• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of presynaptic calcium stores for neural network dysfunction in Alzheimer’s disease

    2018-06-21 10:50:50ChommanadLerdkrai,OlgaGaraschuk

    Alzheimer’s disease (AD) is the most common form of dementia representing a major problem for public health. In 2017 there were an estimated 50 million patients worldwide and this number is expected to almost double every 20 years, reaching 75 million in 2030 and 131.5 million in 2050 (https://www.alz.co.uk/research/statistics). Clinically there are two forms of the disease: the sporadic form (also called late onset AD, LOAD) and the familial form (FAD).LOAD is the most common form. Its prevalence increases with advancing age from 1% in the 65–70 years old cohort to more that 30% after the age of 85. It is characterized by moderate to extreme severity with the advancing age being the main risk factor for LOAD. Familiar AD represents some 5–10% of all AD cases. FAD is linked to mutations in a specific set of genes, most often in the genes encoding amyloid precursor protein (APP) and the presenilins (PS) 1 and 2. Interestingly, the vast majority of AD related mutations are located on PS1 (Steiner et al., 2008; Mattson, 2010) thus identifying this protein as one of the main targets for FAD-modifying therapies. Here we address the role of AD-related presenilin mutations for Ca2+dyshomeostasis andin vivoneural network dysfunction in AD.

    The role of presenilins:Presenilins are transmembrane proteins that harbor the catalytic site of the γ-secretase complex, which mediates the intramembranous cleavage of many type I membrane proteins, including APP (Steiner et al., 2008). Numerous FAD-associated presenilin mutations were shown to affect the cleavage specificity of γ-secretase, thus increasing the production of the aggregation-prone and neurotoxic variant of amyloid β peptide Aβ42(Steiner et al., 2008). Gradual accumulation of Aβ plays the central role in the so called “amyloid hypothesis” of AD (Selkoe, 2002; Selkoe and Hardy,2016). Consistently, over the last decades therapeutic strategies mainly focused on decreasing Aβ levels inside the brain by either downregulating its production/accumulation or upregulating its clearance. So far, however, the results obtained were rather disappointing. In several trials using antibodies against Aβ, however, post hoc analyses hinted towards a reduction of cognitive decline in patients with mild, but not moderate, form of AD (Selkoe and Hardy, 2016).

    Besides playing an important role in the γ-secretase complex, presenilins also have other functions, mostly related to the intracellular Ca2+homeostasis (Hermes et al., 2010; Mattson, 2010; Briggs et al., 2017; Popugaeva et al., 2017). Accordingly, PS mutations were reported to modify intracellular Ca2+signaling in various experimental AD models. As illustrated inFigure 1, multiplein vitrostudies identified IP3receptors (IP3Rs), ryanodine receptors (RyRs), sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) as well as a membrane-associated enzyme Phospholipase C (PLC) as potential interaction partners of presenilins. Multiple AD-associated PS1 and PS2 mutations (e.g., PS1-M146V, PS2-N141I and PS2-M239V) were shown to potentiate the IP3-mediated Ca2+release from the intracellular Ca2+stores,likely through an enhancement of the open probability of the IP3receptors(reviewed in (Hermes et al., 2010; Briggs et al., 2017; Popugaeva et al., 2017).Similarly, mutant presenilins were reported to upregulate the expression levels of RyRs, and to increase RyR-mediated Ca2+release from the intracellular Ca2+stores. Studies in brain slices derived from PS1-M146V KI mice and 3xTg-AD mice have documented a substantial increase in the amplitude of RyR-mediated Ca2+signals across neuronal subcompartments, with particularly large RyR-mediated Ca2+signals in dendrites and dendritic spines(Chakroborty and Stutzmann, 2014; Briggs et al., 2017). In addition, FAD-linked PS mutations were reported to cause an increase in the basal activity of PLC (Hermes et al., 2010).In vitrostudies have also pointed towards colocalization and physical interaction between PS and SERCA pumps (Figure 1). Depletion of PS1 and PS2 resulted in diminished SERCA function,whereas the expression of mutated presenilin (e.g., PS1-M146V) increased SERCA activity, thus resulting in stronger accumulation of Ca2+within the intracellular stores. Moreover, the work of Bezprozvanny’s group (reviewed in Popugaeva et al., 2017) has suggested that presenilins might themselves represent the Ca2+leak channels of the endoplasmic reticulum and that the AD-related PS mutations, including M146V, L166P, A246E, E273A, G384A,and P436Q, impair their leak channel function, again leading to the overfilling of the intracellular Ca2+stores. Such overfilling, in turn, impairs the function of store-operated Ca2+channels (SOCC) as well as associated STIM and Orai proteins and is believed to play the central role in the AD-related Ca2+dyshomeostasis, which represents one of the main functional hallmarks of AD (Hermes et al., 2010; Briggs et al., 2017; Popugaeva et al., 2017).

