• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Probability Distribution Model for SCFs in Multi-planar Circular Hollow Section DT-joints Subjected to Axial Loading

    2018-06-27 07:19:50YUANKuilinJIANGYongyiYANGHitinHONGMing
    船舶力學(xué) 2018年6期

    YUAN Kui-lin,JIANG Yong-yi,YANG Hi-tin,HONG Ming

    (a.State Key Lab of Structural Analysis for Industrial Equipment,School of Naval Architecture Engineering;b.Department of Engineering Mechanics,Dalian University of Technology,Dalian 116024,China)

    0 Introduction

    Circular hollow section(CHS)joints are widely used in the offshore jacket-type platform structures.Due to the complex shape of CHS joints,nearby the weld toe region the high stress locally appears,which is usually quantified by stress concentration factor(SCF).Considering the different types and geometric dimensions of tubular joints,the SCF is supposed be a random variable,of which the probability distribution greatly affects the accuracy of fatigue reliability assessment for offshore structures.

    Using the probabilistic fracture mechanics method,Kirkemo[1]performed the fatigue reliability analysis for a certain tubular joint of the jacket structure located in shallow water.The SCFs are assumed to follow a log-normal distribution with the coefficient of variation(COV)equals to 0.15 and the mean value of 2.75 and 2.50 for axial loading and in-plane bending,respectively.Rajasankar et al[2]analyzed the reliability of a cracked tubular T-joint subjected to axial loading,based on a log-normal distribution of SCFs with the mean of 10.118 and the standard deviation of 2.024.Lotfollahi-Yaghin et al[3-4]calculated the SCFs of the central brace by finite element(FE)analysis and then carried out the reliability analysis for bi-planar tubular DKT-joints under axial loading based on fracture mechanics and S-N approaches,respectively.Although the accuracy of log-normal distribution is considered to be acceptable and the corresponding parameters have been calculated in many studies,sometimes,it seems not the best fitted probability model.Ahmadi and Lotfollahi-Yaghin[5]investigated the probability models for the maximum SCFs along the weld toe of bi-planar tubular DKT-joints under axial loads.The Birnbaum-Saunders probability density distribution(PDF)with parameters β0of 22.6 and γ0of 0.74 was found to be best fitted to the FE-based sample.Ahmadi et al[6-8]showed the maximum SCFs at the weld toe of tubular KT-joints reinforced with internal ring stiffeners follow Inverse Gaussian distribution,Gamma distribution and Generalized Extreme Value distribution for axial,in-plane bending and out-plane bending(IPB)loads,respectively.

    For practical structural design and decision on damage detection,it is of great importance to assess the region with maximum SCFs in advance,which is always firstly vulnerable to fatigue.Although few studies like Refs.[3-5]paid attention to multi-planar tubular joints,the probability distributions of the maximum SCFs on the chord and the brace sides had not been systematically investigated.

    In this study,the aim is to present the appropriate probability distribution functions for the maximum SCFs of multi-planar DT-joints under axial loadings.Totally 352 finite element models of the multi-planar DT-joints with different geometric parameters have been generated with solid elements,and the maximum SCFs along the chord-brace intersection are analyzed.The results are categorized into four groups of samples,according to the position on the chord or brace side under two kinds of axial loading,i.e.single axial loading or balanced axial loading,respectively.Several commonly used probability models,in which the parameter values are obtained by maximum likelihood(ML)method,are fitted to the density histograms.Based on the chi-squared goodness-of-fit test,a new set of probability density functions(PDFs)for the maximum SCFs in multi-planar DT-joints are proposed for the further fatigue reliability analysis.

    1 Preparation of the SCF sample database by FE method

    Due to the complex geometry of multi-planar DT-joints,it is impractical to calculate the SCFs along the chord-brace intersection by analytical method.Finite element(FE)method and the experimental measurement can be used for evaluating the SCFs of tubular joints.The former is more efficient and convenient than the latter.Hence,the finite element method is used to prepare sample database in this study.

    1.1 Geometrical parameters of DT-joints

    A typical shape and geometrical parameters of multi-planar CHS DT-joint are illustrated in Fig.1.In this research,two braces are assumed to be identical and perpendicular to the chord.The axes of the two braces intersect at the midpoint of the chord axis.The SCFs along the chord-brace intersection of the multi-planar DT-joint are related to the parameters including α (the ratio of chord length and chord outer radius,2L/D),β (the ratio of brace outer diameter and chord outer diameter,d/D),γ(the ratio of chord outer radius and chord thickness,D/2T),τ(the ratio of brace thickness and chord thickness,t/T),φ (polar angle)and ω(out-of-plane angle).The parameters of α,β,γ and τ have been commonly used in the existing parameter equations to consider the geometric characteristics of tubular joints.Out-ofplane angle ω is a specific parameter for multi-planar joints.Gap angle ωinsideis not an independent parameter,which is related to ω and β as the following equation[9].

