• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Protective effects of gonadal hormones on spinal motoneurons following spinal cord injury

    2018-06-21 10:50:48DaleSengelaubXiaoMingXu
    中國神經再生研究(英文版) 2018年6期

    Dale R. Sengelaub , Xiao-Ming Xu

    1 Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA

    2 Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA

    Introduction

    Spinal cord injury (SCI) is a devastating medical problem with high mortality and long-term morbidity. The number of SCI patients in the US who were alive in 2017 is between 245,000–353,000, with an annual incidence of 17,500 new cases; the estimated lifetime cost of SCI is $1.6–4.8M per patient (National Spinal Cord Injury Statistical Center (NSCISC), 2018).

    The pathophysiology of SCI is complex, and after the initial mechanical deformation, a protracted period of progressive damage occurs, causing spreading of the lesion and further segmental destruction (Liu et al., 1997). A variety of mechanisms contribute to this progressive secondary injury,including excitotoxicity (Liu et al., 1991), free radical generation (Diaz-Ruiz et al., 2002), protease activation (Wang et al., 1997), and inflammation (Ritz and Hausmann, 2008;Liu et al., 2009; Liu and Xu, 2010), resulting in the death of motoneurons, interneurons, and glial cells in the spinal cord(Liu et al., 1997; Liu and Xu, 2010). Similarly, damage to spinal nerves resulting in laceration and avulsion of spinal roots (e.g., cauda equina injury with high impact motor vehicle accidents; Moschilla et al., 2001) can lead to the death of motoneurons and preganglionic autonomic neurons in the spinal cord, resulting in autonomic and motor dysfunction (Hoang et al., 2003).

    Surviving Motoneurons as a Treatment Target

    The majority of treatment strategies after SCI have concentrated on the damaged spinal cord, for example working to reduce lesion size or spread, or encouraging regrowth of severed descending axonal projections through the lesion, hoping to re-establish synaptic connectivity with caudal targets.We have focused on a novel target for treatment after SCI,surviving spinal motoneurons and their target musculature.In contrast to the extensive studies on neuroprotection and axonal regeneration at the lesion site, the morphological and functional consequences of SCI for surviving motoneurons have been significantly understudied. The spinal motoneurons are the final common pathway for motor output to the effector muscles, and any impairment in these motoneurons can cause paralysis and muscle atrophy. Motoneurons in the lumbar spinal cord can be impaired by direct injury, but are far more commonly indirectly impaired after an “above-level injury”, where the injury occurs above the lumbar level;such above-level injuries account for 90% of all SCIs in human patients (National Spinal Cord Injury Statistical Center(NSCISC), 2018). Lesions caused by these injuries damage descending motor and propriospinal tracts, resulting in dendritic atrophy in the lumbar motoneurons, muscle atrophy,and concomitant locomotor deficits (Byers et al., 2012; Liu et al., 2014a, b; Sengelaub et al., 2018). Surviving motoneu-rons are thus a potential therapeutic target, and developing the ability to protect them from secondary atrophy is an important goal. As there are currently no effective treatments to preserve or restore lost function following SCI, identi fication of approaches that result in spared tissues/cell populations that may subsequently be the targets of regenerative therapy and/or rehabilitative plasticity interventions would be significant.

    We reasoned that protecting spinal motoneurons from SCI-induced atrophy would have beneficial effects, and for the past several years we have been exploring novel treatment strategies to protect surviving motoneurons after SCI.In this review, we briefly summarize our work in a clinically relevant model in rats using steroid gonadal hormones as a powerful neurotherapeutic approach in the treatment of the secondary effects of spinal cord injury.

    Neuroprotection with Androgens and Estrogens

    Androgens and estrogens have been demonstrated to powerful neuroprotective effects after a wide variety of neural injuries (Foecking et al., 2015; Brotfain et al., 2016). For example, both testosterone and estradiol protect against cell death(Pike, 2001; Yune et al., 2004), promote functional recovery(Jones et al., 2001; Sribnick et al., 2010), and stimulate motoneuron axonal growth after peripheral nerve injury (Kujawa et al., 1989; Islamov, et al., 2003). The mechanisms through which androgens and estrogens act are multiple, and include regulation of apoptosis (Fargo et al., 2009; Kachadroka et al.,2010), injury-induced upregulation of glial fibrillary acidic protein (GFAP; Jones et al., 1997; Samantaray et al., 2016),and mediation of the glial response (Jones et al., 1999; Ritz and Hausmann, 2008). Proteins thought to be involved in neuroprotection are also regulated by androgens and estrogens, including proteins with antioxidant or pro-inflammatory functions (Ahlbom et al., 2001; Nilsen, 2008; Ritz and Hausmann, 2008) and the neurotrophin brain-derived neurotrophic factor (BDNF; Solum and Handa, 2002; Verhovshek et al., 2010).

