻蜜桃| 激情视频va一区二区三区| 深夜精品福利| 在线观看免费日韩欧美大片| 午夜免费鲁丝| 国产无遮挡羞羞视频在线观看| 亚洲熟妇熟女久久| 日本一区二区免费在线视频| 亚洲精品中文字幕在线视频| 欧美日韩成人在线一区二区| 黄色成人免费大全| 黄色视频,在线免费观看| 欧美另类亚洲清纯唯美| 欧美日韩瑟瑟在线播放| 国产人伦9x9x在线观看| 久久精品亚洲精品国产色婷小说| 国产真人三级小视频在线观看| 丝袜人妻中文字幕| 少妇猛男粗大的猛烈进出视频| 成年动漫av网址| 午夜精品在线福利| 怎么达到女性高潮| 国产在线一区二区三区精| 黄频高清免费视频| 伦理电影免费视频| 91字幕亚洲| 国产成人精品久久二区二区91| 成人影院久久| 国产欧美日韩一区二区三区在线| 51午夜福利影视在线观看| 亚洲在线自拍视频| 欧美亚洲日本最大视频资源| 久久精品国产亚洲av高清一级| 久久热在线av| 91字幕亚洲| 最近最新免费中文字幕在线| 王馨瑶露胸无遮挡在线观看| 日韩欧美一区视频在线观看| 免费看十八禁软件| 中文字幕高清在线视频| 国产精品久久久人人做人人爽| 日本一区二区免费在线视频| 国产精品国产高清国产av | 人人妻人人澡人人看| 一边摸一边抽搐一进一出视频| 黄片小视频在线播放| 日本vs欧美在线观看视频| 黄色成人免费大全| 亚洲精品粉嫩美女一区| 成年女人毛片免费观看观看9 | 免费在线观看完整版高清| 在线观看日韩欧美| 国产亚洲精品一区二区www | 免费av中文字幕在线| 久久婷婷成人综合色麻豆| 狠狠婷婷综合久久久久久88av| 人妻久久中文字幕网| 精品国产超薄肉色丝袜足j| 90打野战视频偷拍视频| 老司机福利观看| 在线观看www视频免费| 久久中文字幕一级| 国产人伦9x9x在线观看| www.自偷自拍.com| 麻豆av在线久日| 色播在线永久视频| 他把我摸到了高潮在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 色综合婷婷激情| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩一区二区精品| 色综合婷婷激情| 他把我摸到了高潮在线观看| 免费在线观看亚洲国产| 美女国产高潮福利片在线看| 亚洲精品粉嫩美女一区| 国产男女内射视频| 亚洲中文字幕日韩| 久久香蕉国产精品| 国产激情久久老熟女| 久久香蕉精品热| 亚洲欧美激情综合另类| 又紧又爽又黄一区二区| 捣出白浆h1v1| 久久精品国产99精品国产亚洲性色 | 中文字幕制服av| 在线看a的网站| 亚洲色图综合在线观看| 国产一区在线观看成人免费| 如日韩欧美国产精品一区二区三区| 亚洲自偷自拍图片 自拍| 亚洲男人天堂网一区| 十分钟在线观看高清视频www| 欧美日韩亚洲高清精品| 99精品久久久久人妻精品| 亚洲国产欧美日韩在线播放| 国产极品粉嫩免费观看在线| 99国产极品粉嫩在线观看| 久久这里只有精品19| 男人舔女人的私密视频| 色婷婷av一区二区三区视频| 一边摸一边做爽爽视频免费| 黄频高清免费视频| 久久久国产成人免费| 中文欧美无线码| av电影中文网址| 国产精品久久久人人做人人爽| 日本wwww免费看| 老司机靠b影院| 天堂中文最新版在线下载| 伦理电影免费视频| 精品亚洲成a人片在线观看| 久久香蕉激情| 天堂俺去俺来也www色官网| 69av精品久久久久久| 日日摸夜夜添夜夜添小说| 啦啦啦免费观看视频1| 