    Fig.1 Geometrical parameters of a multi-planar tubular DT-joint

    To prepare a sample database for the SCFs in multi-planar DT-joints subjected to axial loading,352 models were generated and analyzed by using ANSYS.Different values assigned for each geometrical parameter have been presented in Tab.1.These values cover the practical ranges of the dimensionless parameters typically found in multi-planar tubular joints of offshore jacket structures.

    1.2 FE model generation method

    As 3D brick elements can be used to model the entire joint including the weld region and it will provide more accurate and detailed stress distribution than a simple 2D shell analysis.3D brick element named as SOLID186 in ANSYS code,which is a higher order three-dimensional 20-node brick element that exhibits quadratic displacement behavior,was utilized in the finite element models.Appropriate approach to model weld region is essential for calculating the SCF along the weld toe,so the generated weld profiles were referred to AWS Code[10].

    In order to guarantee good quality and appropriate quantity of FE meshes,a method of sub-zone mesh generation is used here.In this method,the entire structure is divided into several different zones regarding the computational requirements,as shown in Fig.2.On the other respect,the number of zones should be as few as possible to simplify the modeling process.Mesh sensitivity analysis was also carried out to determine the optimum mesh size in advance.The generated mesh around the chord-brace intersection is shown in Fig.3.Moreover,the Young’s modulus and Poisson’s ratio of the material are set as 206 GPa and 0.3,respectively.

    Fig.2 A typical geometrical model

    1.3 Defined boundary conditions

    The boundary condition of chord end may range from ‘a(chǎn)lmost fixed’ to ‘a(chǎn)lmost pinned’.The length of chord greater than six times of chord diameters(i.e.α≥12)can be used to ensure that the stress distribution in the brace-chord intersection not influenced by the end condition[11].According to Morgan and Lee[12],the effect of chord end boundary conditions is only important for joints with α<8 together with high values of β and γ.The influence of αB(ratio of brace length/diameter)and the boundary condition of brace end on SCFs are also considered.Chang and Dover[13]show αBhas little effect on the SCFs along the chord-brace intersection when αBis greater than a critical value of 6.Therefore, α=15 and αB=14 are prescribed for each FE model and the chord ends are fully fixed.

    In practice,two braces of the multi-planar DT-joint are often subjected to balanced axial loading with the same amplitude as shown in Fig.4(b).In some cases,a multi-planar CHS DT-joint may be subjected to axial loading as Fig.4(a),that one of the braces is bearing load and the other one can be treated as fixed end[14].Hence,these two kinds of axial loading are both taken into account.

    1.4 Analysis and extraction of SCFs

    Fig.4 Boundary conditions at the brace ends

    As the orientation of the maximum principal stress is usually normal to the weld toe,the stresses normal to the weld toe are used to perform line extrapolations for obtaining the hot spot stress.The zone so-called‘extrapolation region’depends on the geometrical parameters of joints and the position around the intersection,as shown in Fig.5.The extrapolated stress at the weld toe position which is perpendicular to the weld toe is calculated by the following equation:

    where σ1and σ2are the stress at the first and second extrapolation points at the distance of 0.4T and 1.4T from the weld toe,in which T represents the thickness of tube,respectively.

    Fig.5 Extrapolation of the hot spot stress[15]

    Then,the SCF at the weld toe is obtained as

    here σnis the nominal stress of the loaded brace which is calculated as follows:

    where F is the applied axial force.

    1.5 Verification of the FE results

    The results of the finite element analysis are better to be verified with experiments in order to make them more convincing.To the best knowledge of the authors,there is no reliable experimental data about the SCFs distribution along the chord-brace intersection of steel multi-planar DT-joints in the existing literatures.With the same modeling procedure as above mentioned,an alternative FE-based SCFs analysis for axial loaded T-joints was performed here and verified with the experimental results in Ref.[16].The results are summarized in Tab.2,showing a fairly good agreement with each other.The divergence between FE results and the mean of experimental results is within-17.59%which is acceptable for engineering application considering the uncertainty of welding quality[17].

    Tab.2 FE results compared with experiments published[16](D=914 mm,τ=0.5,β=0.5,γ=14.3,α=5.0)

    Ch.sad.is the location at saddle of chord.Ch.cro.is the location at crown of chord.Br.sad.is the location at saddle of brace.Br.cro.is the location at crown of brace.Mean and standard deviations are calculated for experimental results.Relative error is defined as the difference between FE result and the mean of experimental results.

    1.6 Organization of the sample database

    In this study,the probability distribution of maximum SCFs in the multi-planar DT-joints is emphasized.The SCFs extracted from the FE analysis of 352 models were organized as four samples for further statistical and probabilistic analysis.The first and second samples include the maximum SCFs along the weld on the chord and the brace side under single axial loading,respectively.Similarly,the third and fourth samples include the maximum SCFs on the chord and the brace side under balanced axial loading,respectively.