    Synaptic dysfunction in AD:Postmortem studies in AD patients identified the degree of synaptic/spine loss as the best neuropathological correlate of the patient’s cognitive impairment (Selkoe and Hardy, 2016). Consistently,severalin vitroanimal studies have shown that soluble Aβ oligomers inhibit inter-synaptic vesicle trafficking and activity-dependent rapid synaptogenesis, selectively depress glutamatergic synaptic transmission, reduce expression of AMPA and promote endocytosis of NMDA receptors (Briggs et al., 2017). Importantly, Aβ oligomers isolated directly from brains of AD patients caused an impairment of long-term potentiation (LTP) and an enhancement of long-term depression (LTD) in mouse hippocampal slices.Moreover, an injection of these oligomers into the lateral ventricle disrupted the memory of a learned behavior in normal rats (summarized in Selkoe and Hardy, 2016).

    An impaired synaptic transmission was also observed in predepositing 3xTg-AD mice. A suggested cause of the impairment is an activation of hyperpolarizing Ca2+-dependent SK2 K+channels, activated by excess of Ca2+released from the overfilled intracellular Ca2+stores (Briggs et al., 2017).Additional evidence suggests that FAD-mediated impairment of synaptic plasticity can occur in the absence of amyloid and tau pathologies.In vitrostudies in PS1-M146V KI mice, for example, have demonstrated an impairment of both the early and the late phases of LTP (Mattson, 2010). Taken together, these data substantiate the so called “synaptic failure hypothesis”of AD (Selkoe, 2002).

    Neural network hyperactivity in AD:In contrast to what might have being assumed based on the synaptic failure hypothesis of AD, a growing number of studies in humans and mouse models of AD identify neuronal network hyperactivity as an emerging functional hallmark of AD. Indeed, aberrant cortical network activity is observed in AD patients with the sporadic as well as the familiar forms of the disease, in particular those carrying a mutation in the presenilin genes (reviewed in Palop and Mucke, 2009, 2016). In patients, the aberrant forms of neural network hyperactivity include subclinical epileptiform activity (spikes and sharp waves) as well as clinically apparent seizures. According to recent reports, the incidence of seizures is roughly 7–8-fold higher in AD patients compared to the age-matched control group and severe AD cases are more likely to develop unprovoked seizures (Palop and Mucke, 2009, 2016). Moreover, in AD patients evaluated longitudinally,epileptiform activity was associated with a faster cognitive decline. Whereas previously epileptiform activity was considered as an epiphenomenon of the end-stage neurodegeneration, resent data suggest that neuronal hyperactivity can occur early during disease progression, even 4–7 years before the disease diagnosis is made (Palop and Mucke, 2016). Interestingly, 42%of young (58–68 years old) patients with the sporadic form of AD as well as non-demented carriers of the apolipoprotein E4, a known genetic risk factor of sporadic AD, also develop subclinical epileptiform activity (Palop and Mucke, 2009; Lerdkrai et al., 2018).

    Studies in transgenic mouse models of AD (hereafter referred to as “AD mice”) have also provided ample evidence for amyloidosis-induced network hyperactivity and seizures (see Supplementary Table 1 in Palop and Mucke,2016). Multiple mouse lines (over)expressing AD-related human mutations in APP alone or together with mutations in tau protein and/or presenilins are reported to show either neuronal network hyperactivity detectable byin vivoCa2+imaging (Busche et al., 2008; Lerdkrai et al., 2018) or spontaneous epileptiform discharges (“spikes”) as well as seizures detectable by EEG recordings(Palop and Mucke, 2016). In concordance with human data, neuronal hyperactivity was also observed in ApoE4-KI mice as well as in PS45 presenilin mutant mice (PSEN1 (G384A)), developing neither amyloid plaques nor neuroinflammation (Palop and Mucke, 2016; Lerdkrai et al., 2018). Moreover, in PS45 mice neuronal hyperactivity was evident even in young adult(6–7-month-old) animals (Lerdkrai et al., 2018), in line with the notion that neuronal hyperactivity emerges during early stages of the disease.

    Furthermore, our recentin vivodata suggest that neuronal hyperactivity develops also during healthy brain ageing, albeit to a lesser extent (Lerdkrai et al., 2018). Interestingly, the ageing-related neuronal hyperactivity is prominent already in 10–14 months old mice. Such animals are not yet considered old and their age roughly corresponds to humans in their fourth or fifth decade of life. Furthermore, neurons are not the only cell type in the brain getting hyperactive with ageing. Similar trend was previously observedin vivofor cortical microglia (Brawek et al., 2014). Thus, during normal ageing the brain of middle-aged mice (and possibly also humans) reaches a different set point with more active neurons and microglia. Such conditions render the brain vulnerable to both neuroinflammation and seizure development, thus alleviating the development of AD.