    Gonadal steroid hormones provide protection from many of the pathophysiological changes specifically seen after SCI,for example reducing the inflammation and free radical generation that contribute to progressive secondary injury.After SCI, treatment of rats with estradiol resulted in improved motor function, reduced inflammation, attenuated apoptotic cell death, reduced lesion size, increased white matter sparing, and earlier cytokine release and astroglial response (Yune et al., 2004; Sribnick et al., 2005, 2010; Ritz and Hausmann, 2008; Kachadroka et al., 2010; Brotfain et al., 2016; Samantaray et al., 2016). Similarly, treatment with testosterone improves motor function in spinal cord injury patients. Patients treated with testosterone had higher American Spinal Injury Association (ASIA) discharge motor scores, a result ascribed to either improved strength through the anabolic effects of testosterone on skeletal muscle or its neuroprotective effects (Clark et al., 2008).

    Spinal Lesions

    Consistent with previous studies, in our work we demonstrated that following contusion, the focal injuries delivered to the spinal cord developed into large lesions that spanned multiple thoracic spinal segments. Also consistent with previous studies (Yune et al., 2004; Sribnick et al., 2005; Chaovipoch et al., 2006; Ritz and Hausmann, 2008; Kachadroka et al., 2010; Siriphorn et al., 2012; Mosquera et al., 2014; Samantaray et al., 2016), treatment with estradiol was effective in reducing lesion volume; lesion volumes in animals treated only with estradiol were significantly smaller than those of all other groups (Sengelaub et al., 2018). This reduction in lesion size is thought to be the result of reducing inflammation, reactive astrogliosis, decreased immune response,apoptotic cell death, or reductions in oxidative stress (Yune et al., 2004; Ritz and Hausmann, 2008; Kachadroka et al.,2010; Siriphorn et al., 2012; Mosquera et al., 2014; Samantaray et al., 2016). Importantly, the reduction in lesion size we observed was produced through a physiological dose of estradiol, a result similar that reported by Samantary et al.(2016) with low doses of estradiol. The efficacy of low dosages indicates that estradiol could be a promising therapeutic agent for treating SCI (Samantaray et al., 2016). Furthermore, in our work, estradiol was administered after trauma,modeling a clinically relevant situation.

    In contrast, treatment with androgens, either alone or when combined with estradiol, proved to be ineffective in reducing lesion size. Four weeks of treatment with testosterone, dihydrotestosterone, or dihydrotestosterone combined with estradiol had no effect on reducing lesion volume or increased tissue sparing (Byers et al., 2012; Sengelaub et al.,2018). Curiously, the effect of estradiol on decreasing lesion volume was not present when estradiol was co-administered with dihydrotestosterone. This negation of the protective effect of estradiol is similar to that reported by Hauben et al. (2002), wherein treatment of female rats with dihydrotestosterone prior to SCI impaired recovery. Given that androgens have been demonstrated to regulate many of the same neuroprotective effects seen with estradiol treatment,e.g., protecting against cell death (Pike, 2001), upregulating GFAP (Jones et al., 1997; Coers et al., 2002) or mediating the central glial response after injury (Jones et al., 1999), this negation with combined treatment after SCI warrants further study. One plausible mechanism for this negation with combined treatment could be through an androgen-mediated immunosuppression (Grossman, 1984). Regardless,given that testosterone is routinely metabolized into both estrogenic and androgenic metabolites, this negation could underlie the failure of testosterone treatment to affect SCI lesion volume we previously reported (Sengelaub et al., 2018).

    Neuromuscular Protection after SCI

    Although extensive, the spinal lesions produced in our studies did not extend into the lumbar spinal cord, thus sparing the gray matter and resident motoneurons. We selected lumbar motoneurons innervating the quadriceps muscle as our population of interest because of the major weight-bearing role this muscle plays. Counts of either Nissl-stained or retrogradely-labeled quadriceps motoneurons in SCI animals did not differ from those of sham animals, confirming that the lumbar motoneurons were not directly damaged by SCI-induced lesions. Similarly, soma size of quadriceps motoneurons was not significantly affected by SCI. Although quadriceps motoneuron number or soma size were unaffected after SCI, dendritic length in these motoneurons underwent marked dendritic atrophy (Figure 1). Dendritic length decreased by over 50% SCI animals compared to that of sham animals (Figure 2A). Reductions in dendritic length occurred throughout the radial distribution in SCI animals compared to sham animals, and were especially pronounced ventromedially where quadriceps motoneuron dendrites normally have a dense ramification into lamina VIII (Figure 2B). It is likely that the dendritic atrophy we observed following SCI in untreated animals reflects deafferentation resulting from the loss of descending motor and propriospinal tracts. Because both reticulospinal and propriospinal projections are concentrated in this area (Motorina, 1977; Jones and Yang, 1985; Menétey et al., 1985), the extensive lesions present after SCI could have produced a major denervation of dendrites in this area, resulting in the pronounced dendritic atrophy we observed. This loss is of particular significance after SCI, as descending reticulospinal fibers course through the ventral and lateral funiculi (Jones and Yang,1985; Martin et al., 1985), and disruption of these tracts results in hindlimb motor deficits (Magnuson et al., 1999; Loy et al., 2002).

    We further demonstrated that SCI-induced atrophy of quadriceps motoneuron dendrites was attenuated in estradiol-, dihydrotestosterone-, estradiol combined with dihydrotestosterone-, and testosterone-treated animals,and dendritic lengths in hormone-treated SCI groups did not differ from those of sham animals. Dendritic lengths in hormone-treated SCI groups were also significantly longer than those of untreated SCI animals by at least 57%. Interestingly, similar effects on dendritic length were present after treatment with androgens alone or in combination with estradiol, despite there being no reductions in lesion size or increases in tissue sparing in these groups (see above).