    2 Probability density function fitting for the maximum SCFs

    2.1 Generation of the density histograms

    The density histogram is utilized to describe the distribution of the samples.A density histogram is generated by the following equation[18]:

    where Hidenotes the height of the i-th bar,νirepresents the number of data points that fall into the i-th bin,k is the total number of bins,n is the sample size and d represents the uniform width of the bins.Insufficient number of bins may lead to omission of some important features of the distribution.In addition,the number of bins will affect the accuracy of the chi-squared goodness-of-fit test(section 2.3).Considering the following chi-squared test,the following equation is adopted to determine the value of k[18].

    where ε is the significance level,z1-εis the value which a standard normal variable Z exceeds with probability ε as follows:

    The density histograms of generated samples for ε=0.05 are shown in Fig.6.

    Fig.6 Density histograms generated for maximum SCF samples(a)Chord side under single axial loading;(b)Brace side under single axial loading;(c)Chord side under balanced axial loading;(d)Brace side under balanced axial loading.

    2.2 PDF fitting based on ML method

    In order to compare the degree of fitting of various probability distributions to the sample data,nine different PDFs were fitted to the density histograms,as Fig.7.In each case,distribution parameters were estimated by the maximum likelihood(ML)method.

    A maximum likelihood estimator is the value of the parameters that maximize the likelihood function of the sample.For a random variable X with a known PDF,fX()x,and the observed values x1,x2,…,xn,in a random sample of size n,the likelihood function can be expressed as a joint probability density function:

    where θ represents the vector of unknown parameters.

    Fig.7 PDFs fitted to the generated histograms(a)Chord_single axial loading SCFs;(b)Brace_single axial loading SCFs;(c)Chord_balanced axial loading SCFs;(d)Brace_balanced axial loading SCFs

    The objective is to maximize L()θfor the given data set.It can be solved by taking r partial derivatives of L()θ,where r is the number of unknown parameters,and equating them to zero.Then the maximum likelihood estimators of the parameter set θ can be found from the solution of the equations.Thus,the distribution parameters of each candidate probability distribution estimated by ML method are listed in Tab.3.

    Tab.3 The values of parameters in the PDFs calibrated by maximum likelihood estimation

    Continue

    2.3 Assessment of the goodness-of-fit

    The chi-squared test is performed to check the goodness-of-fit of each probability distribution,based on the chi-squared statistic[18].To test whether the differences between the observed and expected frequencies are significant,the following statistic is employed:

    where k is the number of bins,n is the sample size,fiis the frequency of the observed sample in the i-th bins andis probability within the i-th bins estimated by expected probability distribution.If n is greater than 50 andis not less than 5 in practical applications,the adjacent bins could be merged appropriately.

    If the chi-squared statistic is greater than a critical value,it indicates a poor fit.So,the critical value(k-r- 1 )is defined as the chi-squared variable X exceeds with probability ε,i.e.

    where r is the number of distribution parameters in the probability model.The results of chisquared test for four prepared samples are given in Tabs.4-7.The CV0.05and CV0.01represent the critical value of Chi-squared statistic with significance level ε=0.05 and ε=0.01,respectively.And CD0.05and CD0.01are the corresponding difference between the test statistic of sample and the critical values.The negative value of CD0.05and CD0.01indicates that the expected probability distribution is acceptable at the desired significance level and the bigger absolute value is better.Therefore,it can be found that the Birnbaum-Saunders probability distribution has the smallest values of the test statistic,indicating it best fitting to the generated samples on the chord side under single axial loading,chord and brace sides under balanced axial loading.On the other hand,the Gamma distribution is the best fitted distribution for the sample on the brace side under single axial loading.

    Tab.4 Results of the goodness-of-fit test for the SCF sample on the chord side under single axial loading

    Tab.5 Results of the goodness-of-fit test for the SCF sample on the brace side under single axial loading

    Tab.6 Results of the goodness-of-fit test for the SCF sample on the chord side under balance axial loading

    Continue

    Tab.7 Results of the goodness-of-fit test for the SCF sample on the brace side under balance axial loading

    3 Proposed probability models for the maximum SCFs

    The best-case scenario is that a single probability model can be proposed for all SCF samples in such a way that each sample has its specific values estimated parameters.According to the discussion in the previous section on chi-squared goodness-of-fit test,the Birnbaum-Saunders distribution is not the best probability model for SCFs on the brace side under single axial loading,but it is yet quite acceptable.The reason is that the value of the test statistic for the Birnbaum-Saunders distribution is also well below the critical value.Therefore,the Birnbaum-Saunders distribution is proposed to describe the maximum SCFs along chordbrace intersection of multi-planar DT-joints under axial loading,for the further fatigue reliability analysis of the offshore jacket structures.

    The PDF of the Birnbaum-Saunders distribution is formulated as:

    where the estimated values of parameters β0and γ0could be referred to the Tab.3.The corresponding PDFs for each sample are given as follows:

    for SCFs on the chord side under single axial loading.

    for SCFs on the brace side under single axial loading.

    for SCFs on the chord side under balanced axial loading.

    for SCFs on the brace side under balanced axial loading.

