• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of Di ff erent Generation Mechanisms of Free Convection between Two Stations on the Tibetan Plateau

    2018-06-29 08:24:34LangZHANGYaomingMAWeiqiangMAandBinbinWANG
    Advances in Atmospheric Sciences 2018年9期

    Lang ZHANG,Yaoming MA?,3,Weiqiang MA,3,and Binbin WANG

    1Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3CAS Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences,Beijing 100101,China

    1.Introduction

    Land–atmosphere interactions a ff ect the energy and water cycles over a wide range of scales(Betts et al.,1996).Among these interactions,relatively small-scale processes have a crucial in fl uence on the development of convective clouds and precipitation,e.g.,local circulation systems induced by the dynamical or thermal e ff ects of topography are difficult to simulate accurately using models(Xu et al.,2008;Eigenmann et al.,2009;Gerken et al.,2014).On the other hand,many studies have reported(Mayer et al.,2008)tracegas transport induced by local circulation,e.g.,sudden ozone reduction events on a mountain summit as a result of the occurrence of free convection conditions(FCCs)in a valley(Mayer et al.,2008)and high ozone events on the mountain summit region of Mount Everest(Zhu et al.,2006;Cai et al.,2007;Semple and Moore,2008).Therefore,investigating the characteristics of local circulation systems,e.g.,the trigger conditions or driving mechanism of FCCs(Hanesiak et al.,2004;Eigenmann et al.,2009),will contribute to improving the simulation capability of sub-grid physical processes and the understanding of observed air matter exchange in alpine regions.

    Eigenmann et al.(2009)investigated near-ground FCCs in the Kinzig Valley,Black Forest,Southeast Germany by using eddy covariance(EC)measurements combined with a Doppler radar system and discussed the applicability of using the EC method to detect FCCs.Following this study,Zhou et al.(2011)analyzed FCCs in a typical land–lake breeze circulation at Nam Co Station,which is near Nam Co Lake in Tibet.Buoyant forces generated by elevated heating of a mountain slope can induce local mesoscale circulations,usually referred to as upslope winds or anabatic winds(Lee and Kimura,2001).However,if the land-use type of the highland is forest and the lower land is grass or cropland,it can induce a circulation that is counter to upslope winds(Hanesiak et al.,2004).For this reason,we chose the Qomolangma Monitoring and Research Station for Atmosphere and Environment(QOMS),which has bare soil underlying the surface of a mountain,and the Southeast Tibet Monitoring and Research Station for Environment(SETS),which has forest on a mountain and high grass in a valley,to detect the FCCs and compare the di ff erences.Subsequently,we investigated the in fl uence of the monsoon on FCCs.

    QOMS and SETS have similar terrain features but completely di ff erent characteristics of underlying surface in the adjacent area.There are probably essential distinctions between the generation mechanism and structure of local smallscale circulation at these two stations.This analysis focuses on discussing the di ff erences in FCCs between the two stations under the in fl uence of speci fi c background circulation and is a supplement to the results of Eigenmann et al.(2009)and Zhou et al.(2011).The present study aims to investigate the near-ground FCCs based on EC data at QOMS and SETS,and aims to serve as a reference for further research on local circulation systems.

    2.Site description and experimental data

    The stations under investigation in the present study—namely,QOMS(28?21.640N,86?56.910E;4298 m MSL)and SETS(29?45.870N,94?44.30E;3327 m MSL)—were established in 2006 and are in the Rongbuk Valley approximately 42 km north of Mt.Qomolangma(Sun et al.,2007)and 6 km north of the town of Lulang in Linzhi County near the southeastern border of Tibet,respectively.The Rongbuk Valley is oriented in a north-northeast–south-southwest direction with high mountains to the south and a width of approximately 1.2 km(Sun et al.,2007).Mountain crests in the adjacent area(within 10 km)of QOMS and SETS reach maximal values of approximately 5200 m and 5000 m MSL,respectively.The target underlying surface type of QOMS is a fi eld of gravel mixed with a small fraction of grass and some herbaceous plants in the valley(see Figs.1a and b).The valley in which SETS is situated is oriented north-northeast–south-southwest with high mountains to the south.The width of this valley ranges from 400 m to 500 m,and the target land-use type is a high grass fi eld(see Figs.1c and d).

    The data used in this study are obtained from the EC tower.An EC system(measurement height:3.25 m(QOMS)and 3.04 m(SETS);sampling frequency:10 Hz),equipped with a sonic anemometer(CSAT3,Campbell Scienti fi c Inc.,Logan,USA.,was used for collecting wind vector and sonic temperature data.An open-path H2O/CO2gas analyzer(Li-7500,LI-CORBiosciences,NebraskaUSA)wasusedforwa-ter vapor and CO2concentrations observation.

    Fig.1.Topographic features(left)and land-use type(right)of(a,b)QOMS and(c,d)SETS.The locations of the two stations are marked by a red cross in each plot.

    3.Data processing and quality assessment

    The EC data measured at QOMS and SETS were processed with TK3,a software developed at the Department of Micrometeorology,University of Bayreuth(Mauder et al.,2007;Mauder and Foken,2011),which includes all fl ux correction steps(Webb et al.,1980;Vickers and Mahrt,1997;Wilczak et al.,2001)and a quality assessment applied on the satisfaction of stationary and integral turbulence characteristics(Foken and Wichura,1996;Gckede et al.,2004;Eigenmannetal.,2009).Ageneralviewofsensibleheat fl ux,latent heat fl ux and wind direction in 2011 at QOMS and SETS is shown in Fig.2,where the y-axis represents the instrument recording time(LST,UTC+8),with the white areas denoting missing data.

    Fig.2.Sensible heat fl ux(H;units:W m?2),latent heat fl ux(LE;units:W m?2)and wind direction in 2011 at(a,c,e)QOMS and(b,d,f)SETS.

