郭波莉,魏益民,魏帥,孫倩倩,張磊,師振強(qiáng)
?
牦牛肉中穩(wěn)定同位素指紋特征及影響因素
郭波莉,魏益民,魏帥,孫倩倩,張磊,師振強(qiáng)
(中國農(nóng)業(yè)科學(xué)院農(nóng)產(chǎn)品加工研究所/農(nóng)業(yè)部農(nóng)產(chǎn)品質(zhì)量安全收貯運管控重點實驗室,北京 100193)
【目的】分析牦牛肉中穩(wěn)定碳、氮、氫同位素組成,以及它們受地域、牧草和飲水的影響,為其產(chǎn)地溯源及真?zhèn)舞b別提供技術(shù)支撐?!痉椒ā繌那嗪J『1薄⒑D?、玉樹3個不同地域采集牦牛肉、牧草及水樣品,利用GPS定位采樣地的經(jīng)度、緯度及海拔高度,利用元素-穩(wěn)定同位素比率質(zhì)譜儀(EA-IRMS)分析樣品中穩(wěn)定碳、氮、氫同位素比率?!窘Y(jié)果】牦牛脫脂肌肉、粗脂肪中的δ13C平均值分別為(-23.99±0.25)‰和(-28.77±0.50)‰;脫脂肌肉中的δ15N和δ2H平均值分別為(4.04±0.91)‰和(-107.99±11.08)‰。牦牛肉中δ13C、δ15N值主要受其食用的牧草影響,地域?qū)﹃笈H庵械摩?3C值也有一定的影響,即牦牛肉中δ13C值有隨海拔的增加而增加的趨勢。青海省海北、海南、玉樹3個地區(qū)牧草和水中的δ2H值均有極顯著差異,牧草中δ2H值由高到低的順序依次為海南>海北>玉樹,水中δ2H值由高到低的順序依次為海北>海南>玉樹。牦牛肌肉中δ2H值由高到低的順序依次為海南>海北>玉樹,與牧草中δ2H值的地域變化順序一致。說明牦牛肉中的δ2H值與牧草、飲水密切相關(guān),均有隨海拔升高而降低的趨勢,且牧草對牦牛組織中氫同位素組成的影響可能大于水的影響,但這還需要進(jìn)一步研究證實?!窘Y(jié)論】牦牛肉中穩(wěn)定同位素指紋與高海拔地區(qū)的牧草、飲水、地形密切相關(guān),具有獨特的指紋特征。
牦牛肉;穩(wěn)定同位素指紋;牧草;飲水
【研究意義】牦牛生長在高海拔、無污染的高寒地區(qū),食用天然的牧草,飲用天然的礦泉水,其肉質(zhì)細(xì)嫩、味道鮮美,含有豐富的蛋白質(zhì)、氨基酸,以及胡蘿卜素、鈣、磷等微量元素,具有極高的營養(yǎng)價值[1]。但一些不法商販常受經(jīng)濟(jì)利益驅(qū)動,以其他牛肉冒充牦牛肉,欺騙消費者,影響牦牛肉的品牌形象,因此開發(fā)一套穩(wěn)定、科學(xué)的鑒別技術(shù)對其進(jìn)行監(jiān)管和保護(hù)具有重要意義?!厩叭搜芯窟M(jìn)展】穩(wěn)定同位素指紋是用于農(nóng)產(chǎn)品產(chǎn)地、飼喂信息鑒別的有效技術(shù)之一。目前此項技術(shù)已用于葡萄酒[2-3]、蜂蜜[4]、奶酪[5]、牛奶[6-7]、咖啡[8-9]、谷物(如小麥、大米等)[10-13]、橄欖油[14-15]、牛肉[16-22]、羊肉[23-25]、雞肉[26]和豬肉[27]等各種農(nóng)產(chǎn)品產(chǎn)地溯源與鑒別研究?!颈狙芯壳腥朦c】國內(nèi)專家研究發(fā)現(xiàn)不同產(chǎn)地來源的牦牛肉穩(wěn)定碳、氮、氫同位素組成有顯著差異,利用穩(wěn)定同位素可以區(qū)分不同產(chǎn)地的牦牛肉[28],但關(guān)于牦牛肉中穩(wěn)定同位素指紋與牧草、飲水、地形的具體變化規(guī)律還不很明確?!緮M解決的關(guān)鍵問題】本研究重點分析牦牛肉中穩(wěn)定碳、氮、氫同位素指紋特征和它們受牧草、飲水的影響,以及隨地域海拔的變化情況,揭示牦牛肉中穩(wěn)定同位素指紋特征及變化規(guī)律。