    Because these effects were seen independent of lesion size, our results suggest that these hormonal effects could potentially be the result of local action on spinal circuitry below the level of the lesion. It is likely that the attenuation in SCI-induced dendritic atrophy we observed could have been produced by a hormone-mediated sprouting of motoneuron dendrites locally onto remaining afferents. Sprouting could potentially maintain motor activation, and such an effect of hormones on attenuating dendritic atrophy and supporting motoneuron activation has in fact been directly demonstrated (Fargo et al., 2009; Little et al., 2009; Foecking et al., 2015). The mechanisms responsible for this sprouting are not clear, but gonadal hormones have been shown to regulate the expression of cytoskeletal proteins (e.g., β-tubulin, Jones and Oblinger, 1994; Matsumoto et al., 1994; Jones et al., 1999; Brown et al., 2001; actin and microtubule-associated protein 2, Hansberg-Pastor et al., 2015), as well as neuritin, a critical downstream mediator of the ability of gonadal hormones to increase neurite outgrowth (Marron et al., 2005; Fargo et al., 2008a, b). Sprouting could be driven by direct action on the motoneurons orviaindirect action on afferents. Thus, it is possible that a hormone-mediated protection of local spinal circuitry below the level of the lesion could be responsible for the motoneurons dendritic protection we observed. One possible protected spinal population could be the short axon propriospinal neurons,which provide the largest source of input to lumbar spinal motoneurons (Szentagothai, 1951; Sterling and Kuypers,1968; Rustioni et al., 1971). Changes in these afferents could underlie the regressive changes we have observed in motoneurons after SCI. Afferent input to motoneurons is important for the maintenance of their dendritic morphology, and deafferentation of motoneurons results in dendritic retraction (Bernstein and Standler, 1983; Bernstein et al.,1984; Standler and Bernstein, 1984); the rescue of the major afferent source to motoneurons could underlie the beneficial effects of hormone treatment on motoneuron dendrities we have observed.

    Following SCI, we found that quadriceps muscle fiber cross-sectional area in untreated SCI animals was decreased by 25%, typical of muscles innervated by motoneurons below the level of the lesion, especially in weight-bearing muscles such as the quadriceps (Peckham et al., 1976; Giangregorio and McCartney, 2006; Figure 3). Muscle atrophy after SCI can result from either muscle denervation due to a loss of motoneurons or disuse consequent to decreases in muscle activation potentially due to the loss of synaptic input to remaining motoneurons (Gordan and Mao, 1994). The atrophy we observed in our work cannot be ascribed to an effect of denervation, as we observed no changes in quadriceps motoneuron number, or the number of horseradish peroxidase conjugated to the cholera toxin B subunit (BHRP)-labeled quadriceps motoneurons between sham animals and untreated SCI animals. Thus, the decreased fiber size we observed most likely reflects a disuse atrophy, potentially resulting after damage to descending and propriospinal projections and/or the reductions in quadriceps motoneuron dendritic length we observed. Such reductions in quadriceps motoneuron dendritic length result in attenuation of motor activation, reducing response amplitudes in the femoral nerve generated by dorsal root afferent stimulation (Little et al., 2009). Alternatively, disuse atrophy may also result from changes in muscle length or loading conditions that could decrease protein synthesis and increase protein degradation(Williams and Goldspink, 1973; Goldspink, 1978).

    Figure 1 Motoneuron morphology is protected by gonadal hormones following spinal cord injury.

    Figure 2 Motoneuron dendritic length and distribution is protected by gonadal hormones following spinal cord injury.

    Figure 3 Muscle fiber area is protected by androgens following spinal cord injury.

    We found that estradiol treatment was ineffective in preventing muscle fiber atrophy, with areas decreasing 26%after SCI. Although estrogens have a variety of effects in skeletal muscle (e.g., downregulation of proinflammatory cytokines, enhancing insulin-like growth factor-1 (IGF-1)expression, or satellite cell activation and proliferation; Tiidus et al., 2013), their effects on muscle fiber cross-sectional area vary in different muscles and in different directions. Estradiol replacement after ovariectomy has been reported to increase muscle fiber size in the gastrocnemius (Sciote et al.,2001), decrease it in the extensor digitorum longus (Suzuki and Yamamuro, 1985) and plantaris (Piccone et al., 2005),or either increase (Weigt et al., 2015) or decrease (Suzuki and Yamamuro, 1985) fiber size in the soleus.

    In contrast, we also found that treatment with testosterone or dihydrotestosterone (either alone or in combination with estradiol) attenuated SCI-induced muscle fiber atrophy.These effects are consistent with the known protein anabolic effects of androgens on skeletal muscle tissue (Kochakian,1975; Gao, 2010). Thus, treatment with androgens might have supported muscle protein synthesis and decreased protein degradation, and the resultant decrease in protein turnover could have prevented muscle atrophy. Alternatively, androgen treatment could have potentially altered mobility or activity in the treated animals, resulting in the preservation of both muscle as well as the related spinal cord circuitry and motoneuron dendritic morphology. This is quite plausible, as limb exercise after spinal cord transection during postnatal development has in fact been shown to prevent dendritic atrophy in spinal motoneurons (Gazula et al., 2004). Furthermore, exercise is known to elevate the expression of neurotrophic factors (e.g., BDNF) that can promote dendritic and axonal regrowth (Byers et al., 2012;Wilhelm et al., 2012; Sengelaub et al., 2018).