    Footprint analyses have to be performed to evaluate the spatial representativeness of measurements.For the present study,a forward Lagrangian footprint model(Rannik et al.,2003)combined with the fl ux data quality assessment scheme of Foken and Wichura(1996)was applied to provide a basis for data fi ltering(Gckede et al.,2004,2006;Eigenmann et al.,2009).Furthermore,the impact of internal boundary layers caused by the discontinuities of surface properties should be checked.The relation proposed by Raabe(1983)is as follows:

    This relation can be used to approximately determine the height δ of the new equilibrium layer(Foken,2008a)in order to check the impact of the internal boundary(Eigenmann et al.,2009).Here,x is the fetch(m),and z is the height(m)of the sensor.In this study,the e ff ect of the fence is considered as an obstacle.The measuring height of both sites is greater than twice that of the fence height;hence,the infl uence of the fence on fl ux measurements can be neglected.Table 1 shows the results for the approximately calculated fetch of the target underlying surface type for QOMS(gravel mixed with grass)and SETS(high grass).“I”presented in this table indicates that the fetch of the target land-use type is sufficiently large to make the internal boundary layer higher thanthemeasurementheight.AtQOMS,thenewequilibrium layer is below the measurement level in the 270?and 300?directions.The fl ux measurements within these two sectors are under the in fl uence of the internal boundary layer and should be discarded.However,the in fl uence of the heterogeneous underlying surface on the overall assessment was weak because these regions do not lie in the prevailing wind direction.For the case at SETS,the terrain is more complicated and the fetch of the 30?,60?,90?,120?,330?and 360?sectors denotes the distance between the EC tower and the outer edge of the surface discontinuity.Flux measurements for wind directions of 90?and 120?,where the measuring height of 3.04 m is greater than δ,and 150?,240?,270?and 300?,where the measuring height is lower than δ,can be associated with the target land-use type(high grass).The footprint analysis results are also presented in Table 1.Generally,if the fl ux contribution from the target land-use type was less than 80%and the δ was greater than the measurement height,the fl ux data should be excluded from further analyses(Mauder et al.,2006).

    Table 1.Average fl ux contribution(%)obtained by footprint analyses from the target underlying surface type “grass and gravel”at QOMS and “high grass”at SETS,in 12 independent wind directions and three stability classes.The internal boundary layer height δ and the fetch x in each direction are also listed.

    4.Results and discussion

    4.1.Detection of FCCs

    The stability parameter ζ,

    can be used to detect the occurrence of FCCs(Eigenmann et al.,2009).Here,z,L,k,g,w,θvand u?represent measurement height,Obukhov length,von-K′arm′an’s constant,gravitational acceleration,vertical wind speed,virtual potential temperature and friction velocity,respectively.The subscriptindicates the turbulent fl ux equal its respective surface value,andis the covariance of w and θv.This parameter can be considered as B/S,where and

    These are the buoyancy term(B)and the shear term(S)in the TKE function respectively.Free convection occurs when ζ

    QOMS is on the northern side of Mt.Qomolangma under the in fl uence of katabatic fl ow over glaciers(Sun et al.,2007).The in fl uence of downslope katabatic glacier winds(southerly or south-southeasterly)on up-valley winds(northnortheasterly)forced by solar heating delays the onset and weakens the intensity of up-valley winds.Figures 3a1–f1 show a typical day of FCC occurrence on 12 April 2011 at QOMS.In the morning,the glacier wind intensity is not suffi ciently strong,and thus thermally driven up-valley winds can occur approximately two hours after sunrise.During the onset of up-valley winds,an increasing sensible heat fl ux(Fig.3b1)caused by solar heating occurs with a lower wind speed and u?.The fi rst occurrence of FCCs occurred at approximately 1040 LST and was the result of a horizontal wind speed decrease caused by a change in local circulation from prevailing katabatic glacier winds to prevailing upvalley winds,which was accompanied by increasing buoyancy fl uxes.A sudden change in wind direction and an increase in wind speed after 1040 LST(see Figs.3c1 and e1)implies the domination of thermally induced valley circulation over katabatic glacier winds from 1040 to 1330 LST.After this period,a slightly weak decreasing trend in solar heating(see Fig.3d1),caused by occasional cloud cover,weakened the intensity of up-valley winds.Meanwhile,the increasing temperature di ff erence between the ice surface and the air nearby strengthens the glacier winds(Sun et al.,2007).Although the transient cloud cover reduces solar heating,the considerable surface heating does not disappear but,rather,is partially weakened.Therefore,during the period from 1330 to 1500 LST,the oscillation of wind direction caused by local circulation variation induces the occurrence of a low wind speed together with high buoyancy,i.e.,the occurrence of FCCs.However,during the monsoon,the circumstance is di ff erent and will be discussed in section 4.3.

    Figures 3a2–f2 show a classic case of the occurrence of FCCs on 3 April 2011 at SETS.Figures 4c2 and 4e2 show that down-valley winds become inconspicuous during the night and u?maintains a lower value before sunrise.Unlike at QOMS,FCCs do not just occur during lower wind-speed periods.Therefore,the occurrence of FCCs(approximately from 0940 to 1200 LST)is not the result of a decrease in horizontal wind speed but is triggered completely by strong solar heating.Shortly after 1200 LST,the persistent enhancement of upslope wind speeds led to the buoyancy term not being able to dominate the shear term any longer,resulting in the disappearance of FCCs.