從青海省海北、海南、玉樹3個點采集了32頭牦牛的肌肉樣品,并采集了13個牧草樣品和12個飲水樣品,采樣具體信息見表1。
表1 樣品及來源地信息
1.2.1 采樣方法
肌肉:屠宰后在每頭牛的后臀部取500 g肉,裝入自封袋中,-20℃冰箱中冷凍保藏。
飲水:在放牧牦牛附近的河邊采取河水樣品,裝入塑料瓶中,倒置、低溫保存。
1.2.2 樣品前處理方法
肌肉:解凍、取50 g切成小塊,冷凍干燥后,用球磨機(jī)磨碎;磨碎后的牛肉粉用索氏提取器進(jìn)行脫脂,得到脫脂牛肉和粗脂肪樣品[18]。
牧草:70℃烘干、粉碎、過80目篩[17, 29]。
飲水:用孔徑為0.45 μm的濾膜過濾后備用。
1.2.3 穩(wěn)定碳、氮同位素比率檢測方法
在傳統(tǒng)數(shù)學(xué)教學(xué)中,教師只是專注于教材知識的講解,常常忽略了學(xué)生的主體性地位,與學(xué)生之間互動較少,導(dǎo)致課堂氣氛枯燥、無聊,無法提起學(xué)生的學(xué)習(xí)興趣。對此,教師應(yīng)提高課堂趣味性,讓學(xué)生對數(shù)學(xué)產(chǎn)生興趣。練習(xí)本身就不可避免地帶有枯燥、單調(diào)的特質(zhì),而數(shù)學(xué)習(xí)題由于充斥著大量的符號和數(shù)字,就顯得尤為枯燥。小學(xué)生的認(rèn)知能力和注意力有限,他們對過于單調(diào)重復(fù)的習(xí)題容易喪失興趣和注意力。因此,教師在設(shè)計習(xí)題內(nèi)容時,還需考慮習(xí)題的趣味性,增設(shè)趣味性習(xí)題以調(diào)動學(xué)生的積極性。例如,教師可以根據(jù)教學(xué)內(nèi)容和學(xué)生的年齡特點,安排故事類和探究類習(xí)題來激發(fā)學(xué)生的學(xué)習(xí)興趣。
稱取2—3 mg樣品,放入錫箔杯中,通過自動進(jìn)樣器進(jìn)入元素分析儀(vario PYRO cube,Elementar,Germany),燃燒與還原轉(zhuǎn)化為純凈的CO2和N2,CO2再經(jīng)過稀釋器稀釋,最后進(jìn)入穩(wěn)定同位素質(zhì)譜儀(IsoPrime100,IsoPrime,UK)進(jìn)行檢測。具體的工作參數(shù)如下:
元素分析儀條件:燃燒爐溫度為1020℃,還原爐溫度為600℃,載氣He 流量為230 mL·min-1。
質(zhì)譜儀條件:分析過程中,每12個樣品穿插一個實驗室標(biāo)樣IAEA 600(δ13CPDB=(-27.771±0.043)‰,δ15Nair=(1.0±0.2)‰)對測定結(jié)果進(jìn)行校正。
穩(wěn)定同位素比率計算如下:
δ(‰)=(R樣品/R標(biāo)準(zhǔn)-1)×1000
式中,R為重同位素與輕同位素豐度比,即13C/12C 和15N/14N,δ13C的相對標(biāo)準(zhǔn)為V-PDB,δ15N的相對標(biāo)準(zhǔn)是空氣中氮氣。測定時,δ13C和δ15N的連續(xù)測定精度<0.20‰。
1.2.4 穩(wěn)定氫同位素比率檢測方法