    Figure 1 Main components regulating store-operated Ca2+ signaling in pre- and postsynaptic neuronal compartments.

    The role of presynaptic calcium stores for neuronal network hyperactivity:Intracellular Ca2+stores are part of the endoplasmic reticulum, which in neurons is present both pre- and post-synaptically (Figure 1, see also Mattson, 2010; Briggs et al., 2017). The majority ofin vitrodata emphasized the involvement of the postsynaptic Ca2+stores in the pathophysiology of AD. Thus, the postsynaptic Ca2+stores in somata and dendrites of cortical and hippocampal neurons of AD mice were shown to release more Ca2+in response to the application of IP3R or RyR agonists and to strongly potentiate synaptic and NMDA-receptor mediated Ca2+transients (reviewed in Mattson, 2010; Chakroborty and Stutzmann, 2014). Excessive RyR-mediated Ca2+release was also observed in dendritic spines of AD mice and was suggested to dysregulates the maintenance of memory-associated mushroom spines via inhibition of the Ca2+store-operated Ca2+entry channels(SOCCs;Figure 1; Briggs et al., 2017; Popugaeva et al., 2017). Our recentin vivodata, however, revealed a rather minor contribution of store-mediated Ca2+release both to somatic and synaptic Ca2+signals in layer 2/3 cortical neurons (Lerdkrai et al., 2018). Although somatic RyR-mediated Ca2+release signals were somewhat longer in AD compared to age-matched WT mice,we did not observe any increase in their amplitudes, much in contrast to more than 200–300% increase in amplitudes of RyR-mediated Ca2+release signalsin vitro(see above). Among cells with different activity patterns (i.e.,silent, normal and hyperactive; for details of cell classification see Busche et al., 2008), hyperactive cells showed the longest RyR-mediated Ca2+release signals (Lerdkrai et al., 2018). Consistently, only in hyperactive cells spontaneous synaptically-driven dendritic Ca2+transients showed a store-mediated component, which was blocked by emptying the intracellular stores.We concluded, therefore, that hyperactive cells are the only cells exhibiting AD-related overfilling of postsynaptic Ca2+storesin vivo. Although for somatic and dendritic Ca2+stores the degree of such overfilling is rather low, it cannot be excluded that somewhat larger dysfunction might be observed for Ca2+stores in dendritic spines (Figure 1). Assuming that such dysfunction causes spine destabilization (see above), our recent data suggest thatin vivospine destabilization occurs in hyperactive cells only.

    In contrast to what is known about the postsynaptic side, the role of presynaptic Ca2+stores for synaptic and neural network dysfunction in AD is much less clear. Under physiological conditions presenilins seem to modulate the evoked glutamate release in a Ca2+store-dependent manner,and RyRs of AD mice were shown to mediate an increase in frequency of spontaneous vesicle release from presynaptic terminals (Chakroborty and Stutzmann, 2014). This increase, however, was believed to deplete the pool of readily releasable vesicles and to cause a Ca2+-dependent activation of SK2 K+channels (see above), both leading to weakening of synaptic transmission(Chakroborty and Stutzmann, 2014; Briggs et al., 2017). In contrast, ourin vivodata suggest that an AD-related mutation in PSEN1 gene causes heightened presynaptic release of glutamate already in 6–7 months old mice, thus strongly contributing to AD-related neuronal hyperactivity. Consistently,emptying the Ca2+stores in AD and presenilin mutant mice normalizes cortical neural network activity in these animals (Lerdkrai et al., 2018).Interestingly, ageing- or APP mutation-induced neuronal hyperactivity are not sensitive to store depletion. Together, these data suggest that a single allele of mutated PS1 is sufficient to induce an early and a profound neuronal hyperactivity, mainly caused by the dysfunction of presynaptic intracellular Ca2+stores. This early hyperactivity is likely to enhance activity-dependent generation and release of amyloid β and tau as well as formation of amyloid plaques (Palop and Mucke, 2016). By this mechanism a single mutation in the PSEN1 gene can lead to early onset full-blown disease in humans. The validity of this hypothesis is also supported by the fact that drugs which either selectively dampen presynaptic release of neurotransmitters (e.g.,levetiracetam) or block RyRs releasing Ca2+from the intracellular stores(e.g., dantrolene), were recently shown to improve memory and cognition in mice and humans (reviewed in Palop and Mucke, 2016; Popugaeva et al.,2017; Lerdkrai et al., 2018).

    This work was supported by the VolkswagenStiftung (grant No. 90233) to OG.

    Chommanad Lerdkrai, Olga Garaschuk*

    Institute of Physiology, Department Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany (Lerdkrai C, Garaschuk O)Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University,Bangkok, Thailand (Lerdkrai C)

    *Correspondence to:Olga Garaschuk, Ph.D., olga.garaschuk@uni-tuebingen.de.orcid:0000-0001-7400-5654 (Olga Garaschuk)

    Accepted:2018-05-03

    doi:10.4103/1673-5374.233435

    Copyright license agreement: The Copyright License Agreement has been signed by all authors before publication.