    4.2.Near-ground boundary layer structure during FCCs

    The continuous wavelet transform(CWT)is used to analyze the turbulent spectra.This spectral operator was applied to analyze the turbulent structure of vertical wind speeds and temperatures during the period from 0900 to 1700 LST(480 min)at QOMS and from 0800 to 1600 at SETS using the same data analyzed in Fig.3.The CWT was completed using SOWAS—the Software for Wavelet Spectral Analysis and Synthesis(Maraun and Kurths,2004;Maraun et al.,2007).To eliminate the e ff ect of diurnal variation and reduce the processing time,the raw data were detrended and block averaged from the original 10 Hz to 0.5 Hz before the CWT calculation.

    Figures 4a and b show the normalized wavelet power spectra of the vertical wind speed and air temperature at QOMS,respectively.It is signi fi cant that lower-frequency turbulence contributes more spectral power during the fi rst FCC period,marked by the black dotted vertical lines.The time scale of air in plumes or thermals cycling once between the bottom and the top of the mixed layer is approximately 5 to 15 min in a well-developed convective boundary layer(Stull,1988).The structure of large-scale turbulence(lowerfrequency turbulence)presented in Fig.4a conforms to this thermal characteristic.The white dotted vertical lines mark thestartandendtimeofthesecondFCCperiod,duringwhich large-scale turbulence still contributes more power but it is not as obvious as during the fi rst FCC period.This dynamic may be the result of higher wind speeds during the second period.

    The situation at SETS,as depicted in Figs.4c and d,is di ff erent from that at QOMS.The period marked by the black dotted vertical lines contains a low wind-speed period before sunriseandtheonsetofFCCs.AttheonsetofFCCs,thespectral power is contributed mostly by large-scale turbulence.Moreover,thiscircumstancedoesnotjustoccurduringFCCs,andthereisevenlarger-scaleturbulenceoutsideFCCperiods.A possible interpretation is that the considerable heterogeneity of the land surface and the resulting internal boundary layers at SETS(see Fig.1d)induce low-frequency turbulence.

    It is worth noting that the scale of some turbulence is greater than 30 min,which means the EC calculation method cannot capture all types of turbulence power.The average near-ground energy balance closure at QOMS and SETS is 74%and 72%,respectively.Turbulence with scales greater than 30 min led to the imbalance of surface energy.

    4.3.Distribution of FCCs during the entire year

    Because both QOMS and SETS are in a region under a monsoonal in fl uence,the existence of di ff erences between the monsoon and non-monsoon seasons should be considered.Figure 5a shows the distribution of FCCs during 2011,excluding the period when precipitation and sensible heat fl uxes were less than 20 W m?2.The onset of FCCs is most common from 1.5 to 2 h after sunrise during non-monsoon periods and approximately 4 h or more after sunrise during the monsoon season.To obtain accurate FCC distribution characteristics during the monsoon without confusion caused by data blackout during September and October,supplemen-tary analysis based on a 30 min block average was performed with a more complete data record from 2014.The results indicate that the occurrence of FCCs during the monsoon become more dispersed and less frequent than during the nonmonsoon season.

    Fig.4.CWT analysis of the(a,c)vertical wind speed and(b,d)air temperature,(a,b)from 0900 to 1700 LST(480 min)on 12 April 2011 at QOMS,and(c,d)from 0800 to 1600 LST(480 min)on 3 April 2011 at SETS.Two black dotted lines marked the period of FCCs during morning and the yellow dotted lines marked the period of FCCs during afternoon.

    During the monsoon season,katabatic glacier winds(southerly or south-southeasterly)cease during the night(see Fig.2e).Thisdisappearanceallowsthehorizontalwindspeed decrease caused by the wind-direction change from katabatic glacier winds to up-valley winds in the morning to cease,undermining the onset of FCCs.Moreover,because of increased water vapor content during the monsoon season,the sensible heat fl ux is not very high—normally less than 200 W m?2.FCCs can only occur with a lower wind speed in most cases.A few hours after sunrise,the temperature difference between the ice surface and air nearby strengthened by solar heating leads to the onset of down-valley glacier winds(Sunetal.,2007).Inotherwords,bothup-valleywinds and down-valley glacier winds are induced by solar heating.Thus,when the intensity of solar heating is close to an appropriate range,the horizontal wind direction is likely to oscillate between two directions.This oscillation leads to the horizontal wind speed decreasing,and then,FCCs to occur.Take 22 July 2011 as an example( fi gures not shown).During FCC periods,the range of sensible heat fl ux is approximately 50–200 W m?2,and the wind speed decreases because of the oscillation of the wind direction from 0?to 45?.

    At SETS,the situation is much simpler,because the trigger mechanism of FCCs is no longer the low horizontal wind speed coupled with higher sensible heat fl ux,but strong solar heating,independently.Figure 5c shows the distribution of FCCs at SETS in 2011.The occurrence of FCCs is approximately one hour after sunrise,and there is no obvious difference between the monsoon and non-monsoon periods,except for the increasing probability of FCC occurrence caused by more frequent cloud cover during the afternoon during the monsoon.

    5.Conclusion

    Two observation stations(QOMS and SETS)with similar valley topography and a di ff erent underlying surface type were chosen to analyze the triggering mechanism of FCCs and compare the di ff erences.To obtain high-quality surface turbulent fl uxes,which can be used for the detection of FCCs,footprint analysis for the data representativeness of the target underlying surface type and investigation of the internal boundary layer disturbance combined with the quality control and assessment software TK3 was applied to process the turbulence data both at QOMS and at SETS.Glacier winds and valley winds constitute the local circulation at QOMS.FCCs at this station are the result of a horizontal wind speed decrease caused by change in wind direction from katabatic glacier winds to up-slope winds and weakened up-valley winds due to cloud cover.SETS,which has a forest on the mountain and high grass in the valley,presents di ff erent characteristics in terms of FCCs.Because of the low wind speed before sunrise,FCCs occurring during the morning are not triggered by a horizontal wind speed decrease,but by strong solar heating.Spectral data analyzed using CWT reveals large-scale turbulence near the ground emerging from the detected FCCs.However,the heterogeneous underlying surface at SETS creates large-scale turbulence during periods without the occurrence of FCCs.The distribution of FCCs at QOMS for the whole year indicates that FCCs occur later andbecomemoredispersedandlessfrequentduringthemonsoon than during the non-monsoon seasons.At SETS,there is no signi fi cant di ff erence between the monsoon and nonmonsoon periods,except the increased occurrence probability of FCCs during the afternoon during the monsoon.In conclusion,both orography and the ambient underlying surface type can a ff ect the occurrence of FCCs.