    Summary

    Overall, our results provided the first evidence of pronounced dendritic atrophy in spinal motoneurons caudal to a contusive injury. More importantly, such atrophy was prevented with treatment with gonadal hormones, supporting their protective role after SCI. Together, our results indicate that the use of gonadal hormones could be an effective treatment after SCI, directed by the particular therapeutic goals.We believe that our work will lead to developing sex-appropriate hormone treatments that will be effective in treating multiple sequelae of SCI.

    Author contributions:The authors contributed equally to this study.DRS is the ‘guarantor’.

    Conflicts of interest:None declared.

    Financial support:This work was supported by grants from Indiana Spinal Cord and Brain Injury Research Fund (ISCBIRF) and by IU’s Office of the Vice Provost for Research through the Faculty Research Support Program to DRS, and NIH R01 NS103481, R01 NS100531, Department of Veterans Affairs I01 RX002356, I01 BX003705, Craig H Neilsen Foundation 296749, Indiana Department of Health 019919, ISCBIRF, and Mari Hulman George Endowment Fund to XMX.

    Copyright license agreement:The Copyright License Agreement has been signed by all authors before publication.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak,and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewers:Meng-Jen Lee, Chaoyang University of Technology, China; Paul Lu, University of California San Diego, USA.

    Ahlbom E, Prins G, Ceccatelli S (2001) Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res 892:255-262.

    Bernstein JJ, Standler N (1983) Dendritic alteration of rat spinal motoneurons after dorsal horn mince: computer reconstruction of dendritic fields. Exp Neurol 82:532-540.

    Bernstein JJ, Wacker W, Standler N (1984) Spinal motoneuron dendritic alteration after spinal cord hemisection in the rat. Exp Neurol 83:548-554.Brotfain E, Gruenbaum SE, Boyko M, Kutz R, Zlotnik A, Klein M (2016)Neuroprotection by estrogen and progesterone in traumatic brain injury and spinal cord injury. Curr Neuropharmacol 14:641-653.

    Brown TJ, Storer P, Oblinger M, Jones KJ (2001) Androgenic enhancement of ?II-tubulin mRNA in spinal motoneurons following sciatic nerve injury. Rest Neurol Neurosci 18:191-198.

    Byers JS, Huguenard AL, Kuruppu D, Liu NK, Xu XM, Sengelaub DR (2012)Neuroprotective effects of testosterone on muscle and motoneurons morphology following spinal cord injury. J Comp Neurol 520:2683-2696.

    Chaovipoch P, Jelks KA, Gerhold LM, West EJ, Chongthammakun S, Floyd CL (2006) 17 beta-estradiol is protective in spinal cord injury in postand pre-menopausal rats. J Neurotrauma 23:830-852.

    Clark MJ, Petroski G, Mazurek MO, Hagglund KJ, Sherman AK, Lammy AB, Childers,MK, Acuff ME (2008) Testosterone replacement therapy and motor function in men with spinal cord injury. Am J Phys Med Rehabil 87:281-284.

    Coers S, Tanzer L, Jones KJ (2002) Testosterone treatment attenuates the effects of facial nerve transection on glial fibrillary acidic protein (GFAP)levels in the hamster facial motor nucleus. Metab Brain Dis 17:55-63.

    Diaz-Ruiz A, Ibarra A, Perez-Severiano F, Guizar-Sahagun G, Grijalva I,Rios C (2002) Constitutive and inducible nitric oxide synthase activities after spinal cord contusion in rats. Neurosci Lett 319:129-132.

    Fargo KN, Alexander TD, Tanzer L, Poletti A, Jones KJ (2008a) Androgen regulates neuritin mRNA in an in vivo model of steroid-enhanced peripheral nerve regeneration. J Neurotrauma 25:561-566.

    Fargo KN, Foecking EM, Jones KJ, Sengelaub DR (2009) Neuroprotective actions of androgens on motoneurons. Front Neuroendocrinol 30:130-141.

    Fargo, KN, Galbiati M, Foecking EM, Poletti A, Jones KJ (2008b) Androgen regulation of axon growth and neurite extension in motoneurons.Horm Behav 53:716-728.

    Foecking EM, Fargo KN, Brown TJ, Sengelaub DR, Jones KJ (2015) Gonadal steroids in regeneration and repair of neuromuscular systems. In: Neural Regeneration (So KF, Xu XM, eds) , pp 129-152. London: Elsevier.

    Gao W (2010) Androgen receptor as a therapeutic target. Adv Drug Deliv Rev 62:1277-1284.

    Gazula VR, Roberts M, Luzzio C, Jawad AF, Kalb RG (2004) Effects of limb exercise after spinal cord injury on motor neuron dendrite structure. J Comp Neurol 476:130-145.

    Giangregorio L, McCartney N (2006) Bone loss and muscle atrophy in spinal cord injury: Epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 29:489-500.