国产熟女午夜一区二区三区| 色婷婷久久久亚洲欧美| 国产免费现黄频在线看| xxxhd国产人妻xxx| 精品视频人人做人人爽| 夜夜夜夜夜久久久久| 国产高清视频在线播放一区| 大型av网站在线播放| 一级毛片精品| 色在线成人网| 日本一区二区免费在线视频| 国产亚洲av高清不卡| 亚洲七黄色美女视频| 国产激情欧美一区二区| 午夜免费观看网址| 色综合欧美亚洲国产小说| 女人高潮潮喷娇喘18禁视频| 一级作爱视频免费观看| 丰满饥渴人妻一区二区三| 黄频高清免费视频| 欧美一级毛片孕妇| 午夜两性在线视频| 极品教师在线免费播放| 两个人看的免费小视频| 国产一区有黄有色的免费视频| 欧美色视频一区免费| 欧美精品亚洲一区二区| 欧美日韩亚洲综合一区二区三区_| 人妻丰满熟妇av一区二区三区 | 人人妻人人爽人人添夜夜欢视频| 老司机午夜福利在线观看视频| 日本五十路高清| 国产单亲对白刺激| 国产免费av片在线观看野外av| 最近最新中文字幕大全电影3 | av天堂久久9| 99re6热这里在线精品视频| 精品少妇久久久久久888优播| 亚洲中文av在线| 91在线观看av| cao死你这个sao货| 国产亚洲一区二区精品| 人人妻人人澡人人看| 91成人精品电影| 91麻豆av在线| 欧美老熟妇乱子伦牲交| 免费一级毛片在线播放高清视频 | 亚洲精品国产精品久久久不卡| 少妇猛男粗大的猛烈进出视频| 99国产综合亚洲精品| 老司机深夜福利视频在线观看| 免费人成视频x8x8入口观看| 热re99久久精品国产66热6| 亚洲人成电影免费在线| 午夜福利视频在线观看免费| 法律面前人人平等表现在哪些方面| 国产91精品成人一区二区三区| 精品国内亚洲2022精品成人 | 久久青草综合色| 国产精品一区二区在线观看99| 中文字幕色久视频| 亚洲美女黄片视频| 午夜久久久在线观看| 他把我摸到了高潮在线观看| 日日夜夜操网爽| 国产av精品麻豆| 一边摸一边抽搐一进一出视频| 国产成人影院久久av| 国产高清视频在线播放一区| 在线av久久热| 久热这里只有精品99| 两个人看的免费小视频| 午夜福利在线免费观看网站| 欧美国产精品va在线观看不卡| 亚洲一区二区三区欧美精品| 纯流量卡能插随身wifi吗| 欧美丝袜亚洲另类 | 精品亚洲成a人片在线观看| 国产亚洲欧美精品永久| 亚洲久久久国产精品| 色综合婷婷激情| 最近最新中文字幕大全免费视频| 一区二区三区激情视频| 很黄的视频免费| 午夜福利欧美成人| 国产日韩一区二区三区精品不卡| 国产精品一区二区在线观看99| 色婷婷久久久亚洲欧美| 欧美精品一区二区免费开放| 婷婷精品国产亚洲av在线 | 精品人妻熟女毛片av久久网站| 在线国产一区二区在线| 亚洲aⅴ乱码一区二区在线播放 | 女人久久www免费人成看片| 亚洲自偷自拍图片 自拍| 免费看十八禁软件| 嫩草影视91久久| 成年女人毛片免费观看观看9 | 国产男女内射视频| 亚洲精品美女久久av网站| 精品久久久精品久久久| 1024视频免费在线观看| 天天躁夜夜躁狠狠躁躁| 欧美成人免费av一区二区三区 | 午夜久久久在线观看| 91精品三级在线观看| 精品久久久精品久久久| a级毛片在线看网站| 国产精品1区2区在线观看. | 国产91精品成人一区二区三区| 欧美日韩视频精品一区| 一边摸一边抽搐一进一出视频| 男女之事视频高清在线观看| 亚洲欧美一区二区三区久久| 美女高潮到喷水免费观看| 看免费av毛片| 