    Fig.5.Distribution of FCCs in(a)2011 and(b)2014 at QOMS and(c)at SETS in 2011.The dashed lines indicate sunrise and sunset,and the gray vertical dotted lines outline the monsoon season.

    Acknowledgements.This research was funded by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC019),the National Natural Science Foundation of China(Grant Nos.41661144043,91337212,91637313 and 91737205),and the CAS “Hundred Talents”program(Dr.Weiqiang MA).The authors would like to thank Dr.Yongjie WANG,Dr.Zhongyan WANG,Dr.Zhikun ZHU,Dr.Cunbo HAN and colleagues from QOMS and SETS for their installation and maintenance of the measurement systems.The EC data can be download from http://zenode.org/record/20349#.

    REFERENCES

    Betts,A.K.,J.H.Ball,A.C.M.Beljaars,M.J.Miller,and P.A.Viterbo,1996:The land surface–atmosphere interaction:A review based on observational and global modeling perspectives.J.Geophys.Res.,101,7209–7225,https://doi.org/10.1029/95JD02135.

    Cai,X.H.,Y.Song,T.Zhu,W.L.Lin,and L.Kang,2007:Glacier winds in the Rongbuk Valley,north of Mount Everest:2.Their role in vertical exchange processes.J.Geophys.Res.,112,D11102,https://doi.org/10.1029/2006JD007868.

    Eigenmann,R.,S.Metzger,and T.Foken,2009:Generation of free convection due to changes of the local circulation system.Atmos.Chem.Phys.,9,8587–8600,https://doi.org/10.5194/acp-9-8587-2009.

    Foken,T.,and B.Wichura,1996:Tools for quality assessment of surface-based fl ux measurements.Agricultural and Forest Meteorology,78,83–105,https://doi.org/10.1016/0168-1923(95)02248-1.

    Foken,T.,2008a:Micrometeorology.Springer,Berlin,Heidelberg,https://doi.org/10.1007/978-3-540-74666-9.

    Foken,T.,2008b:The energy balance closure problem:An overview.Ecological Applications,18,1351–1367,https://doi.org/10.1890/06-0922.1.

    Gerken,T.,T.Biermann,W.Babel,M.Herzog,Y.M.Ma,T.Foken,and H.-F.Graf,2014:A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin,Tibetan Plateau.Theor.Appl.Climatol.,117,149–167,https://doi.org/10.1007/s00704-013-0987-9.

    Gckede,M.,T.Markkanen,C.B.Hasager,and T.Foken,2006:Update of a footprint-based approach for the characterisation of complex measurement sites.Bound.-Layer Meteor.,118,635–655,https://doi.org//10.1007/s10546-005-6435-3.

    Hanesiak,J.M.,R.L.Raddatz,and S.Lobban,2004:Local initiation of deep convection on the Canadian prairie provinces.Bound.-Layer Meteor.,110,455–470,https://doi.org/10.1023/B:BOUN.0000007242.89023.e5.

    Lee,S.H.,and F.Kimura,2001:Comparative studies in the local circulations induced by land-use and by topography.Bound.-Layer Meteor.,101,157–182,https://doi.org/10.1023/A:1019219412907.

    Maraun,D.,and J.Kurths,2004:Cross wavelet analysis:Signi ficance testing and pitfalls.Nonlinear Processes in Geophysics,11,505–514,https://doi.org/10.5194/npg-11-505-2004.

    Maraun,D.,J.Kurths,and M.Holschneider,2007:Nonstationary Gaussian processes in wavelet domain:Synthesis,estimation,and signi fi cance testing.Phys.Rev.E,75,016707,https://doi.org/10.1103/PhysRevE.75.016707.

    Mauder,M.,C.Liebethal,M.Gckede,J.-P.Leps,F.Beyrich,and T.Foken,2006:Processing and quality control of fl ux data during LITFASS-2003.Bound.-Layer Meteor.,121,67–88,https://doi.org/10.1007/s10546-006-9094-0.

    Mauder,M.,and Coauthors,2007:The energy balance experiment EBEX-2000.Part II:Intercomparison of eddy-covariance sensors and post- fi eld data processing methods.Bound.-Layer Meteor.,123,29–54,https://doi.org/10.1007/s10546-006-9139-4.

    Mauder,M.,and T.Foken,2011:Documentation and instruction manual of the eddy-covariance software package TK3.Arbeitsergebnisse,Nr.46.,Universitt Bayreuth,Bayreuth.

    Mayer,J.C.,K.Staudt,S.Gilge,F.X.Meixner,and T.Foken,2008:The impact of free convection on late morning ozone decreases on an Alpine foreland mountain summit.Atmos.Chem.Phys.,8,5941–5956,https://doi.org/10.5194/acp-8-5941-2008.

    Raabe,A.,1983:On the relation between the drag coefficient and fetch above the sea in the case of o ff-shore wind in the near shore zone.Z.Meteor.,33,363–367.

    Rannik,¨U.,T.Markkanen,J.Raittila,P.Hari,and T.Vesala,2003:Turbulence statistics inside and over forest:In fl uence on footprint prediction.Bound.-Layer Meteor.,109,163–189,https://doi.org/10.1023/A:1025404923169.