    Goldspink DF (1978) The influence of immobilization and stretch on protein turnover of rat skeletal muscle. J Physiol (Lond) 264:267-282.

    Gordan T, Mao J (1994) Muscle atrophy and procedures for training after spinal cord injury. Phys Ther 74:50-60.

    Grossman CJ (1984) Regulation of the immune system by sex steroids. Endocr Rev 5:435-455.

    Hansberg-Pastor V, González-Arenas A, Pi?a-Medina AG, Camacho-Arroyo I (2015) Sex hormones regulate cytoskeletal proteins involved in brain plasticity. Front Psychiatry 6:1-12.

    Hauben E, Mizrahi T, Agranov E, Schwartz M (2002) Sexual dimorphism in the spontaneous recovery from spinal cord injury: a gender gap in beneficial autoimmunity? Eur J Neurosci 16:1731-1740.

    Hoang TX, Nieto J, Tillakaratne NJK, Havton LA (2003) Autonomic and motor neuron death is progressive and parallel in a lumbosacral ventral root avulsion model of cauda equina injury. J Comp Neurol 467:477-486.

    Islamov RR, Hendricks WA, Katwa LC, McMurray RJ, Pak ES, Spanier NS,Murashov AK (2003) Effect of 17 beta-estradiol on gene expression in lumbar spinal cord following sciatic nerve crush injury in ovariectomized mice. Brain Res 966:65-75.

    Jones KJ, Brown TJ, Damaser M (2001) Neuroprotective effects of gonadal steroids on regenerating peripheral motoneurons. Brain Res Rev 37:372-382.

    Jones KJ, Coers S, Storer PD, Tanzer L, Kinderman NB (1999) Androgenic regulation of the central glia response following nerve damage. J Neurobiol 40:560-573.

    Jones KJ, Kinderman NB, Oblinger MM (1997) Alterations in glial fibrillary acidic protein (GFAP) mRNA levels in the hamster facial motor nucleus: effects of axotomy and testosterone. Neurochem Res 22:1359-1366.

    Jones KJ, Oblinger MM (1994) Androgenic regulation of tubulin gene expression in axotomized hamster facial motoneurons. J Neurosci 14:3620-3627.

    Jones KJ, Storer PD, Drengler SM, Oblinger MM (1999) Differential regulation of cytoskeletal gene expression in hamster facial motoneurons:Effects of axotomy and testosterone treatment. J Neurosci Res 57:817-823.Jones BE, Yang TZ (1985) The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J Comp Neurol 242:56-92.

    Kachadroka S, Hall AM, Niedzielko TL, Chongthammakun S, Floyd CL (2010)Effect of endogenous androgens on 17 beta-estradiol-mediated protection after spinal cord injury in male rats. J Neurotrauma 27:611-626.

    Kochakian CD (1975) Definition of androgens and protein anabolic steroids. Pharmac Therap B 1:149-177.

    Kujawa KA, Kinderman NB, Jones KJ (1989) Testosterone-induced acceleration of recovery from facial paralysis following crush axotomy of the facial nerve in male hamsters. Exp Neurol 105:80-85.

    Little CM, Coons KD, Sengelaub DR (2009) Neuroprotective effects of testosterone on the morphology and function of somatic motoneurons following the death of neighboring motoneurons. J Comp Neurol 512:359-372.

    Liu D, Thangnipon W, McAdoo DJ (1991) Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 547:344-348.

    Liu NK, Byers JS, Lam T, Lu QB, Sengelaub DR, Xu XM (2014a) Inhibition of cPLA2 has neuroprotective effects on motoneuron and muscle atrophy following spinal cord injury. J Neurotrauma doi:10.1089/neu.2014.3690.

    Liu NK, Deng LX, Zhang YP, Lu QB, Wang XF, Hu JG, Oakes E, Shields CB, Xu, XM (2014b) Cytosolic phospholipase A2 protein as a novel therapeutic target for spinal cord injury. Ann Neurol 75:644-658.

    Liu NK, Titsworth WL, Xu, XM (2009) Phospholipase A2 in CNS disorders: Implication on traumatic spinal cord and brain injuries. In: Handbook of Neurochemistry and Molecular Neurobiology (Lajtha A, ed), pp 321-341. Springer: New York.

    Liu NK, Xu XM (2010) Phospholipase A2 and its molecular mechanism after spinal cord injury. Mol Neurobiol 41:197-205.

    Liu XZ, Xu XM, Hu R, Du C, McDonald JW, Dong HX, Wu YJ, Fan GS,Jacquin MF, Hsu CY, Choi DW (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17:5395-5406.

    Loy DN, Talbott JF, Onifer SM, Mills MD, Burke DA, Dennison JB, Fajardo LC, Magnuson DSK, Whittemore SR (2002) Both dorsal and ventral spinal cord pathways contribute to overground locomotion in the adult rat.Exp Neurol 177:575-580.

    Magnuson DSK, Trinder TC, Zhang YP, Burke D, Morassutti DJ, Shields CB (1999) Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat. Exp Neurol 156:191-204.

    Marron TU, Guerini V, Rusmini P, Sau D, Brevini TA, Martini L, Poletti A(2005) Androgen-induced neurite outgrowth is mediated by neuritin in motor neurons. J Neurochem 92:10-20.