    Plagiarism check: Checked twice by iThenticate.

    Peer review: Externally peer reviewed.

    Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-Share-Alike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewers: Jade Oliveira, Universidade do Extremo Sul Catarinense,Brazil;Panteleimon Giannakopoulos, University Hospitals of Geneva, Switzerland.Additional file: Oper peer reviewer report 1.

    Brawek B, Schwendele B, Riester K, Kohsaka S, Lerdkrai C, Liang Y, Garaschuk O(2014) Impairment ofin vivocalcium signaling in amyloid plaque-associated microglia. Acta Neuropathol 127:495-505.

    Briggs CA, Chakroborty S, Stutzmann GE (2017) Emerging pathways driving early synaptic pathology in Alzheimer’s disease. Biochem Biophys Res Commun 483:988-997.

    Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C,Staufenbiel M, Konnerth A, Garaschuk O (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321:1686-1689.

    Chakroborty S, Stutzmann GE (2014) Calcium channelopathies and Alzheimer’s disease: insight into therapeutic success and failures. Eur J Pharmacol 739:83-95.

    Hermes M, Eichhoff G, Garaschuk O (2010) Intracellular calcium signalling in Alzheimer’s disease. J Cell Mol Med 14:30-41.

    Lerdkrai C, Asavapanumas N, Brawek B, Kovalchuk Y, Mojtahedi N, Olmedillas Del Moral M, Garaschuk O (2018) Intracellular Ca2+stores control in vivo neuronal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 115:E1279-E1288.

    Mattson MP (2010) ER calcium and Alzheimer’s disease: in a state of flux. Sci Signal 3:pe10.

    Palop JJ, Mucke L (2016) Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 17:777-792.

    Park D, Chang S (2018) Soluble A beta(1-42) increases the heterogeneity in synaptic vesicle pool size among synapses by suppressing intersynaptic vesicle sharing.Molecular Brain 11:10.

    Popugaeva E, Pchitskaya E, Bezprozvanny I (2017) Dysregulation of neuronal calcium homeostasis in Alzheimer’s disease - A therapeutic opportunity? Biochem Biophys Res Commun 483:998-1004.

    Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789-791.

    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol Med 8:595-608.

    Steiner H, Fluhrer R, Haass C (2008) Intramembrane proteolysis by gamma-secretase. J Biol Chem 283:29627-29631.