    Semple,J.L.,and G.W.K.Moore,2008:First observations of surface ozone concentration from the summit region of Mount Everest.Geophys.Res.Lett.,35,L20818,https://doi.org/10.1029/2008GL035295.

    Stull,R.B.,1988:An Introduction to Boundary Layer Meteorology.Dordrecht:Kluwer Academic Publishers.

    Sun,F.L.,Y.M.Ma,M.S.Li,W.Q.Ma,H.Tian,and S.Metzger,2007:Boundary layer e ff ects above a Himalayan valley near Mount Everest.Geophys.Res.Lett.,34,L08808,https://doi.org/10.1029/2007GL029484.

    Vickers,D.,and L.Mahrt,1997:Quality control and fl ux sampling problems for tower and aircraft data.J.Atmos.Oceanic Technol.,14,512–526,https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.

    Webb,E.K.,G.I.Pearman,and R.Leuning,1980:Correction of fl ux measurements for density e ff ects due to heat and water vapour transfer.Quart.J.Roy.Meteor.Soc.,106,85–100,https://doi.org/10.1002/qj.49710644707.

    Wilczak,J.M.,S.P.Oncley,and S.A.Stage,2001:Sonic anemometer tilt correction algorithms.Bound.-Layer Meteor.,99,127–150,https://doi.org/10.1023/A:1018966204465.

    Xu,Z.X.,T.L.Gong,and J.Y.Li,2008:Decadal trend of climate in the Tibetan Plateau—regional temperature and precipitation.Hydrological Processes,22,3056–3065,https://doi.org/10.1002/hyp.6892.

    Zhou,D.G.,R.Eigenmann,W.Babel,T.Foken,and Y.M.Ma,2011:The study of near-ground free convection conditions at Nam Co station on the Tibetan Plateau.Theor.Appl.Climatol.,105,217–228,https://doi.org/10.1007/s00704-010-0393-5.

    Zhu,T.,and Coauthors,2006:Downward transport of ozone-rich air near Mt.Everest.Geophys.Res.Lett.,33,L23809,https://doi.org/10.1029/2006GL027726.