    [1]Kirkemo F.Applications of probabilistic fracture mechanics to offshore structures[J].Appl.Mech.Rev.,1988,41:61-84.

    [2]Rajasankar J,Iyer N R,Appa Rao T V S R.Structural integrity assessment of offshore tubular joints based on reliability analysis[J].Int J Fatigue,2003,25:609-619.

    [3]Lotfollahi-Yaghin M A,Ahmadi H,Aminfar M H.Effect of stress concentration factors on the structural integrity assessment of multi-planar offshore tubular DKT-joints based on the fracture mechanics fatigue reliability approach[J].Ocean Eng.,2011,38:1883-1893.

    [4]Lotfollahi-Yaghin M A,Ahmadi H.Effect of SCFs on S-N based fatigue reliability of multi-planar tubular DKT-joints of offshore jacket-type structures[J].Ships Offshore Struct.,2013,8:55-72.

    [5]Ahmadi H,Lotfollahi-Yaghin M A.A probability distribution model for stress concentration factors in multi-planar tubular DKT-joints of steel offshore structures[J].Appl.Ocean Res.,2012,34:21-32.

    [6]Ahmadi H,Mohammadi A H,Yeganeh A.Probability density functions of SCFs in internally ring-stiffened tubular KT-joints of offshore structures subjected to axial loading[J].Thin-Walled Struct.,2015,94:485-499.

    [7]Ahmadi H,Yeganeh A,Mohammadi A H,Zavvar E.Probabilistic analysis of stress concentration factors in tubular KT-joints reinforced with internal ring stiffeners under in-plane bending loads[J].Thin-Walled Struct.,2016,99:58-75.

    [8]Ahmadi H.A probability distribution model for SCFs in internally ring-stiffened tubular KT-joints of offshore structures subjected to out-of-plane bending loads[J].Ocean Eng.,2016,116:184-199.

    [9]Karamanos S A,Romeijn A,Wardenier J.Stress concentrations in tubular DT-joints for fatigue design[J].J Struct.Eng.,2000,126:1320-1330.

    [10]American Welding Society(AWS).Structural Welding-Structural welding code-steel[S].2010.

    [11]Lotfollahi-Yaghin M A,Ahmadi H.Effect of geometrical parameters on SCF distribution along the weld toe of tubular KT-joints under balanced axial loads[J].Int J Fatigue,2010,32:703-719.

    [12]Morgan M R,Lee M M K.Prediction of stress concentrations and degrees of bending in axially loaded tubular K-joints[J].J Constr.Steel Res.,1998,45:67-97.

    [13]Chang E,Dover W D.Stress concentration factor parametric equations for tubular X and DT joints[J].Int J Fatigue,1996,18:363-387.

    [14]Li T,Lie S T,Shao Y B.Fatigue and fracture strength of a multi-planar circular hollow section TT-joint[J].J Constr.Steel Res.,2017,129:101-110.

    [15]Zhao X L,Packer J A.Fatigue design procedure for welded hollow section joints[M].Woodhead Publishing,2000.

    [16]Lloyd’s Register of Shipping.Stress concentration factors for simple tubular joints[S].1997.

    [17]Shao Y B.Geometrical effect on the stress distribution along weld toe for tubular T-and K-joints under axial loading[J].J Constr.Steel Res.,2007,63:1351-1360.

    [18]Martinez W L,Martinez A R.Computational statistics handbook with MATLAB[M].CRC Press,2013.