    Martin GF, Vertes RP, Waltzer R (1985) Spinal projections of the gigantocelluar reticular formation in the rat. Evidence for projections from different areas to laminae I and II and lamina IX. Exp Brain Res 58:154-162.

    Matsumoto A, Arai Y, Urano A, Hyodo S (1994) Androgen regulates gene expression of cytoskeletal proteins in adult rat motoneurons. Horm Behav 28:357-366.

    Menétey D, De Pommery J, Roudier F (1985) Propriospinal fibers reaching the lumbar enlargement in the rat. Neurosci Lett 58:257-261.

    Moschilla G, Song S, Chakera T (2001) Post-traumatic lumbar nerve root avulsion. Australas Radiol 45:281-284.

    Mosquera L, Colon JM, Santiago JM, Torrado AI, Melendez M, Segarra AC, Rodriguez-Orengo JF, Miranda JD (2014) Tamoxifen and estradiol improved locomotor function and increased spared tissues in rats after spinal cord injury: Their antioxidant effect and role of estrogen receptor alpha. Brain Res 1561:11-22.

    Motorina MV (1977) Distribution of reticulospinal fibers and their terminations in lumbar segments of the rat spinal cord. J Evol Biochem Physiol 12:520-527.

    National Spinal Cord Injury Statistical Center (NSCISC) (2018) Facts and Figures at a Glance. https://www.nscisc.uab.edu/.

    Nilsen J (2008) Estradiol and neurodegenerative oxidative stress. Front Neuroendocrinol 29:463-75.

    Peckham PH, Mortimer JT, Marsolais EB (1976) Alteration in the force and fatigability of skeletal muscle in quadriplegic humans following exercise induced by chronic electrical stimulation. Clin Orthop 114:326-333.

    Piccone CM, Brazeau GA, McCormick KM (2005) Effect of oestrogen on myofibre size and myosin expression in growing rats. Exp Physiol 90:87–93.

    Pike CJ (2001) Testosterone attenuates ?-amyloid toxicity in cultured hippocampal neurons. Brain Res 919:160-165.

    Ritz MF, Hausmann ON (2008) Effect of 17B-estradiol on functional outcome, release of cytokines, astrocyte reactivity and inflammatory spreading after spinal cord injury in male rats. Brain Res 1203:177-188.

    Rustioni A, Kuypers HG, Holstege G (1971) Propiospinal projections from the ventral and lateral funiculi to the motoneurons in the lumbosacral cord of the cat. Brain Res 34:255-275.

    Samantaray S, Das A, Matzelle DC, Yu SP, Wei L, Varma A, Ray SK, Banik NL (2016) Administration of low dose estrogen attenuates gliosis and protects neurons in acute spinal cord injury in rats. J Neurochem 136:1064-1073.

    Sciote JJ, Horton MJ, Zyman Y, Pascoe G (2001) Differential effects of diminished oestrogen and androgen levels on development of skeletal muscle in hypogonadal mice. Acta Physiol Scand 172:179-187.

    Sengelaub DR, Han Q, Liu NK, Maczuga M, Szalavari V, Valencia SA, Xu XM (2018) Protective effects of estradiol and dihydrotestosterone following spinal cord injury. J Neurotrauma 35:825-841.

    Siriphorn A, Dunham KA, Chompoopong S, Floyd CL (2012) Postinjury administration of 17β-estradiol induces protection in the gray and white matter with associated functional recovery after cervical spinal cord injury in male rats. J Comp Neurol 520:2630-2646.

    Solum DT, Handa RJ (2002) Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J Neurosci 22:2650-2659.

    Sribnick EA, Samantaray S, Das A, Smith J, Matzelle DD, Ray SK, Banik NL (2010) Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 88:1738-1750.

    Sribnick EA, Wingrave JM, Matzelle DD, Wilford GG, Ray SK, Banik NL(2005) Estrogen attenuated markers of inflammation and decreased lesion volume in acute spinal cord injury rats. J Neurosci Res 82:283-293.Standler N, Bernstein JJ (1984) Dendritic alteration of spinal motoneurons after ablation of somatomotor cortex. Exp Neurol 83:264-273.

    Sterling P, Kuypers HG (1968) Anatomical organization of the brachial spinal cord of the cat. 3. The propriospinal connections. Brain Res 7:419-443.Suzuki S, Yamamuro T (1985) Long-term effects of estrogen on rat skeletal muscle. Exp Neurol 87:291-299.

    Szentagothai J (1951) Short propriospinal neurons and intrinsic connections of the spinal gray. Acta Morphol Acad Sci Hung 1:81-94.

    Tiidus PM, Lowe DA, Brown MN (2013) Estrogen replacement and skeletal muscle: mechanisms and population health. J Appl Physiol 115:569-578.

    Verhovshek T, Cai Y, Osborne MC, Sengelaub DR (2010) Androgen regulates brain-derived neurotrophic factor in spinal motoneurons and their target musculature. Endocrinology 151:253-261.

    Wang CX, Olshowka JA, Wrathall JR (1997) Increase of interleukin-1beta mRNA and protein in the spinal cord following experimental traumatic injury in the rat. Brain Res 759:190-196.