    在线观看美女被高潮喷水网站| 男的添女的下面高潮视频| 精品不卡国产一区二区三区| 一级黄色大片毛片| 免费无遮挡裸体视频| 不卡视频在线观看欧美| 亚洲在久久综合| 中文字幕av在线有码专区| 别揉我奶头 嗯啊视频| 直男gayav资源| 中文字幕制服av| 晚上一个人看的免费电影| 老司机福利观看| 青春草国产在线视频 | 欧美成人免费av一区二区三区| 亚洲av不卡在线观看| 别揉我奶头 嗯啊视频| 日韩欧美国产在线观看| 国产精品久久电影中文字幕| 日本三级黄在线观看| 乱码一卡2卡4卡精品| 日韩一区二区视频免费看| 日韩欧美在线乱码| 欧美+日韩+精品| 少妇熟女aⅴ在线视频| 国语自产精品视频在线第100页| 亚洲性久久影院| 伊人久久精品亚洲午夜| 色综合色国产| 国产高清不卡午夜福利| 免费av不卡在线播放| 精品不卡国产一区二区三区| 亚洲电影在线观看av| 成人特级黄色片久久久久久久| 国产女主播在线喷水免费视频网站 | 亚洲精品日韩在线中文字幕 | 麻豆乱淫一区二区| 国产精品伦人一区二区| 日本黄色片子视频| 99热这里只有是精品在线观看| 成人二区视频| 啦啦啦啦在线视频资源| 九九爱精品视频在线观看| 在线播放国产精品三级| 老女人水多毛片| 成人欧美大片| 91精品一卡2卡3卡4卡| 免费看光身美女| 1000部很黄的大片| 日本免费一区二区三区高清不卡| 精品人妻偷拍中文字幕| 亚洲成人久久性| 男人舔奶头视频| 午夜a级毛片| 黄片wwwwww| 成人国产麻豆网| 热99在线观看视频| 99在线人妻在线中文字幕| 久久久精品欧美日韩精品| 欧美在线一区亚洲| 99久国产av精品国产电影| 在线免费观看不下载黄p国产| 中出人妻视频一区二区| 九九爱精品视频在线观看| 国产精品野战在线观看| 亚洲成av人片在线播放无| 在线a可以看的网站| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区精品小视频在线| 日本黄色视频三级网站网址| 亚洲一区二区三区色噜噜| 此物有八面人人有两片| 久久这里只有精品中国| 国产精品人妻久久久影院| 国产黄a三级三级三级人| 欧美性感艳星| 毛片一级片免费看久久久久| 给我免费播放毛片高清在线观看| 韩国av在线不卡| 中文字幕制服av| 欧美最黄视频在线播放免费| 亚洲在久久综合| 国产熟女欧美一区二区| av在线蜜桃| 亚洲精品日韩在线中文字幕 | 日本黄色片子视频| 又爽又黄无遮挡网站| 欧美高清性xxxxhd video| 国产av一区在线观看免费| 黄色欧美视频在线观看| 久久鲁丝午夜福利片| 欧美日韩一区二区视频在线观看视频在线 | 久久久国产成人精品二区| 欧美高清性xxxxhd video| 精品国内亚洲2022精品成人| 免费看光身美女| 欧美三级亚洲精品| 日韩av不卡免费在线播放| 深夜a级毛片| 亚洲av.av天堂| 欧美性猛交╳xxx乱大交人| 在线观看美女被高潮喷水网站| 18禁裸乳无遮挡免费网站照片| 好男人在线观看高清免费视频| 日韩一区二区三区影片| 中文在线观看免费www的网站| a级一级毛片免费在线观看| 亚洲国产精品合色在线| 身体一侧抽搐| 2021天堂中文幕一二区在线观| 99久久中文字幕三级久久日本| 中国国产av一级| 男女视频在线观看网站免费| 欧美色视频一区免费| 久久精品国产99精品国产亚洲性色| 中出人妻视频一区二区| 丝袜喷水一区| 成人欧美大片| 小说图片视频综合网站| 久久99精品国语久久久| 久久婷婷人人爽人人干人人爱| or卡值多少钱| 18禁裸乳无遮挡免费网站照片| 国产麻豆成人av免费视频| 亚洲人成网站在线播| 免费一级毛片在线播放高清视频| 亚洲色图av天堂| 天天躁夜夜躁狠狠久久av| 久久亚洲精品不卡| 久久久精品94久久精品| 在线观看午夜福利视频| 欧美丝袜亚洲另类| 亚洲国产精品国产精品| 尾随美女入室| 99视频精品全部免费 在线| 91午夜精品亚洲一区二区三区| 少妇人妻一区二区三区视频| 亚洲自偷自拍三级| av在线播放精品| 国产人妻一区二区三区在| 九九爱精品视频在线观看| 国产成人午夜福利电影在线观看| 黄色日韩在线| 亚洲精品日韩在线中文字幕 | 一本精品99久久精品77| 国产伦在线观看视频一区| 在线观看免费视频日本深夜| 91aial.com中文字幕在线观看| 精品久久久久久久久av| 免费搜索国产男女视频| 亚洲精品国产av成人精品| 欧美丝袜亚洲另类| 可以在线观看毛片的网站| 国产毛片a区久久久久| 在线观看av片永久免费下载| 国产精品av视频在线免费观看| 乱人视频在线观看| 亚洲精品国产av成人精品| 欧美成人免费av一区二区三区| 国产午夜精品一二区理论片| av天堂中文字幕网| 国产 一区精品| 日韩欧美三级三区| 综合色av麻豆| 插阴视频在线观看视频| a级毛色黄片| 啦啦啦观看免费观看视频高清| 国产老妇女一区| 国产 一区精品| 久久久久久伊人网av| 成人毛片60女人毛片免费| 国产亚洲av片在线观看秒播厂 | 悠悠久久av| 乱码一卡2卡4卡精品| 51国产日韩欧美| 国产日本99.免费观看| 日韩欧美国产在线观看| 少妇熟女aⅴ在线视频| 午夜福利在线在线| 亚洲18禁久久av| 成人无遮挡网站| 亚洲美女搞黄在线观看| 欧美日本视频| 精品人妻偷拍中文字幕| 波多野结衣高清作品| 最后的刺客免费高清国语| 国产91av在线免费观看| 中国美白少妇内射xxxbb| 国产极品精品免费视频能看的| 搡女人真爽免费视频火全软件| 亚洲国产精品成人综合色| 亚洲成a人片在线一区二区| 亚洲丝袜综合中文字幕| 夫妻性生交免费视频一级片| av免费观看日本| 亚洲精品国产成人久久av| 成人性生交大片免费视频hd| 国产成人a区在线观看| 白带黄色成豆腐渣| 国产极品天堂在线| 国产熟女欧美一区二区| 欧美日韩在线观看h| 久久久精品94久久精品| 国产精品久久久久久精品电影小说 | 欧美精品一区二区大全| www.