    一级毛片aaaaaa免费看小| 久久精品国产自在天天线| 久久久久久久久久久丰满| 女人十人毛片免费观看3o分钟| 日日啪夜夜撸| 国产精品电影一区二区三区| 免费黄网站久久成人精品| 亚洲av免费高清在线观看| 国产一区二区在线观看日韩| 久久久久久久久久久免费av| 黄色日韩在线| 国产美女午夜福利| 亚洲国产欧美在线一区| 久久久久久九九精品二区国产| 国产 一区 欧美 日韩| 最近手机中文字幕大全| 亚洲国产欧美在线一区| 国产精品国产三级专区第一集| 在线播放无遮挡| 三级毛片av免费| 亚洲最大成人av| 日韩国内少妇激情av| 精品久久久噜噜| 午夜福利在线观看吧| 成人国产麻豆网| 在线观看av片永久免费下载| 久久久久久久久久成人| 国产精品永久免费网站| 亚洲人成网站在线播| 亚洲av电影在线观看一区二区三区 | 亚洲人成网站在线播| 国产精品嫩草影院av在线观看| or卡值多少钱| 国产一区二区在线观看日韩| 国产三级中文精品| 亚洲经典国产精华液单| 成人亚洲精品av一区二区| 视频中文字幕在线观看| 免费播放大片免费观看视频在线观看 | 99热全是精品| 中国国产av一级| 久久这里只有精品中国| 国产精品久久久久久久电影| 国产一级毛片在线| av国产久精品久网站免费入址| 97在线视频观看| 3wmmmm亚洲av在线观看| 男女啪啪激烈高潮av片| 亚洲久久久久久中文字幕| 精品欧美国产一区二区三| 色综合站精品国产| 男的添女的下面高潮视频| 中文资源天堂在线| 亚洲在线观看片| 欧美成人精品欧美一级黄| 秋霞在线观看毛片| 国产视频内射| 精品免费久久久久久久清纯| 亚洲怡红院男人天堂| 97人妻精品一区二区三区麻豆| 精品不卡国产一区二区三区| 日韩欧美在线乱码| 日韩欧美国产在线观看| 久久午夜福利片| 九九久久精品国产亚洲av麻豆| 黄片无遮挡物在线观看| 午夜日本视频在线| 中文天堂在线官网| 波野结衣二区三区在线| 国产精品国产高清国产av| 亚洲精华国产精华液的使用体验| 99久久成人亚洲精品观看| 成人鲁丝片一二三区免费| 亚洲欧美中文字幕日韩二区| 国产免费视频播放在线视频 | 高清午夜精品一区二区三区| 久久亚洲国产成人精品v| 日本一本二区三区精品| 欧美高清性xxxxhd video| 午夜福利成人在线免费观看| 免费黄色在线免费观看| 精品人妻熟女av久视频| 插阴视频在线观看视频| 超碰av人人做人人爽久久| 嫩草影院精品99| 有码 亚洲区| 婷婷六月久久综合丁香| 亚洲精品日韩在线中文字幕| 国产精品久久久久久久电影| 老司机影院毛片| 国产精品久久久久久久电影| 老司机影院毛片| 18禁动态无遮挡网站| 天堂av国产一区二区熟女人妻| 不卡视频在线观看欧美| 在线天堂最新版资源| 国产午夜精品久久久久久一区二区三区| 亚洲精品色激情综合| 亚洲欧美日韩卡通动漫| 麻豆成人午夜福利视频| 中文字幕免费在线视频6| 日韩在线高清观看一区二区三区| 熟女电影av网| 国产视频首页在线观看| 一级av片app| 欧美激情久久久久久爽电影| 亚洲18禁久久av| 麻豆成人午夜福利视频| 久久鲁丝午夜福利片| 99久久精品热视频| 中文乱码字字幕精品一区二区三区 | 毛片女人毛片| 尾随美女入室| 国产伦精品一区二区三区视频9| 亚洲综合精品二区| 少妇的逼水好多| 日本与韩国留学比较| 日本av手机在线免费观看| 超碰97精品在线观看| 欧美一级a爱片免费观看看| 搞女人的毛片| 91午夜精品亚洲一区二区三区| 男女国产视频网站| 久久精品国产99精品国产亚洲性色| 少妇熟女aⅴ在线视频| 婷婷六月久久综合丁香| 久久精品夜色国产| 国产黄片美女视频| a级毛片免费高清观看在线播放| 三级国产精品片| 看免费成人av毛片| 亚洲精品乱久久久久久| 精品人妻熟女av久视频| 看十八女毛片水多多多| 亚洲熟妇中文字幕五十中出| 女人被狂操c到高潮| 黄色配什么色好看| 黑人高潮一二区| 亚洲人与动物交配视频| 亚洲成人av在线免费| 亚洲国产欧洲综合997久久,| 欧美3d第一页| 亚洲av日韩在线播放| 亚洲最大成人av| 欧美成人免费av一区二区三区| 精品国产露脸久久av麻豆 | 最近视频中文字幕2019在线8| 久久精品国产99精品国产亚洲性色| 欧美最新免费一区二区三区| 丰满乱子伦码专区| 亚洲精品一区蜜桃| 亚洲精品亚洲一区二区| 久久韩国三级中文字幕| 国产日韩欧美在线精品| 亚洲乱码一区二区免费版| 91精品伊人久久大香线蕉| 精品久久久噜噜| 亚洲精品,欧美精品| 久久6这里有精品| videos熟女内射| 日韩一本色道免费dvd| 一个人免费在线观看电影| 又爽又黄a免费视频| 两个人的视频大全免费| 日韩av在线大香蕉| 国产在线男女| 精品久久久久久电影网 | www日本黄色视频网| 丝袜美腿在线中文| 国产免费又黄又爽又色| 五月伊人婷婷丁香| 男人和女人高潮做爰伦理| 丝袜喷水一区| 国产精品1区2区在线观看.