采用高溫裂解-同位素比率質(zhì)譜法(HT-IRMS)進(jìn)行測定。對于固體樣品,稱取1 mg樣品裝入銀杯中(高6 mm,直徑4 mm),折成小球,每個樣品有3個重復(fù)樣,并按順序放入96孔酶聯(lián)免疫板中,松散地蓋上蓋子,在實驗室的室溫環(huán)境下平衡72 h;通過固體自動進(jìn)樣器進(jìn)入元素分析儀(vario PYRO cube,Elementar,Germany),1 450℃高溫裂解生成CO和H2,經(jīng)過稀釋器稀釋,最后進(jìn)入質(zhì)譜儀(IsoPrime 100,Isoprime,UK)進(jìn)行檢測。對于水樣品,利用液體進(jìn)樣器的針頭吸取0.4 μL 樣品直接進(jìn)入元素分析儀,1 450°C高溫裂解成H2,進(jìn)入質(zhì)譜儀進(jìn)行檢測。具體的工作參數(shù)如下:
元素分析儀條件:He載氣流速為120 mL·min-1。
質(zhì)譜儀條件:分析過程中,每12個樣品穿插一個國際標(biāo)樣IAEACH-7(δ2HV-SMOW=(-100.3±2)‰)對測定結(jié)果進(jìn)行校正。
穩(wěn)定氫同位素比率計算如下:
&=(R樣品/R標(biāo)準(zhǔn)-1)×1000
式中,R為重同位素與輕同位素豐度比,即2H/1H,δ2H的相對標(biāo)準(zhǔn)為V-SMOW。測定時,δ2H的連續(xù)測定精度<1.00‰。
用SPSS 18.0軟件對數(shù)據(jù)進(jìn)行方差分析、Duncan多重比較分析等。
脫脂肌肉、粗脂肪中的δ13C平均值分別為(-23.99± 0.25)‰和(-28.77±0.50)‰,說明牦牛采食的牧草主要是C3植物。脫脂肌肉中的δ13C值顯著高于粗脂肪,平均高5‰。脫脂肌肉中的δ15N和δ2H平均值分別為(4.04±0.91)‰和(-107.99±11.08)‰(表2)。可見,牦牛肉中穩(wěn)定同位素指紋具有獨特的特征。
表2 牦牛肉中δ13C、δ15N和δ2H值
玉樹牦牛肉中的δ13C值顯著高于海北和海南,但δ15N值在3個地域之間無顯著差異。海北、海南、玉樹3個地域的牦牛肉中δ2H值均有極顯著差異,由高到低的順序依次為海南>海北>玉樹,玉樹牦牛肉中的δ2H值比海北、海南約低20‰左右。玉樹的平均海拔(4 333 m)比海北(3 155 m)、海南(3 250 m)高1 000 m,這說明牦牛組織中的δ13C值有隨海拔的增加而增大的趨勢,而δ2H值有隨海拔的增加而減小的趨勢(表3)。
海北、海南、玉樹3個地區(qū)牧草中δ13C平均值分別為(-26.99±0.36)‰、(-27.16±0.17)‰、(-26.77±0.48)‰(表4),說明均為C3牧草。3個地區(qū)牧草中δ13C值、δ15N值均無顯著差異(表4),其平均值分別為(-26.96±0.37)‰和(-0.50±1.68)‰。3個地區(qū)牦牛脫脂肌肉中的δ13C、δ15N平均值分別為-23.99‰和4.04‰(表2),即牦牛脫脂肌肉相對牧草δ13C平均富集了2.87‰,相對牧草δ15N平均富集了4.54‰。3個地區(qū)牧草和水中的δ2H值均有極顯著差異,牧草中δ2H值由高到低的順序依次為海南>海北>玉樹,水中δ2H值由高到低的順序依次為海北>海南>玉樹(表4)。牦牛肌肉中δ2H值由高到低的順序依次為海南>海北>玉樹(表3),與牧草中δ2H值的地域變化順序一致。說明牦牛肉中的δ2H值與牧草、飲水密切相關(guān),均有隨海拔升高而降低的趨勢,且牧草對牦牛組織中氫同位素組成的影響可能大于水的影響,但這還需要進(jìn)一步研究證實。
表3 不同地域來源牦牛組織中δ13C、δ15N和δ2H值
同一橫列不同字母表示有顯著差異(<0.05)
the different letters in the same rows mean significant difference (<0.05)