色视频.com| av卡一久久| 99热这里只有精品一区| 亚洲无线观看免费| 久久久久久九九精品二区国产| 久久久久久久久大av| 成人午夜高清在线视频| 久久人人爽人人片av| 成人午夜精彩视频在线观看| 国产高潮美女av| av免费在线看不卡| 欧美在线一区亚洲| 蜜桃亚洲精品一区二区三区| 亚洲在久久综合| 国产精品福利在线免费观看| 国产精品精品国产色婷婷| 最近2019中文字幕mv第一页| 国产精品麻豆人妻色哟哟久久 | 久久精品夜色国产| 黄色欧美视频在线观看| 亚洲成人av在线免费| 亚洲欧美成人综合另类久久久 | 亚洲五月天丁香| 欧美成人精品欧美一级黄| 国产成人freesex在线| 亚洲精品日韩在线中文字幕 | av专区在线播放| 亚洲欧美精品自产自拍| 久久亚洲精品不卡| 免费搜索国产男女视频| 国产精品久久电影中文字幕| 国内精品一区二区在线观看| 18禁黄网站禁片免费观看直播| 午夜亚洲福利在线播放| 99热全是精品| 亚洲成av人片在线播放无| 亚洲精品日韩在线中文字幕 | 久久久欧美国产精品| 99久久久亚洲精品蜜臀av| 亚洲国产欧美在线一区| 亚洲欧美清纯卡通| 国产成人精品一,二区 | 高清毛片免费观看视频网站| 亚洲人成网站高清观看| 黄色日韩在线| 99久久精品热视频| 欧美zozozo另类| 婷婷色av中文字幕| 麻豆成人av视频| 最好的美女福利视频网| 国国产精品蜜臀av免费| 国产精品久久久久久精品电影小说 | 日本五十路高清| 国国产精品蜜臀av免费| 简卡轻食公司| 国产精品野战在线观看| 22中文网久久字幕| 九九热线精品视视频播放| 中文字幕精品亚洲无线码一区| 欧美潮喷喷水| 三级国产精品欧美在线观看| 国产亚洲91精品色在线| 午夜精品在线福利| 啦啦啦观看免费观看视频高清| ponron亚洲| 噜噜噜噜噜久久久久久91| 免费看日本二区| 成人永久免费在线观看视频| 最好的美女福利视频网| 国产黄色小视频在线观看| 嘟嘟电影网在线观看| 久久精品国产亚洲av涩爱 | 久久人人爽人人片av| 亚洲国产日韩欧美精品在线观看| 少妇人妻一区二区三区视频| 午夜亚洲福利在线播放| 午夜福利成人在线免费观看| 黄色日韩在线| 精品午夜福利在线看| 亚洲成人久久爱视频| 欧美日本视频| 18禁黄网站禁片免费观看直播| 一区二区三区四区激情视频 | 亚洲自拍偷在线| 天天躁日日操中文字幕| 蜜桃久久精品国产亚洲av| 插逼视频在线观看| 99久久中文字幕三级久久日本| 一本一本综合久久| 成人一区二区视频在线观看| 国产乱人视频| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久久免| 国产精品一区二区在线观看99 | 熟女人妻精品中文字幕| 国产亚洲精品av在线| 只有这里有精品99| 日日摸夜夜添夜夜爱| 亚洲国产精品国产精品| 麻豆久久精品国产亚洲av| 91久久精品国产一区二区三区| 性欧美人与动物交配| 白带黄色成豆腐渣| 爱豆传媒免费全集在线观看| 麻豆成人午夜福利视频| 国产欧美日韩精品一区二区| 男人舔奶头视频| 欧美日韩乱码在线| 一卡2卡三卡四卡精品乱码亚洲| 免费av不卡在线播放| 国产精品一区二区三区四区久久| 国产黄色视频一区二区在线观看 | 毛片女人毛片| 亚洲不卡免费看| 久久精品91蜜桃| 国产精品爽爽va在线观看网站| 美女高潮的动态| 看免费成人av毛片| 搡女人真爽免费视频火全软件| 一本久久中文字幕| 欧美最黄视频在线播放免费| 欧美日本亚洲视频在线播放| 免费搜索国产男女视频| 99热这里只有精品一区| 国产极品精品免费视频能看的| 久久精品综合一区二区三区| 久久精品久久久久久久性| 亚洲av二区三区四区| 波多野结衣高清作品| 久久人人爽人人片av| 久久鲁丝午夜福利片| 国产精品免费一区二区三区在线| 亚洲国产色片| 亚洲国产精品合色在线| 97超视频在线观看视频| 日韩 亚洲 欧美在线| 国产午夜精品一二区理论片| av国产免费在线观看| 男插女下体视频免费在线播放| 久久久久久久久中文| 久久国产乱子免费精品| 午夜老司机福利剧场| 青春草视频在线免费观看| 午夜福利在线在线| 久久韩国三级中文字幕| 国产 一区 欧美 日韩| 寂寞人妻少妇视频99o| 超碰av人人做人人爽久久| 中文字幕人妻熟人妻熟丝袜美| 12—13女人毛片做爰片一| 日本免费a在线| 乱码一卡2卡4卡精品| 国产精品久久久久久亚洲av鲁大| 一夜夜www| 亚洲在线观看片| 国产极品天堂在线| 狠狠狠狠99中文字幕| 国产亚洲av片在线观看秒播厂 | av视频在线观看入口| 又黄又爽又刺激的免费视频.| 又粗又爽又猛毛片免费看| 欧美性感艳星| av黄色大香蕉| 此物有八面人人有两片| 欧美在线一区亚洲| 啦啦啦观看免费观看视频高清| 亚洲成人精品中文字幕电影| 日韩av在线大香蕉| 成人综合一区亚洲| 国产一区二区三区av在线 | 波野结衣二区三区在线| 床上黄色一级片| 一卡2卡三卡四卡精品乱码亚洲| 国产成人精品久久久久久| 我要看日韩黄色一级片| 直男gayav资源| 国产精品综合久久久久久久免费| 美女国产视频在线观看| 亚洲va在线va天堂va国产| 精品人妻一区二区三区麻豆| 国产精品国产高清国产av| 深夜精品福利| 久久精品国产99精品国产亚洲性色| 夜夜看夜夜爽夜夜摸| 国产精品女同一区二区软件| 99久久成人亚洲精品观看| 波多野结衣高清无吗| 男女视频在线观看网站免费| 丝袜喷水一区| 又粗又爽又猛毛片免费看| 免费人成视频x8x8入口观看| 国产色婷婷99| 国产真实伦视频高清在线观看| а√天堂www在线а√下载| 观看免费一级毛片| 亚洲成人精品中文字幕电影| 久久午夜亚洲精品久久| 内射极品少妇av片p| 国产精品,欧美在线| 欧美丝袜亚洲另类| 成人亚洲欧美一区二区av| 精品久久国产蜜桃| 国产精品永久免费网站| 