| 国产成人免费观看mmmm| 美女高潮的动态| 人体艺术视频欧美日本| 一级毛片久久久久久久久女| 日韩视频在线欧美| 久久亚洲精品不卡| 国产中年淑女户外野战色| 99久久九九国产精品国产免费| 亚洲伊人久久精品综合 | 小蜜桃在线观看免费完整版高清| 免费看a级黄色片| 免费大片18禁| 久久久国产成人精品二区| 国内精品一区二区在线观看| 亚洲欧洲日产国产| 亚洲精品一区蜜桃| 精品人妻视频免费看| 插阴视频在线观看视频| 看免费成人av毛片| 久久久精品欧美日韩精品| 免费黄网站久久成人精品| 中文天堂在线官网| 午夜老司机福利剧场| 人人妻人人看人人澡| 亚洲欧美成人综合另类久久久 | 国产一区二区三区av在线| videossex国产| 看片在线看免费视频| 成人国产麻豆网| 精品人妻熟女av久视频| 国产高清不卡午夜福利| 免费看美女性在线毛片视频| 久久精品熟女亚洲av麻豆精品 | 亚洲国产欧美在线一区| 亚洲图色成人| 免费观看a级毛片全部| 国产亚洲av嫩草精品影院| 中文资源天堂在线| 变态另类丝袜制服| 99久国产av精品| 永久网站在线| 亚洲国产精品成人综合色| 久久这里有精品视频免费| 日韩精品有码人妻一区| 国产乱来视频区| 国产老妇女一区| or卡值多少钱| 啦啦啦韩国在线观看视频| 婷婷色综合大香蕉| 三级毛片av免费| 最近中文字幕2019免费版| av在线天堂中文字幕| 天堂影院成人在线观看| 日本五十路高清| 一级毛片我不卡| 午夜视频国产福利| 我的女老师完整版在线观看| 婷婷色av中文字幕| 久久久久久九九精品二区国产| 色播亚洲综合网| 看黄色毛片网站| 国产伦理片在线播放av一区| 免费不卡的大黄色大毛片视频在线观看 | 欧美3d第一页| 久久精品人妻少妇| 插阴视频在线观看视频| 三级经典国产精品| 国产黄a三级三级三级人| 欧美另类亚洲清纯唯美| 亚洲国产精品sss在线观看| 国产片特级美女逼逼视频| 亚洲色图av天堂| 噜噜噜噜噜久久久久久91| 亚洲av电影不卡..在线观看| 一区二区三区高清视频在线| 99久久精品国产国产毛片| 亚洲欧美日韩东京热| 国产男人的电影天堂91| 国产在视频线在精品| 蜜臀久久99精品久久宅男| 2021少妇久久久久久久久久久| 黄色配什么色好看| 日韩成人av中文字幕在线观看| 欧美一级a爱片免费观看看| 最新中文字幕久久久久| 国产精品久久久久久久久免| 国产极品天堂在线| 国产精品久久久久久精品电影小说 | 欧美性猛交╳xxx乱大交人| 一级爰片在线观看| 国产精品,欧美在线| 久久久国产成人精品二区| 91久久精品电影网| 好男人在线观看高清免费视频| 99久久九九国产精品国产免费| 淫秽高清视频在线观看| 成人欧美大片| 99热网站在线观看| 91精品国产九色| 国产精品综合久久久久久久免费| 在现免费观看毛片| 你懂的网址亚洲精品在线观看 | 日本黄色视频三级网站网址| videossex国产| 精品少妇黑人巨大在线播放 | 黄色一级大片看看| 狠狠狠狠99中文字幕| 小蜜桃在线观看免费完整版高清| 色哟哟·www| 真实男女啪啪啪动态图| 99久久中文字幕三级久久日本| 蜜桃亚洲精品一区二区三区| 只有这里有精品99| 2021少妇久久久久久久久久久| 黄色一级大片看看| 狠狠狠狠99中文字幕| 亚洲欧美成人精品一区二区| 久久久久久大精品| a级一级毛片免费在线观看| 高清日韩中文字幕在线| 中文字幕亚洲精品专区| 3wmmmm亚洲av在线观看| 亚洲欧美精品综合久久99| 亚洲精品亚洲一区二区| 最近的中文字幕免费完整| 全区人妻精品视频| 亚洲国产最新在线播放| 一级黄色大片毛片| 97热精品久久久久久| 欧美激情久久久久久爽电影| 免费大片18禁| 欧美激情国产日韩精品一区| 国产精品精品国产色婷婷| 99久久精品一区二区三区| 亚洲自偷自拍三级| 十八禁国产超污无遮挡网站| 热99在线观看视频| 