表4 不同地域來源牧草和飲水中δ13C、δ15N和δ2H值
同一豎列不同字母表示有顯著差異(<0.05)
The different letters in the same columns mean significant difference (<0.05)
牦牛生長的青藏高原地區(qū)牧草大多為C3植物,致使食用天然牧草的牦牛肉中δ13C值均在-23‰以下,顯著低于我國普通牛肉中的δ13C值[20]。Wang等[30]從海拔為2 700—5 400 m青藏高原采集的牧草樣品分析結(jié)果也表明,61個植物樣品中僅有4個是C4植物,其余均為C3植物,且C3植物δ13C值的變幅為-22.2‰—-28.3‰,平均值為(-25.7±1.4)‰(n=56)。本研究從青海海北、海南、玉樹采集的13個牧草飼料均為C3植物,其δ13C平均值為(-26.96±0.37)‰。玉樹牦牛組織中δ13C值顯著高于海北和海南,說明牦牛組織中的δ13C值有隨海拔的增加而增加的趨勢。前人在對植物δ13C值的海拔效應(yīng)研究中也發(fā)現(xiàn)此變化規(guī)律[31-33]。與前人研究結(jié)果比較,食用天然牧草的牦牛肉中δ13C值與國外純牧草喂養(yǎng)的牛肉中δ13C值比較一致,均低于-23.00‰,而顯著低于中國主產(chǎn)區(qū)牛肉的δ13C值;牦牛肉中δ15N值顯著低于國外牧草喂養(yǎng)的牛肉,而與中國主產(chǎn)區(qū)牛肉的δ15N值接近[17,20];牦牛肉中δ2H值顯著低于中國主產(chǎn)區(qū)牛肉的δ2H,尤其高海拔地區(qū)牦牛肉中δ2H值很低,基本在-120.00‰以下[20]。
牦牛組織中δ15N值平均在4‰左右,比前人研究報道的牦牛骨骼化石中δ15N值(3.2‰,n=5)略高[34]。牦牛組織中δ15N值與我國農(nóng)區(qū)普通牛肉中δ15N比較接近,但低于牧區(qū)普通牛肉和國外牧草喂養(yǎng)的牛肉[17, 20]。海北、海南、玉樹3個地域的牦牛組織中δ15N值無顯著差異。動植物組織中δ15N值受地域土壤類型、施肥、牧草等影響因素,同一地域的變幅比較大,常導(dǎo)致不同地域之間的差異不顯著。
本研究牦牛組織中δ2H值有隨海拔的升高而顯著降低的趨勢,此變化與牧草、飲水的變化趨勢一致。前人在動物組織δ2H值與地域海拔關(guān)系方面也有相關(guān)研究,但研究結(jié)論存在一定異議。Hobson等[35]對厄瓜多爾安第斯山脈的蜂雀進(jìn)行研究發(fā)現(xiàn),在高度為400 m以上的區(qū)域,蜂雀羽毛中的δ2H值隨著高度的增加而降低(=0.53,<0.001);在高度為1 300— 3 120 m的范圍內(nèi),鳥羽毛中的δ2H值與高度也呈顯著負(fù)相關(guān)(=0.34,<0.001)。他們認(rèn)為,羽毛中的δ2H值是研究鳥遷徙高度或群居高度比較好的指標(biāo)。但Kelly等[36]研究卻發(fā)現(xiàn)威爾遜鳴鳥羽毛中δ2H與高度之間的相關(guān)性不顯著。我國四大肉牛產(chǎn)區(qū)的普通牛肉中δ2H與海拔的關(guān)系也不明顯[37]。動物組織中δ2H值海拔效應(yīng)不顯著的研究結(jié)果可能是由于采樣地區(qū)之間的海拔變化不明顯導(dǎo)致。本研究確證了動物肌肉中δ2H值的海拔效應(yīng),即隨著海拔的升高而降低。牦牛肉中δ2H值主要與牧草和飲水密切相關(guān),本研究中牦牛肉δ2H值與牧草δ2H值的地域變化順序一致,推測牧草對牦牛肉中氫同位素組成的影響可能大于水的影響,此推測與前人的研究結(jié)果有一致性。