    黑人猛操日本美女一级片| 正在播放国产对白刺激| 亚洲第一青青草原| 亚洲午夜理论影院| 少妇裸体淫交视频免费看高清 | 女人爽到高潮嗷嗷叫在线视频| 99国产综合亚洲精品| 亚洲成国产人片在线观看| 国产亚洲精品第一综合不卡| 法律面前人人平等表现在哪些方面| 亚洲熟妇中文字幕五十中出 | 精品国产乱码久久久久久男人| a级毛片黄视频| 久久午夜亚洲精品久久| 在线观看一区二区三区激情| 激情视频va一区二区三区| 久久国产亚洲av麻豆专区| 久久ye,这里只有精品| 国产亚洲欧美精品永久| 久久精品成人免费网站| 国内毛片毛片毛片毛片毛片| 久久精品国产亚洲av香蕉五月 | 丁香欧美五月| 欧美 亚洲 国产 日韩一| 中文字幕高清在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 免费观看a级毛片全部| 国产成人精品久久二区二区91| 男人舔女人的私密视频| 欧美精品亚洲一区二区| 亚洲午夜理论影院| 9色porny在线观看| 国产激情久久老熟女| 国产区一区二久久| 欧美日韩福利视频一区二区| 18在线观看网站| 亚洲欧美一区二区三区黑人| 国产精品久久久人人做人人爽| 女人高潮潮喷娇喘18禁视频| 九色亚洲精品在线播放| 黑人操中国人逼视频| 制服人妻中文乱码| 成人国语在线视频| 午夜精品在线福利| 国产伦人伦偷精品视频| 国产男女超爽视频在线观看| 18禁国产床啪视频网站| 国产不卡一卡二| 老熟妇仑乱视频hdxx| 国产精品98久久久久久宅男小说| 男男h啪啪无遮挡| 精品久久久久久久久久免费视频 | av片东京热男人的天堂| 一级作爱视频免费观看| 精品福利永久在线观看| 18禁美女被吸乳视频| 国产av一区二区精品久久| 一级a爱片免费观看的视频| 村上凉子中文字幕在线| 婷婷成人精品国产| 9热在线视频观看99| 中文字幕精品免费在线观看视频| 丁香六月欧美| 国产精品一区二区免费欧美| www.精华液| 校园春色视频在线观看| 国产成人av教育| 久久久国产精品麻豆| 老司机在亚洲福利影院| 午夜精品久久久久久毛片777| 日本精品一区二区三区蜜桃| 妹子高潮喷水视频| 高清av免费在线| 亚洲七黄色美女视频| 国产深夜福利视频在线观看| av国产精品久久久久影院| 国产精品秋霞免费鲁丝片| 欧美午夜高清在线| av不卡在线播放| av片东京热男人的天堂| 十八禁人妻一区二区| 51午夜福利影视在线观看| 亚洲av电影在线进入| 久久久国产精品麻豆| 19禁男女啪啪无遮挡网站| 一二三四社区在线视频社区8| 久久精品aⅴ一区二区三区四区| 男女午夜视频在线观看| 国产在线观看jvid| 亚洲成人免费av在线播放| 天天影视国产精品| 亚洲美女黄片视频| 精品一区二区三卡| 一a级毛片在线观看| 亚洲国产精品sss在线观看 | 午夜精品久久久久久毛片777| 视频在线观看一区二区三区| 亚洲av第一区精品v没综合| 性色av乱码一区二区三区2| 黄色视频,在线免费观看| 黄色视频,在线免费观看| 国产亚洲欧美在线一区二区| 亚洲精品国产色婷婷电影| 嫁个100分男人电影在线观看| 丝袜美腿诱惑在线| 日本精品一区二区三区蜜桃| 日韩欧美一区二区三区在线观看 | 在线永久观看黄色视频| 一a级毛片在线观看| 国产蜜桃级精品一区二区三区 | 午夜福利视频在线观看免费| 欧美在线黄色| tube8黄色片| 波多野结衣av一区二区av| 国产xxxxx性猛交| 久久久国产欧美日韩av| 精品国产一区二区三区四区第35| 涩涩av久久男人的天堂| 国产男靠女视频免费网站| 极品少妇高潮喷水抽搐| 久久狼人影院| 久久亚洲精品不卡| 午夜福利乱码中文字幕| 久久久精品免费免费高清| 欧美老熟妇乱子伦牲交| 国产淫语在线视频| 免费少妇av软件| 国产精品影院久久| 免费看a级黄色片| 国产野战对白在线观看| tube8黄色片| 一区福利在线观看| 日韩 欧美 亚洲 中文字幕| 伊人久久大香线蕉亚洲五| 国产深夜福利视频在线观看| 99re在线观看精品视频| 午夜免费观看网址| 美女高潮喷水抽搐中文字幕| 99国产精品免费福利视频| 在线免费观看的www视频| 亚洲视频免费观看视频| 18禁国产床啪视频网站| 99re6热这里在线精品视频| 成人免费观看视频高清| 90打野战视频偷拍视频| 国产免费现黄频在线看| 国产精品av久久久久免费| 色精品久久人妻99蜜桃| 桃红色精品国产亚洲av| 在线看a的网站| 久久久久久久精品吃奶| 亚洲精品自拍成人| 