亚洲美女搞黄在线观看| 男人舔女人下体高潮全视频| 老司机福利观看| 91aial.com中文字幕在线观看| 成人av在线播放网站| 欧美日韩一区二区视频在线观看视频在线 | 国产成人一区二区在线| 免费大片18禁| 国产在线男女| 中文字幕熟女人妻在线| 中文字幕av在线有码专区| 床上黄色一级片| 精品久久久噜噜| 丰满人妻一区二区三区视频av| 亚洲图色成人| 免费av毛片视频| 亚洲美女搞黄在线观看| 久久99热这里只有精品18| 蜜桃亚洲精品一区二区三区| 2021天堂中文幕一二区在线观| 国产精品久久久久久精品电影小说 | 卡戴珊不雅视频在线播放| 久久精品国产亚洲av涩爱| 欧美性感艳星| 91狼人影院| 乱人视频在线观看| 91狼人影院| АⅤ资源中文在线天堂| av专区在线播放| 亚洲精品色激情综合| 观看免费一级毛片| 亚洲av福利一区| 国产成人a区在线观看| 国产成人免费观看mmmm| 又黄又爽又刺激的免费视频.| 久久久成人免费电影| 亚洲国产成人一精品久久久| 亚洲欧洲国产日韩| 91精品国产九色| 深夜a级毛片| 啦啦啦啦在线视频资源| 国产一区二区三区av在线| 美女高潮的动态| 国产三级在线视频| 建设人人有责人人尽责人人享有的 | 色综合站精品国产| kizo精华| 日韩成人av中文字幕在线观看| 亚洲性久久影院| 18禁在线播放成人免费| 久久精品国产亚洲av涩爱| 视频中文字幕在线观看| 国产探花极品一区二区| 日本爱情动作片www.在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 一夜夜www| 中文资源天堂在线| 狠狠狠狠99中文字幕| 国产精品乱码一区二三区的特点| 成人午夜高清在线视频| av天堂中文字幕网| 99久久精品国产国产毛片| av.在线天堂| 亚洲精品国产av成人精品| 黄色一级大片看看| av国产久精品久网站免费入址| 欧美最新免费一区二区三区| 美女cb高潮喷水在线观看| 国产精品久久久久久久电影| 日本欧美国产在线视频| 两个人的视频大全免费| 狂野欧美白嫩少妇大欣赏| 国产三级中文精品| 女人被狂操c到高潮| 哪个播放器可以免费观看大片| 国产精品蜜桃在线观看| 精品一区二区免费观看| 国产又黄又爽又无遮挡在线| 天堂√8在线中文| 日韩一区二区视频免费看| av又黄又爽大尺度在线免费看 | 国产 一区精品| 久久精品国产亚洲网站| 村上凉子中文字幕在线| 精品久久久久久成人av| av免费在线看不卡| 亚洲三级黄色毛片| 久久久久久久久久黄片| 夜夜看夜夜爽夜夜摸| 少妇猛男粗大的猛烈进出视频 | 午夜精品国产一区二区电影 | 亚洲国产精品合色在线| 一级二级三级毛片免费看| 国产伦理片在线播放av一区| 99久久精品热视频| 欧美一级a爱片免费观看看| 国产黄a三级三级三级人| 国产日韩欧美在线精品| a级毛片免费高清观看在线播放| 亚洲欧美成人精品一区二区| 在线观看美女被高潮喷水网站| 搞女人的毛片| 亚洲五月天丁香| 色网站视频免费| 亚洲国产精品成人综合色| 国产白丝娇喘喷水9色精品| 性插视频无遮挡在线免费观看| 国产高清不卡午夜福利| 亚洲最大成人手机在线| 亚洲av中文av极速乱| 青春草国产在线视频| av免费观看日本| 日本三级黄在线观看| 亚洲一级一片aⅴ在线观看| 国产高清三级在线| 国产黄a三级三级三级人| 日韩欧美在线乱码| 久久精品久久精品一区二区三区| 国产黄片美女视频| 日韩亚洲欧美综合| 2022亚洲国产成人精品| 干丝袜人妻中文字幕| 最新中文字幕久久久久| 亚洲av成人精品一区久久| 亚洲国产欧美人成| 不卡视频在线观看欧美| 一区二区三区乱码不卡18| 我的老师免费观看完整版| 午夜激情福利司机影院| 国产一区二区在线观看日韩| 国产又黄又爽又无遮挡在线| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av天美| 亚洲乱码一区二区免费版| 麻豆成人午夜福利视频| 日韩av在线免费看完整版不卡| 欧美3d第一页| 国产成人91sexporn| 国产色婷婷99| 久久综合国产亚洲精品| 国产黄片美女视频| 精品一区二区三区视频在线| 亚洲欧美精品专区久久| 亚洲精品一区蜜桃| 国产亚洲午夜精品一区二区久久 | 国产色婷婷99| 偷拍熟女少妇极品色| 久久久久久久久久久免费av| 久久久久久九九精品二区国产| 国产真实乱freesex| 