91午夜精品亚洲一区二区三区| 一区二区三区免费毛片| 高清毛片免费看| 中文字幕av成人在线电影| 亚洲aⅴ乱码一区二区在线播放| 欧美变态另类bdsm刘玥| 久久久久久伊人网av| 啦啦啦啦在线视频资源| 人妻夜夜爽99麻豆av| 听说在线观看完整版免费高清| 99久久人妻综合| 久久99精品国语久久久| 高清毛片免费观看视频网站| 欧美+日韩+精品| 床上黄色一级片| 国产av一区在线观看免费| 亚洲成人精品中文字幕电影| 国产淫片久久久久久久久| 一级黄色大片毛片| 日本av手机在线免费观看| 99热精品在线国产| 男女下面进入的视频免费午夜| 国产精品久久久久久精品电影小说 | 日日撸夜夜添| 成年免费大片在线观看| 熟女电影av网| 岛国在线免费视频观看| 国产午夜精品一二区理论片| 久久中文看片网| 国产精品久久电影中文字幕| 男女啪啪激烈高潮av片| 性色avwww在线观看| www.av在线官网国产| 综合色av麻豆| 久久久精品大字幕| 哪个播放器可以免费观看大片| 禁无遮挡网站| h日本视频在线播放| 亚洲欧洲日产国产| 真实男女啪啪啪动态图| 精品国产三级普通话版| 婷婷色av中文字幕| 国产三级中文精品| 亚洲va在线va天堂va国产| 国产精品国产高清国产av| 超碰av人人做人人爽久久| 欧美最黄视频在线播放免费| 热99在线观看视频| 国产69精品久久久久777片| 国产午夜福利久久久久久| 69人妻影院| 久久这里有精品视频免费| 久久人人爽人人爽人人片va| 一进一出抽搐动态| 全区人妻精品视频| 偷拍熟女少妇极品色| 91精品一卡2卡3卡4卡| 国产黄a三级三级三级人| 国产av一区在线观看免费| 免费观看a级毛片全部| 久久99热6这里只有精品| 日韩一本色道免费dvd| 99久国产av精品国产电影| 国产熟女欧美一区二区| 天天躁日日操中文字幕| 亚洲在久久综合| 国产精品日韩av在线免费观看| 国产大屁股一区二区在线视频| 日本五十路高清| 欧美xxxx性猛交bbbb| 身体一侧抽搐| 国产亚洲精品久久久com| 在线观看66精品国产| 天天躁日日操中文字幕| 人妻制服诱惑在线中文字幕| 欧美性猛交黑人性爽| 国产精品野战在线观看| 亚洲内射少妇av| 精品久久久久久久久久免费视频| 日韩欧美一区二区三区在线观看| 99久久人妻综合| 日韩精品有码人妻一区| 久久精品国产99精品国产亚洲性色| 日本黄大片高清| 国产亚洲精品久久久com| 亚洲人成网站在线播放欧美日韩| 18禁在线无遮挡免费观看视频| www.av在线官网国产| 精品免费久久久久久久清纯| 内地一区二区视频在线| 国内揄拍国产精品人妻在线| 中出人妻视频一区二区| 欧美日韩在线观看h| 麻豆乱淫一区二区| 男的添女的下面高潮视频| 午夜爱爱视频在线播放| 日韩人妻高清精品专区| av女优亚洲男人天堂| av.在线天堂| 春色校园在线视频观看| 日本黄色视频三级网站网址| 男插女下体视频免费在线播放| 亚洲第一区二区三区不卡| 一本久久精品| 精品不卡国产一区二区三区| 一个人观看的视频www高清免费观看| 国产精品一区二区三区四区免费观看| 欧美在线一区亚洲| h日本视频在线播放| 卡戴珊不雅视频在线播放| 欧美变态另类bdsm刘玥| 综合色av麻豆| 久久久欧美国产精品| av在线天堂中文字幕| 亚洲性久久影院| 日本av手机在线免费观看| 久久久久久久久久成人| 观看美女的网站| 国产探花极品一区二区| 少妇裸体淫交视频免费看高清| 国产免费男女视频| 欧美激情在线99| 日韩,欧美,国产一区二区三区 | 少妇猛男粗大的猛烈进出视频 | 亚洲欧美精品专区久久| 久久99热6这里只有精品| 亚洲欧美日韩无卡精品| 国产成人aa在线观看| 亚洲精品乱码久久久久久按摩| 中文字幕精品亚洲无线码一区| 欧美日韩一区二区视频在线观看视频在线 | 日本色播在线视频| 麻豆精品久久久久久蜜桃| 村上凉子中文字幕在线| 亚洲欧美精品综合久久99| 最新中文字幕久久久久| 国产久久久一区二区三区| 久久婷婷人人爽人人干人人爱| 国产精品永久免费网站| 国产蜜桃级精品一区二区三区| 国产在视频线在精品| 亚洲18禁久久av| 联通29元200g的流量卡| 亚洲内射少妇av| 99热精品在线国产| 有码 亚洲区| 18+在线观看网站| 国产视频首页在线观看| 欧美日韩国产亚洲二区| 日韩成人av中文字幕在线观看| 亚洲最大成人中文| 亚洲高清免费不卡视频| 美女脱内裤让男人舔精品视频 | 久久精品国产鲁丝片午夜精品| 亚洲国产精品sss在线观看| 99热这里只有精品一区| 日日撸夜夜添| 久久久精品大字幕| 久久久久久久午夜电影| 在线播放无遮挡| 天美传媒精品一区二区| 国产午夜精品一二区理论片| 淫秽高清视频在线观看| 麻豆成人av视频| 免费搜索国产男女视频| 高清午夜精品一区二区三区 | 一区二区三区高清视频在线| 欧美成人a在线观看| 夫妻性生交免费视频一级片| 春色校园在线视频观看| 亚洲第一区二区三区不卡| 成人av在线播放网站| 久久精品人妻少妇| 成人鲁丝片一二三区免费| 成人国产麻豆网| 真实男女啪啪啪动态图| 色哟哟·www| 国产精品99久久久久久久久| 成人午夜高清在线视频| 一级黄色大片毛片| 男人和女人高潮做爰伦理| 波多野结衣高清无吗| 午夜福利成人在线免费观看| 亚洲av.av天堂| 日韩一区二区视频免费看| 成人漫画全彩无遮挡| 少妇高潮的动态图| 毛片女人毛片| 午夜福利在线在线| 女的被弄到高潮叫床怎么办| 亚洲av男天堂| 99热精品在线国产| 中国国产av一级| 亚洲色图av天堂| 男人的好看免费观看在线视频| 人妻夜夜爽99麻豆av| 精品无人区乱码1区二区| 精华霜和精华液先用哪个| 亚洲天堂国产精品一区在线| 久久精品综合一区二区三区| 特级一级黄色大片| 97热精品久久久久久| 一区二区三区高清视频在线| 成年免费大片在线观看| 色综合亚洲欧美另类图片| 国产精品电影一区二区三区| 嫩草影院精品99|