捣出白浆h1v1| av国产精品久久久久影院| 亚洲精品美女久久av网站| 免费观看精品视频网站| 亚洲精品美女久久av网站| 日韩三级视频一区二区三区| 欧美最黄视频在线播放免费 | tube8黄色片| 可以免费在线观看a视频的电影网站| 村上凉子中文字幕在线| 十分钟在线观看高清视频www| 村上凉子中文字幕在线| 国产精品亚洲av一区麻豆| tube8黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 无遮挡黄片免费观看| 夫妻午夜视频| 国产免费现黄频在线看| 国产精品免费视频内射| 国产精品秋霞免费鲁丝片| 久久亚洲精品不卡| 一级毛片高清免费大全| 最近最新免费中文字幕在线| 丝瓜视频免费看黄片| 夫妻午夜视频| 91成年电影在线观看| 国产精品免费视频内射| 精品无人区乱码1区二区| av视频免费观看在线观看| 看片在线看免费视频| 久久亚洲真实| 黑人巨大精品欧美一区二区蜜桃| 国产精品永久免费网站| videosex国产| 亚洲精品一卡2卡三卡4卡5卡| 久久99一区二区三区| 黄色毛片三级朝国网站| 侵犯人妻中文字幕一二三四区| 一区二区三区激情视频| 大型av网站在线播放| 又黄又粗又硬又大视频| 精品国产一区二区三区久久久樱花| 久久精品亚洲精品国产色婷小说| 日韩视频一区二区在线观看| 看黄色毛片网站| 亚洲国产精品一区二区三区在线| 一级a爱视频在线免费观看| 高清毛片免费观看视频网站 | 精品高清国产在线一区| 岛国毛片在线播放| 免费av中文字幕在线| 国产精品香港三级国产av潘金莲| 亚洲精品国产一区二区精华液| 一区福利在线观看| 午夜久久久在线观看| 91麻豆精品激情在线观看国产 | 在线国产一区二区在线| 香蕉丝袜av| 成年人午夜在线观看视频| 亚洲五月天丁香| 在线观看www视频免费| 亚洲人成电影免费在线| 新久久久久国产一级毛片| 亚洲综合色网址| 国产av一区二区精品久久| 国产aⅴ精品一区二区三区波| 久久久久精品人妻al黑| 热re99久久国产66热| 日韩欧美免费精品| 欧美日韩av久久| 青草久久国产| 韩国精品一区二区三区| 女人被狂操c到高潮| 一a级毛片在线观看| 搡老乐熟女国产| 美女高潮到喷水免费观看| 美国免费a级毛片| 精品福利永久在线观看| 亚洲中文字幕日韩| 免费在线观看黄色视频的| 亚洲成人免费av在线播放| www.精华液| 99国产精品免费福利视频| 久久国产亚洲av麻豆专区| 午夜亚洲福利在线播放| av免费在线观看网站| 后天国语完整版免费观看| 国产男靠女视频免费网站| 午夜久久久在线观看| 99re6热这里在线精品视频| 亚洲国产欧美网| 亚洲av第一区精品v没综合| 一本大道久久a久久精品| 99久久人妻综合| 亚洲精品一二三| 91在线观看av| 最近最新中文字幕大全免费视频| 热re99久久精品国产66热6| 最新在线观看一区二区三区| av在线播放免费不卡| 精品久久久久久久久久免费视频 | 人妻 亚洲 视频| 黄色怎么调成土黄色| 老司机影院毛片| 老熟妇乱子伦视频在线观看| 久久九九热精品免费| 12—13女人毛片做爰片一| 99热网站在线观看| 国产精品国产av在线观看| xxx96com| 成人免费观看视频高清| 午夜激情av网站| 男人操女人黄网站| 天天躁狠狠躁夜夜躁狠狠躁| 多毛熟女@视频| 国产一区二区三区综合在线观看| 精品卡一卡二卡四卡免费| 51午夜福利影视在线观看| 午夜两性在线视频| 国产麻豆69|