纵有疾风起免费观看全集完整版 | 日本三级黄在线观看| 国产精品一区二区三区四区久久| 欧美日本视频| 国产黄色小视频在线观看| 免费无遮挡裸体视频| 亚洲欧美清纯卡通| 亚洲激情五月婷婷啪啪| 女人被狂操c到高潮| 精品一区二区免费观看| 国产伦精品一区二区三区四那| 在线观看美女被高潮喷水网站| 国产精品一区二区在线观看99 | 青春草国产在线视频| 成人三级黄色视频| 老女人水多毛片| 有码 亚洲区| 91狼人影院| 国产精品久久视频播放| 成年女人看的毛片在线观看| 国产成人aa在线观看| 亚洲精品成人久久久久久| av黄色大香蕉| 九九热线精品视视频播放| 久久鲁丝午夜福利片| 男人的好看免费观看在线视频| 91午夜精品亚洲一区二区三区| 99久国产av精品| 国产精品国产三级国产av玫瑰| 免费一级毛片在线播放高清视频| 亚洲av熟女| 欧美日韩综合久久久久久| 亚洲成人久久爱视频| 久久国产乱子免费精品| 国产成人a区在线观看| 国产精品精品国产色婷婷| 波野结衣二区三区在线| 最近的中文字幕免费完整| 日韩中字成人| 国产探花在线观看一区二区| 少妇裸体淫交视频免费看高清| 九九在线视频观看精品| 国产精品国产三级国产专区5o | 看片在线看免费视频| av视频在线观看入口| 最近中文字幕2019免费版| 人妻少妇偷人精品九色| 亚洲欧美日韩无卡精品| 一级爰片在线观看| 激情 狠狠 欧美| 天天一区二区日本电影三级| 国产精品嫩草影院av在线观看| 黄片无遮挡物在线观看| 真实男女啪啪啪动态图| 最近视频中文字幕2019在线8| av福利片在线观看| 国产美女午夜福利| 搡女人真爽免费视频火全软件| 国产久久久一区二区三区| 丰满人妻一区二区三区视频av| 国产亚洲精品av在线| av国产久精品久网站免费入址| 91午夜精品亚洲一区二区三区| 亚洲久久久久久中文字幕| 国产成人福利小说| 国产精品一区二区三区四区免费观看| 国产真实乱freesex| 少妇被粗大猛烈的视频| 秋霞伦理黄片| 男女视频在线观看网站免费| 精品人妻偷拍中文字幕| 亚洲久久久久久中文字幕| 97超视频在线观看视频| av在线亚洲专区| 日本一二三区视频观看| 2021天堂中文幕一二区在线观| 国产精品永久免费网站| 中文字幕熟女人妻在线| 国产毛片a区久久久久| 国产亚洲精品久久久com| 自拍偷自拍亚洲精品老妇| 精品人妻一区二区三区麻豆| 成人漫画全彩无遮挡| 高清午夜精品一区二区三区| 欧美3d第一页| 久久久久久久久久黄片| 伊人久久精品亚洲午夜| 国内精品宾馆在线| 亚洲国产精品sss在线观看| 国产色婷婷99| 在线观看美女被高潮喷水网站| 高清午夜精品一区二区三区| 热99re8久久精品国产| 热99在线观看视频| 亚洲成av人片在线播放无| 日日摸夜夜添夜夜爱| 久久久亚洲精品成人影院| 国产精品永久免费网站| 一级二级三级毛片免费看| 日本黄色视频三级网站网址| 久热久热在线精品观看| 床上黄色一级片| 日韩,欧美,国产一区二区三区 | 村上凉子中文字幕在线| 久久久精品大字幕| 丝袜美腿在线中文| 波多野结衣高清无吗| 国产又黄又爽又无遮挡在线| 日本av手机在线免费观看| 纵有疾风起免费观看全集完整版 | 天堂av国产一区二区熟女人妻| 精品久久久久久久末码| 日产精品乱码卡一卡2卡三| 国产又黄又爽又无遮挡在线| 搡老妇女老女人老熟妇| ponron亚洲| 欧美成人午夜免费资源| 亚洲最大成人av| 久久精品91蜜桃| 国产一级毛片在线| 国产一区二区亚洲精品在线观看| 小说图片视频综合网站| 又爽又黄无遮挡网站| 亚洲熟妇中文字幕五十中出| 三级经典国产精品| 桃色一区二区三区在线观看| 久久人人爽人人爽人人片va| h日本视频在线播放| 少妇熟女欧美另类| 美女黄网站色视频| 黄色配什么色好看| 少妇熟女欧美另类| 亚洲18禁久久av| 久久久久久久久久久免费av| a级毛色黄片| 国产成人精品婷婷| av福利片在线观看| 又爽又黄无遮挡网站| 国产精品三级大全| 国产精品久久久久久久电影| 欧美成人免费av一区二区三区| 九九热线精品视视频播放| 欧美三级亚洲精品| 九九爱精品视频在线观看| 欧美一区二区亚洲| 国产爱豆传媒在线观看| 久久精品国产鲁丝片午夜精品| 午夜亚洲福利在线播放| 中文字幕av成人在线电影| av在线老鸭窝| 久久韩国三级中文字幕| 村上凉子中文字幕在线| 国产伦精品一区二区三区四那| 亚洲欧美清纯卡通|