O’Brien等[38]研究發(fā)現(xiàn)飲水對人毛發(fā)中δ2H值的貢獻(xiàn)率約為36%;Sharp等[39]研究發(fā)現(xiàn)飲水對人毛發(fā)中δ2H值的貢獻(xiàn)率約為31%;Hobson等[40]研究發(fā)現(xiàn)飲水對鵪鶉羽毛中δ2H值的貢獻(xiàn)率約為26%—32%,對鵪鶉趾甲中δ2H 值得貢獻(xiàn)率約為27%,其余70%的貢獻(xiàn)率是受飲食的影響。牧草和飲水對牦牛組織中δ2H值的影響貢獻(xiàn)率還有待進(jìn)一步研究。
食用天然牧草的牦牛肌肉中δ13C一般低于-23.00‰,顯著低于中國主產(chǎn)區(qū)牛肉的δ13C值;牦牛肉中δ15N值與中國主產(chǎn)區(qū)牛肉的δ15N值接近,平均值為4.04‰;牦牛肉中δ2H值顯著低于中國主產(chǎn)區(qū)牛肉的δ2H,尤其高海拔地區(qū)牦牛肉中δ2H值很低,基本在-120.00‰以下。牦牛組織中δ13C、δ15N值主要受其食用的牧草影響,δ2H值與其飲水和牧草密切相關(guān);牦牛組織中δ13C值有隨海拔的增加而增加的趨勢,而δ2H值有隨海拔的升高而降低的趨勢。牦牛肉中穩(wěn)定同位素指紋具有獨特的特征。
[1] 洛桑, 旦增, 布多, 馬紅梅, 白瑪卓嘎. 藏北牦牛肉成分和營養(yǎng)品質(zhì)的分析研究. 安徽農(nóng)業(yè)科學(xué), 2009, 37(29): 14198-14199.
LUO S, DAN Z, BU D, MA H M, BAI M Z G. Component analysis on northern Tibet yak meat and research on its nutrition quality., 2009, 37(29): 14198-14199. (in Chinese)
[2] CHRISTOPH N, ROSSMANN A, SCHLICHT C, VOERKELIUS S. Wine authentication using stable isotope ratio analysis: Significance of geographic origin, climate, and viticulture parameters.2007, 952: 166-179.
[3] DURANTE C, BASCHIERI C, BERTACCHINI L, COCCHI M, SIGHINOL? S, SILVESTRI M, MARCHETTI A. Geographical traceability based on 87Sr/86Sr indicator: A ?rst approach for PDO Lambrusco wines from Modena., 2013, 141(3): 2779-2787.
[4] SCHELLENBERG A, CHMIELUS S, SCHLICHT C, CAMIN F, PERINI M, BONTEMPO L, HEINRICH K, KELLY S D, ROSSMANN A, THOMAS F, JAMIN E, HORACEK M. Multielement stable isotope ratios (H, C, N, S) of honey from different European regions., 2010, 121(3): 770-777.