嫁个100分男人电影在线观看| 久9热在线精品视频| 三级毛片av免费| 国产精品秋霞免费鲁丝片| 可以免费在线观看a视频的电影网站| 久久久国产一区二区| 国产aⅴ精品一区二区三区波| 淫妇啪啪啪对白视频| 丰满迷人的少妇在线观看| av片东京热男人的天堂| 婷婷丁香在线五月| 成人三级做爰电影| 久久久久精品国产欧美久久久| 一级毛片精品| 欧美日韩精品网址| 久久国产精品男人的天堂亚洲| 国产精品二区激情视频| 国产男女超爽视频在线观看| 建设人人有责人人尽责人人享有的| 侵犯人妻中文字幕一二三四区| 18禁国产床啪视频网站| 热re99久久国产66热| 国产精品美女特级片免费视频播放器 | 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品sss在线观看 | 久热爱精品视频在线9| 69精品国产乱码久久久| 在线观看www视频免费| 成人18禁高潮啪啪吃奶动态图| 国产成人精品久久二区二区91| tube8黄色片| 亚洲专区字幕在线| 成人三级做爰电影| 国产成人精品久久二区二区91| 欧美精品高潮呻吟av久久| 成人18禁高潮啪啪吃奶动态图| 欧美黑人欧美精品刺激| av免费在线观看网站| 欧美丝袜亚洲另类 | 18禁裸乳无遮挡动漫免费视频| 在线观看www视频免费| www.精华液| 一级,二级,三级黄色视频| 久久国产乱子伦精品免费另类| 黄片播放在线免费| 欧美精品一区二区免费开放| 午夜激情av网站| 女人精品久久久久毛片| 村上凉子中文字幕在线| 成人18禁在线播放| 国产蜜桃级精品一区二区三区 | 看免费av毛片| 欧美亚洲 丝袜 人妻 在线| 国产淫语在线视频| 亚洲熟女毛片儿| 欧美精品av麻豆av| 国产精品秋霞免费鲁丝片| 母亲3免费完整高清在线观看| 欧美黄色片欧美黄色片| 少妇粗大呻吟视频| 老熟妇乱子伦视频在线观看| 亚洲自偷自拍图片 自拍| 一区二区三区国产精品乱码| 国产精品欧美亚洲77777| 亚洲成国产人片在线观看| 久久久国产精品麻豆| 亚洲成人国产一区在线观看| 一a级毛片在线观看| 日韩欧美国产一区二区入口| 亚洲成人免费电影在线观看| 一级a爱视频在线免费观看| 激情视频va一区二区三区| 亚洲 国产 在线| 日本欧美视频一区| 人妻一区二区av| 人人妻人人澡人人爽人人夜夜| 黄色视频,在线免费观看| 成人影院久久| 大香蕉久久成人网| 日本a在线网址| 亚洲五月天丁香| 男人操女人黄网站| 18禁黄网站禁片午夜丰满| 久久精品国产99精品国产亚洲性色 | 波多野结衣一区麻豆| 桃红色精品国产亚洲av| 人成视频在线观看免费观看| 夜夜爽天天搞| 久久久精品国产亚洲av高清涩受| 婷婷丁香在线五月| 成人18禁高潮啪啪吃奶动态图| 伦理电影免费视频| 亚洲午夜理论影院| 狠狠婷婷综合久久久久久88av| 亚洲久久久国产精品| 国产成人欧美| 亚洲专区国产一区二区| 黄色成人免费大全| 国产精品乱码一区二三区的特点 | 黑人巨大精品欧美一区二区mp4| 国产亚洲精品一区二区www | 国产91精品成人一区二区三区| 天天添夜夜摸| 十八禁人妻一区二区| 国产麻豆69| 久久久国产一区二区| 一级毛片精品| 精品国产亚洲在线| 国产在线一区二区三区精| 美女午夜性视频免费| 精品国产美女av久久久久小说| 欧美激情极品国产一区二区三区| 国产伦人伦偷精品视频| 国产精华一区二区三区| 最新在线观看一区二区三区| 免费av中文字幕在线| www.熟女人妻精品国产| 成人18禁高潮啪啪吃奶动态图| 国产免费男女视频| 国产精品国产高清国产av | 午夜福利免费观看在线| 亚洲黑人精品在线| 少妇裸体淫交视频免费看高清 | 国产在线观看jvid| 18禁观看日本| 18禁观看日本| 伊人久久大香线蕉亚洲五| 亚洲精品久久午夜乱码| 一区在线观看完整版| 欧美老熟妇乱子伦牲交| 男女午夜视频在线观看| 久久精品国产a三级三级三级| 国产精品免费视频内射| 久久人人爽av亚洲精品天堂| 精品久久久久久电影网| 午夜福利欧美成人| 不卡一级毛片| 黑人巨大精品欧美一区二区mp4| 两性午夜刺激爽爽歪歪视频在线观看 | 操出白浆在线播放| 国产精品免费一区二区三区在线 | 亚洲欧美一区二区三区久久| 正在播放国产对白刺激| 午夜成年电影在线免费观看| 免费在线观看黄色视频的| 色精品久久人妻99蜜桃| 最近最新中文字幕大全免费视频| 国产一区二区激情短视频| 丰满的人妻完整版| 午夜免费观看网址| 国产精品久久久av美女十八| 久久精品国产a三级三级三级| 