    Weigt C, Hertrampf T, Flenker U, Hülsemann F, Kurnaz P, Fritzemeier KH,Diel P (2015) Effects of estradiol, estrogen receptor subtype-selective agonists and genistein on glucose metabolism in leptin resistant female Zucker diabetic fatty (ZDF) rats. J Steroid Biochem Mol Biol 154:12-22.Wilhelm JC, Xu M, Cucoranu D, Chmielewski S. Holmes T, Lau KS, Bassell GJ, English AW (2012) Cooperative roles of BDNF expression in neurons and Schwann cells are modulated by exercise to facilitate nerve regeneration. J Neurosci 32:5002-5009.

    Williams PE, Goldspink G (1973) The effect of immobilization on the longitudinal growth of striated muscle fibers. J Anat 116:45-55.

    Yune TY, Kim SJ, Lee SM, Lee YK, Oh YJ, Kim YC, Markelonis GJ, Oh TH(2004) Systemic administration of 17 beta-estradiol reduces apoptotic cell death and improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 21:293-306.

    97精品久久久久久久久久精品| 91aial.com中文字幕在线观看| 欧美老熟妇乱子伦牲交| 成人特级av手机在线观看| 国产精品偷伦视频观看了| 成人亚洲精品一区在线观看 | 秋霞在线观看毛片| 观看美女的网站| 日韩不卡一区二区三区视频在线| 天堂中文最新版在线下载| 中文在线观看免费www的网站| 亚洲四区av| av卡一久久| 国产精品女同一区二区软件| 夫妻午夜视频| 国产高清国产精品国产三级 | 日韩成人av中文字幕在线观看| 99久久中文字幕三级久久日本| 大话2 男鬼变身卡| 精品酒店卫生间| 久久国产精品男人的天堂亚洲 | 国产中年淑女户外野战色| 国产综合精华液| 久久久久久伊人网av| 欧美亚洲 丝袜 人妻 在线| 国产高清不卡午夜福利| 亚洲人成网站在线观看播放| 久久久a久久爽久久v久久| 国产色爽女视频免费观看| 男人和女人高潮做爰伦理| 欧美日韩视频高清一区二区三区二| 亚洲一级一片aⅴ在线观看| 国产黄频视频在线观看| 99视频精品全部免费 在线| 色5月婷婷丁香| 美女中出高潮动态图| 亚洲美女搞黄在线观看| 国产精品国产三级国产专区5o| 插阴视频在线观看视频| 日韩成人av中文字幕在线观看| 国产精品免费大片| 日本vs欧美在线观看视频 | 国产视频首页在线观看| 国产精品.久久久| 国产色婷婷99| 国产欧美日韩一区二区三区在线 | 亚洲国产高清在线一区二区三| 日日摸夜夜添夜夜添av毛片| 亚洲人成网站高清观看| 国产91av在线免费观看| 麻豆精品久久久久久蜜桃| 久久久色成人| 好男人视频免费观看在线| 视频中文字幕在线观看| 日韩中文字幕视频在线看片 | 成年人午夜在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 男女国产视频网站| 大片电影免费在线观看免费| www.色视频.com| 国产伦精品一区二区三区视频9| 一个人看的www免费观看视频| 国产高潮美女av| 国产精品不卡视频一区二区| 中文字幕人妻熟人妻熟丝袜美| 国产精品伦人一区二区| 人妻系列 视频| 在线免费十八禁| 亚洲va在线va天堂va国产| 精品少妇久久久久久888优播| 亚洲国产欧美人成| 亚洲一级一片aⅴ在线观看| 免费播放大片免费观看视频在线观看| 久久久午夜欧美精品| 大话2 男鬼变身卡| 欧美日韩一区二区视频在线观看视频在线| 看免费成人av毛片| 中国美白少妇内射xxxbb| 亚洲av中文字字幕乱码综合| 在线观看一区二区三区激情| 内地一区二区视频在线| 女的被弄到高潮叫床怎么办| 少妇 在线观看| 五月天丁香电影| 国产亚洲一区二区精品| 国产精品免费大片| 99热网站在线观看| 少妇人妻 视频| 久久久午夜欧美精品| 久久久亚洲精品成人影院| 欧美日韩视频精品一区| 五月玫瑰六月丁香| 啦啦啦中文免费视频观看日本| 精品一区二区三区视频在线| 纯流量卡能插随身wifi吗| 久热这里只有精品99| 一个人看的www免费观看视频| 亚洲精品乱码久久久久久按摩| 草草在线视频免费看| 一级毛片电影观看| 