[5] SILVA A V, HéLIE J F, CAXITO F A, MONARDES H, MUSTAFA A F, STEVENSON R. Multi-stable isotope analysis as a tool for assessing the geographic provenance of dairy products: A case study using buffalo’s milk and cheese samples from the Amazon basin, Brazil.2014, 35(2): 107-110.
[6] CAMIN F, PERINI M, COLOMBARI G, BONTEMPO L, VERSINI G. Influence of dietary composition on the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of milk., 2008, 22(11): 1690-1696.
[7] SCAMPICCHIO M, MIMMO T, CAPICI C, HUCK C, INNOCENTE N, DRUSCH S, CESCO S. Identification of milk origin and process-induced changes in milk by stable isotope ratio mass spectrometry.2012, 60(45): 11268-11273.
[8] RODRIGUES C, MA′GUAS C, PROHASKA T. Strontium and oxygen isotope fingerprinting of green coffee beans and its potential to proof authenticity of coffee., 2011, 232(2): 361-373.
[9] SANTATO A, BERTOLDI D, PERINI M, CAMIN F, LARCHER R. Using elemental profiles and stable isotopes to trace the origin of green coffee beans on the global market.2012, 47(9): 1132-1140.
[10] ARIYAMA K, SHINOZAKI M, KAWASAKI A. Determination of the geographic origin of rice by chemometrics with strontium and lead isotope ratios and multielement concentrations.2012, 60(7): 1628-1634.
[11] LUO D H, DONG H, LUO H Y, XIAN Y P, WAN J, GUO X D, WU Y L. The application of stable isotope ratio analysis to determine the geographical origin of wheat., 2015, 174: 197-201.
[12] LIU H Y, GUO B L, WEI Y M, WEI S, MA Y Y, ZHANG W. Effects of geographical origin, genotype, harvest year and their interactions on δ13C, δ15N and δD in wheat kernels., 2015, 171: 56-61.
[13] LIU H Y, WEI Y M, LU H, WEI S, JIANG T, ZHANG Y Q, GUO B L. Combination of the 87Sr/86Sr ratio and light stable isotopic values (δ13C, δ15N and δD) for identifying the geographical origin of winter wheat in China., 2016, 212: 367-373.
[14] CAMIN F, LARCHER R, PERINI M, BONTEMPO L, BERTOLI D, GAGLIANOG, NICOLINI G, VERSINI G. Characterisation of authentic Italian extravirgin olive oils by stable isotope ratios of C, N and H and mineral composition.2010, 118(4): 901-909.
[15] MEDINI S, JANIN M, VERDOUX P, TECHER I. Methodological development for87Sr/86Sr measurement in olive oil and preliminary discussion of its use for geographical traceability of PDO Nimes (France)., 2015, 171(10): 78-83.
[16] SCHWERTL M, AUERSWALD K, SCHNYDER H. Reconstruction of the isotopic history of animal diets by hair segmental analysis.2003, 17(12): 1312-1318.
[17] SCHMIDT O, QUILTER J M, BAHAR B, MOLONEY A P, SCRIMGEOUR C M, BEGLEY I S, MONAHAN F J. Inferring the origin and dietary history of beef from C, N and S stable isotope ratio analysis., 2005, 91(3): 545-549.
[18] HEATON K, KELLY S D, HOOGEWERFF J, WOOLFE M. Verifying the geographical origin of beef: The application of multielement isotope and trace element analysis., 2008, 107(1): 506-515.
[19] HORACEK M J S M. Discrimination of Korean beef from beef of other origin by stable isotope measurements., 2010, 121(2): 517-520.
[20] 郭波莉, 魏益民, 潘家榮. 牛肉產(chǎn)地溯源技術(shù)研究. 北京: 科學(xué)出版社, 2009.
GUO B L, WEI Y M, PAN J R.. Beijin: Science Press, 2009. (in Chinese)
[21] GUO B L, WEI Y M, PAN J R, LI Y. Stable C and N isotope ratio analysis for regional geographical traceability of cattle in China.2010, 118(4): 915-920.