午夜激情av网站| 在线观看免费视频日本深夜| 久热爱精品视频在线9| 国产成人影院久久av| 岛国毛片在线播放| 女人久久www免费人成看片| 成年人免费黄色播放视频| 高清视频免费观看一区二区| 亚洲精品粉嫩美女一区| 捣出白浆h1v1| 十八禁网站免费在线| 午夜福利免费观看在线| 免费高清在线观看日韩| 欧美日韩亚洲综合一区二区三区_| 亚洲国产精品一区二区三区在线| 日韩欧美免费精品| 丝袜美腿诱惑在线| 日韩欧美免费精品| av网站免费在线观看视频| 亚洲国产精品一区二区三区在线| 国产成人精品久久二区二区91| 精品乱码久久久久久99久播| 99精品欧美一区二区三区四区| 亚洲av日韩精品久久久久久密| 老司机影院毛片| 国产免费av片在线观看野外av| 久久久久久久国产电影| 亚洲国产欧美网| 最近最新中文字幕大全电影3 | 国产不卡av网站在线观看| 婷婷精品国产亚洲av在线 | 少妇 在线观看| 精品国产国语对白av| 黄色怎么调成土黄色| 国产单亲对白刺激| 欧美黄色淫秽网站| 久久久国产一区二区| 最近最新中文字幕大全电影3 | 国产在线观看jvid| 日韩免费av在线播放| 日韩免费av在线播放| 热99国产精品久久久久久7| 欧美 亚洲 国产 日韩一| www日本在线高清视频| 成年人午夜在线观看视频| 一边摸一边抽搐一进一出视频| 少妇 在线观看| 午夜两性在线视频| 欧美性长视频在线观看| 亚洲欧美日韩高清在线视频| 亚洲情色 制服丝袜| 国产精品秋霞免费鲁丝片| 午夜日韩欧美国产| 国产精品久久久久久人妻精品电影| 亚洲精品美女久久久久99蜜臀| 99精品在免费线老司机午夜| 亚洲五月婷婷丁香| 国产精品偷伦视频观看了| 欧美黄色淫秽网站| 黄片播放在线免费| 亚洲精品国产一区二区精华液| 99久久精品国产亚洲精品| 高清在线国产一区| 啦啦啦在线免费观看视频4| 欧美精品啪啪一区二区三区| 国产精品久久久久久精品古装| 少妇粗大呻吟视频| 纯流量卡能插随身wifi吗| 1024香蕉在线观看| 亚洲九九香蕉| 色精品久久人妻99蜜桃| 男女之事视频高清在线观看| 国产成人精品久久二区二区91| 久久亚洲真实| 高清av免费在线| 国产成人av激情在线播放| 中文字幕高清在线视频| 日韩欧美国产一区二区入口| 91精品三级在线观看| 视频在线观看一区二区三区| 国产精品亚洲av一区麻豆| 看免费av毛片| 精品国产亚洲在线| 精品亚洲成国产av| 久久狼人影院| 99re6热这里在线精品视频| 黄色片一级片一级黄色片| 女人爽到高潮嗷嗷叫在线视频| av在线播放免费不卡| cao死你这个sao货| 国产人伦9x9x在线观看| 悠悠久久av| 国产精品av久久久久免费| 免费不卡黄色视频| 美女国产高潮福利片在线看| 一级a爱片免费观看的视频| 国产成人精品在线电影| 欧美日韩乱码在线| 女警被强在线播放| 久久ye,这里只有精品| 岛国在线观看网站| 成人国产一区最新在线观看| 少妇裸体淫交视频免费看高清 | 一区二区日韩欧美中文字幕| 欧美大码av| 一进一出好大好爽视频| 高潮久久久久久久久久久不卡| 捣出白浆h1v1| 亚洲av成人一区二区三| 亚洲欧美一区二区三区黑人| 曰老女人黄片| 又大又爽又粗| 一区二区三区激情视频| 欧美最黄视频在线播放免费 | 日韩视频一区二区在线观看| 无限看片的www在线观看| 狠狠狠狠99中文字幕| 9热在线视频观看99| 免费看十八禁软件| 老汉色∧v一级毛片| 久9热在线精品视频| 成人av一区二区三区在线看| 亚洲人成伊人成综合网2020| 无遮挡黄片免费观看| 少妇的丰满在线观看| 天天影视国产精品| 亚洲精品国产色婷婷电影| 亚洲av美国av| 看黄色毛片网站| 日韩视频一区二区在线观看| 亚洲一区中文字幕在线| 母亲3免费完整高清在线观看| 美女福利国产在线| 久久中文字幕一级| 这个男人来自地球电影免费观看| 亚洲性夜色夜夜综合| 欧美日韩福利视频一区二区| 看免费av毛片| 国产精品99久久99久久久不卡| 亚洲第一青青草原| 别揉我奶头~嗯~啊~动态视频| 人妻丰满熟妇av一区二区三区 | 嫩草影视91久久| 亚洲精品美女久久久久99蜜臀| 国产精华一区二区三区| 淫妇啪啪啪对白视频| 女人被躁到高潮嗷嗷叫费观| 中文字幕人妻丝袜一区二区| 两性夫妻黄色片| 精品久久久精品久久久| 巨乳人妻的诱惑在线观看| 亚洲av欧美aⅴ国产| 婷婷丁香在线五月| 手机成人av网站| 国产又爽黄色视频| 男女下面插进去视频免费观看| 国产高清国产精品国产三级| 