[22] 孫豐梅, 于洪俠, 石光雨, 楊曙明, 刁其玉, 閆貴龍. 牛組織中穩(wěn)定性同位素碳、氮隨飼料變化的研究. 分析測試學(xué)報, 2009, 28(3): 310-314.
SUN F M, YU H X, SHI G Y, YANG S M, DIAO Q Y, YAN G L. Variational regularities of carbon and nitrogen stable isotopes in cattle tissues with feedstuff composition.2009, 28(3): 310-314. (in Chinese)
[23] PERINI M, CAMIN F, BONTEMPO L, ROSSMANN A, PIASENTIER E. Multielement (H, C, N, O, S) stable isotope characteristics of lamb meat from different Italian regions., 2009, 23(16): 2573-2585.
[24] 孫淑敏, 郭波莉, 魏益民, 樊明濤. 羊組織中碳、氮同位素組成及地域來源分析. 中國農(nóng)業(yè)科學(xué), 2010, 43(8): 1670-1676.
SUN S M, GUO B L, WEI Y M, FAN M T. Analysis of stable carbon and nitrogen isotope compositions and geographical origins of sheep tissues., 2010, 43(8): 1670-1676. (in Chinese)
[25] SUN S M, GUO B L, WEI Y M, FAN M T. Multi-element analysis for determining the geographical origin of mutton from different regions of China.2011, 124(3): 1151-1156.
[26] BETTINA M F, KOSLITZ S, MICAUX F, PIANTINI U, MAURY V, PFAMMATTER E, WUNDERLI S, GREMAUD G, BOSSET J O, HADORN R, KREUZER M. Tracing the geographical origin of poultry meat and dried beef with oxygen and strontium isotope ratios., 2008, 226(4): 761-769.
[27] PERINI M, CAMIN F, PULGAR J S, PIASENTIER E. Effect of origin, breeding and processing conditions on the isotope ratios of bioelements in dry-cured ham., 2013, 136(3/4): 1543-1550.
[28] 項洋, 郝力壯, 牛建章, 張曉衛(wèi), 柴沙駝. 穩(wěn)定性碳、氮、氫同位素在牦牛產(chǎn)地區(qū)分中的應(yīng)用. 食品科學(xué), 2015, 36(12): 191-195.
XIANG Y, HAO L Z, NIU J Z, ZHANG X W, CHAI S T. Stable isotope distribution of carbon, nitrogen and hydrogen in yak meat from different regions., 2015, 36(12): 191-195. (in Chinese)
[29] BONER M, F?RSTEL H. Stable isotope variation as a tool to trace the authenticity of beef.,2004, 378(2): 301-310.
[30] WANG Y, KROMHOUT E, ZHANG C, XU Y, PARKER W, DENG T, QIU Z. Stable isotopic variations in modern herbivore tooth enamel, plants and water on the Tibetan Plateau: Implications for paleoclimate and paleoelevation reconstructions.,2008, 260(3): 359-374.
[31] HOBSON K A, WASSENAAR L I, MILA B, LOVETTE I, DINGLE C, SMITH T B. Stable isotopes as indicators of altitudinal distributions and movement in an Ecuadorean hummingbird community., 2003, 136(2): 302-308.
[32] KORNER C, FARQUHAR G D, ROKSANDIC Z. A global survey of carbon isotope discrimination in plants from high altitude., 1988, 74(4): 623-632.
[33] 劉宏艷, 郭波莉, 魏帥, 姜濤, 張森燊, 魏益民. 小麥制粉產(chǎn)品穩(wěn)定碳、氮同位素組成特征研究. 中國農(nóng)業(yè)科學(xué), 2017, 50(3): 556-563.
LIU H Y, GUO B L, WEI S, JIANG T, ZHANG S S, WEI Y M. Characteristics of stable carbon and nitrogen isotopic ratios in wheat milling fractions., 2017, 50(3): 556-563. (in Chinese)
[34] FOX-DOBBS K, LEONARD J A, KOCH P L. Pleistocene megafauna from eastern Beringia: Paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records., 2008, 261(1/2): 30-46.