国产日韩欧美亚洲二区| 久久性视频一级片| 久久精品亚洲熟妇少妇任你| 美女高潮喷水抽搐中文字幕| 久久久国产一区二区| 国产精品久久久久成人av| 国产真人三级小视频在线观看| 亚洲九九香蕉| 99久久综合精品五月天人人| 欧美国产精品va在线观看不卡| 国产男靠女视频免费网站| 黑丝袜美女国产一区| 色婷婷av一区二区三区视频| 精品国产国语对白av| 亚洲少妇的诱惑av| 国产av精品麻豆| 日本撒尿小便嘘嘘汇集6| 91九色精品人成在线观看| 国产成人系列免费观看| 日本a在线网址| 一进一出抽搐动态| 窝窝影院91人妻| 午夜视频精品福利| 国产三级黄色录像| 亚洲七黄色美女视频| 后天国语完整版免费观看| 欧洲精品卡2卡3卡4卡5卡区| 一级黄色大片毛片| 18禁观看日本| 国产在线观看jvid| 欧美日韩亚洲综合一区二区三区_| 亚洲精品乱久久久久久| 亚洲全国av大片| 如日韩欧美国产精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美+亚洲+日韩+国产| 国产精品 国内视频| 国产精品久久久久成人av| 大陆偷拍与自拍| 王馨瑶露胸无遮挡在线观看| 亚洲成人国产一区在线观看| 首页视频小说图片口味搜索| 丝袜在线中文字幕| 天堂中文最新版在线下载| 50天的宝宝边吃奶边哭怎么回事| 80岁老熟妇乱子伦牲交| 精品欧美一区二区三区在线| 久久婷婷成人综合色麻豆| 午夜福利免费观看在线| 搡老乐熟女国产| 国产成人欧美| 久久久久久久久久久久大奶| 欧美日韩av久久| 别揉我奶头~嗯~啊~动态视频| 欧美av亚洲av综合av国产av| 国产麻豆69| 亚洲国产欧美日韩在线播放| 俄罗斯特黄特色一大片| 久久国产精品人妻蜜桃| 纯流量卡能插随身wifi吗| 视频在线观看一区二区三区| 免费日韩欧美在线观看| 大陆偷拍与自拍| 少妇猛男粗大的猛烈进出视频| 人妻一区二区av| 亚洲综合色网址| 亚洲专区国产一区二区| 亚洲片人在线观看| 亚洲五月天丁香| 国产99久久九九免费精品| 91成人精品电影| 亚洲人成电影观看| 久久 成人 亚洲| 久久久久久久国产电影| 亚洲黑人精品在线| 18禁裸乳无遮挡动漫免费视频| 又紧又爽又黄一区二区| 青草久久国产| 亚洲国产毛片av蜜桃av| 黑人欧美特级aaaaaa片| 少妇裸体淫交视频免费看高清 | 侵犯人妻中文字幕一二三四区| 欧美日韩福利视频一区二区| 精品一品国产午夜福利视频| av国产精品久久久久影院| 最近最新中文字幕大全免费视频| 精品国产超薄肉色丝袜足j| 欧美黄色淫秽网站| 欧美黑人欧美精品刺激| 亚洲一区二区三区不卡视频| 18禁裸乳无遮挡免费网站照片 | 久久午夜亚洲精品久久| 国产野战对白在线观看| 久久久久久久久免费视频了| 18禁美女被吸乳视频| 丝袜在线中文字幕| 人妻久久中文字幕网| 黄色视频不卡| 亚洲一区中文字幕在线| 18禁黄网站禁片午夜丰满| 黄色女人牲交| 91九色精品人成在线观看| 久久精品亚洲av国产电影网| 国产一区有黄有色的免费视频| 精品国产乱子伦一区二区三区| 高清黄色对白视频在线免费看| 纯流量卡能插随身wifi吗| √禁漫天堂资源中文www| 国产一区二区三区在线臀色熟女 | 欧美黄色片欧美黄色片| 国产成+人综合+亚洲专区| 制服诱惑二区| 一区福利在线观看| 午夜日韩欧美国产| 在线观看免费日韩欧美大片| 亚洲第一av免费看| 国产成人免费无遮挡视频| av超薄肉色丝袜交足视频| 嫩草影视91久久| 制服人妻中文乱码| 久久人妻福利社区极品人妻图片| 亚洲精品中文字幕在线视频| 美女扒开内裤让男人捅视频| 久久久久久久午夜电影 | 80岁老熟妇乱子伦牲交| 搡老熟女国产l中国老女人| 欧美乱妇无乱码| 在线观看一区二区三区激情| 看免费av毛片| 精品福利永久在线观看| 99国产极品粉嫩在线观看| 淫妇啪啪啪对白视频| 亚洲黑人精品在线| 亚洲少妇的诱惑av| 午夜免费鲁丝| 日韩人妻精品一区2区三区| 亚洲av成人不卡在线观看播放网| av一本久久久久| 黄色视频,在线免费观看| 丰满饥渴人妻一区二区三| 精品久久蜜臀av无| 欧美日韩中文字幕国产精品一区二区三区 | 最新的欧美精品一区二区| 国产亚洲精品第一综合不卡| 脱女人内裤的视频| 久久精品91无色码中文字幕| videos熟女内射| 亚洲精品久久午夜乱码| 交换朋友夫妻互换小说| 女人高潮潮喷娇喘18禁视频| 亚洲精品久久午夜乱码| 国产精品久久视频播放| 国产亚洲精品第一综合不卡| av国产精品久久久久影院|