[35] HOBSON K A, BOWEN G J, WASSENAAR L I, FERRAND Y, LORMEE H. Using stable hydrogen and oxygen isotope measurements of feathers to infer geographical origin of migration European birds., 2004, 141(3): 477-488.
[36] KELLY J F, ATUDOREI V, SHARP Z D, FINCH D M. Insights into Wilson’s warbler migration from analyses of hydrogen stable-isotope ratios.,2002, 130(2): 216-221.
[37] 郭波莉, 魏益民, Kelly S D, 潘家榮, 魏帥. 穩(wěn)定性氫同位素分析在牛肉產(chǎn)地溯源中的應(yīng)用. 分析化學(xué), 2009, 37(9): 1333-1336.
GUO B L, WEI Y M, Kelly D S, PAN J R, Wei S. Application of stable hydrogen isotope analysis in beef geographical origin traceability., 2009, 37(9): 1333-1336. (in Chinese)
[38] O’BRIEN D, WOOLLER M J. Tracking human travel using stable oxygen and hydrogen isotope analyses of hair and urine., 2007, 21(15): 2422-2430.
[39] SHARP Z D, ATUDOREI V, PANARELLO H O, FERNANDEZ J, DOUTHITTC C. Hydrogen isotope systematics of hair: archeological and forensic applications., 2003, 30(12): 1709-1716.
[40] HOBSON K A, ATWELL L, WASSENAAR L I. Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues., 1999, 96(14): 8003-8006.
(責(zé)任編輯 楊鑫浩)
The Characters andInfluence Factors of Stable Isotope Fingerprints in Yak Muscle
GUO Boli, WEI Yimin, WEI Shuai, Sun Qianqian, ZHANG Lei, SHI Zhenqiang
(Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and afety Control in Storage and Transport Process, Ministry of Agriculture, Beijing 100193)
【Objective】the characters of carbon, nitrogen and hydrogen isotopic composition in yak () muscle and the effect of geographical origin, pasture and drinking water were analyzed, which would provide the technical support for tracing and identifying the yak meat. 【Method】The yak muscle, pasture and water samples were collected from Haibei, Hainan and Yushu of Qinghai province, and longitude, latitude and altitude of sampling site were recorded by using GPS. The carbon, nitrogen and hydrogen stable isotopic ratio in samples were tested by using EA-IRMS. 【Result】The average value of δ13C in yak de-fatted muscle and fat was (-23.99±0.25)‰ and (-28.77±0.50)‰, respectively, and the average value of δ15N and δ2H in yak muscle was (4.04±0.91)‰ and (-107.99±11.08)‰, respectively. The δ13C and δ15N values in yak muscle were closely related to the pasture of the Tibetan Plateau, and the region had certain effect on δ13C values of yak muscle, indicating the δ13C values increased with the altitude increasing. The δ2H values of pasture and water samples among three regions of Haibei, Hainan and Yushu of Qinghai province showed significant differences. The order of δ2H values in pasture was Hainan>Haibei>Yushu, and the order of δ2H values in water was Haibei>Hainan>Yushu. The order of δ2H values in yak muscle was Hainan>Haibei>Yushu, and it was the same order as the pasture. The results indicated that the δ2H values in yak muscle were closely related to the drinking water and pasture, and they were decreased with altitude increasing, and the pasture probably had more effect on δ2H values in yak muscle than water. But it needs to be further researched and confirmed.【Conclusion】The stable isotopic fingerprints in yak muscle were closely related to the pasture, drinking water and terrain of high altitude, which had the unique fingerprints character.
yak muscle; stable isotope fingerprints; pasture; drinking water
2017-12-27;
2018-05-04
西藏自治區(qū)重點科研項目(ZD20170014)
郭波莉,Tel:010-62815846;E-mail:guoboli2007@126.com
10.3864/j.issn.0578-1752.2018.12.015