中国国产av一级| 99九九线精品视频在线观看视频| 综合色丁香网| 六月丁香七月| 毛片女人毛片| 最近的中文字幕免费完整| 如何舔出高潮| 妹子高潮喷水视频| 51国产日韩欧美| 女性被躁到高潮视频| 国产亚洲精品久久久com| 精品久久久精品久久久| 亚洲国产最新在线播放| 亚洲成人手机| 好男人视频免费观看在线| 国语对白做爰xxxⅹ性视频网站| 春色校园在线视频观看| 久久久色成人| 97精品久久久久久久久久精品| 人妻少妇偷人精品九色| 亚洲av免费高清在线观看| 最后的刺客免费高清国语| 国产老妇伦熟女老妇高清| 久久久久精品性色| 在线免费十八禁| 国产爽快片一区二区三区| 一级爰片在线观看| 色5月婷婷丁香| 国产av码专区亚洲av| 国内少妇人妻偷人精品xxx网站| 国产一区二区三区av在线| 日韩中文字幕视频在线看片 | 中文字幕人妻熟人妻熟丝袜美| 日本欧美视频一区| 18+在线观看网站| 国产精品99久久久久久久久| 免费大片黄手机在线观看| 人体艺术视频欧美日本| 人妻夜夜爽99麻豆av| 中文字幕av成人在线电影| 婷婷色麻豆天堂久久| 深夜a级毛片| 久久久成人免费电影| 亚州av有码| 国国产精品蜜臀av免费| 青春草亚洲视频在线观看| 视频中文字幕在线观看| 久久6这里有精品| 成人无遮挡网站| a级毛色黄片| 性高湖久久久久久久久免费观看| 国产探花极品一区二区| 亚洲,欧美,日韩| 人人妻人人爽人人添夜夜欢视频 | 色婷婷久久久亚洲欧美| 在现免费观看毛片| 在线 av 中文字幕| 简卡轻食公司| 国产 精品1| 97精品久久久久久久久久精品| 午夜激情福利司机影院| 狂野欧美白嫩少妇大欣赏| 精品人妻熟女av久视频| 国产美女午夜福利| 麻豆乱淫一区二区| 国产无遮挡羞羞视频在线观看| 秋霞在线观看毛片| 啦啦啦啦在线视频资源| 麻豆精品久久久久久蜜桃| 美女高潮的动态| 热re99久久精品国产66热6| 美女视频免费永久观看网站| 亚洲精品456在线播放app| 国产在线男女| 国产永久视频网站| 精品午夜福利在线看| 一级二级三级毛片免费看| 男人和女人高潮做爰伦理| 嘟嘟电影网在线观看| 国产成人一区二区在线| 麻豆成人午夜福利视频| 最近最新中文字幕大全电影3| 成人免费观看视频高清| 性色avwww在线观看| 国产视频内射| 小蜜桃在线观看免费完整版高清| 午夜福利网站1000一区二区三区| 国产亚洲91精品色在线| 中文字幕精品免费在线观看视频 | 一个人看的www免费观看视频| 最新中文字幕久久久久| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产av蜜桃| 九草在线视频观看| 草草在线视频免费看| 亚洲高清免费不卡视频| 亚洲不卡免费看| 精品国产一区二区三区久久久樱花 | 尾随美女入室| 亚洲精品视频女| 2018国产大陆天天弄谢| 一级二级三级毛片免费看| 日韩一区二区三区影片| 国产在线视频一区二区| 黄片wwwwww| 久久久久久久精品精品| 亚洲美女搞黄在线观看| 夜夜看夜夜爽夜夜摸| 午夜激情久久久久久久| 青春草亚洲视频在线观看| 麻豆成人午夜福利视频| 中文字幕人妻熟人妻熟丝袜美| 国产av精品麻豆| 各种免费的搞黄视频| 18禁裸乳无遮挡免费网站照片| 如何舔出高潮| 大香蕉久久网| 看非洲黑人一级黄片| av国产精品久久久久影院| 男人狂女人下面高潮的视频| 久久精品国产亚洲av涩爱| 日本色播在线视频| 国产精品精品国产色婷婷| 久久久色成人| 99热这里只有是精品50| 国产有黄有色有爽视频| 国产成人免费观看mmmm| 亚洲成人手机| 亚洲国产精品国产精品| 久久鲁丝午夜福利片| 亚洲精品,欧美精品| 国产精品精品国产色婷婷| 日韩一区二区三区影片| 另类亚洲欧美激情| 亚洲精品日韩在线中文字幕| 亚洲自偷自拍三级| 最近手机中文字幕大全| 又黄又爽又刺激的免费视频.| 久久久久国产网址| 婷婷色综合大香蕉| 国产av国产精品国产| 中文字幕久久专区| 3wmmmm亚洲av在线观看| 最近的中文字幕免费完整| 精品国产一区二区三区久久久樱花 | 亚洲国产最新在线播放| 色综合色国产| 国产综合精华液| 免费人成在线观看视频色| 亚洲成人中文字幕在线播放| 天堂俺去俺来也www色官网| 亚洲欧美一区二区三区黑人 | 一级a做视频免费观看| 欧美xxxx性猛交bbbb| 波野结衣二区三区在线| 久久99热这里只频精品6学生| 在线观看免费视频网站a站| 亚洲欧洲国产日韩| 亚洲国产成人一精品久久久| 日本与韩国留学比较| 中文乱码字字幕精品一区二区三区| www.av在线官网国产| 国产精品欧美亚洲77777| 中文在线观看免费www的网站| 亚洲天堂av无毛| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久久电影| 亚洲高清免费不卡视频| 尾随美女入室| 国产亚洲最大av| 免费黄频网站在线观看国产| 亚洲国产av新网站| 美女视频免费永久观看网站| av播播在线观看一区| 国产精品一区www在线观看| 国产高清不卡午夜福利| 嫩草影院入口| 国产黄片美女视频| 在线观看美女被高潮喷水网站| 在线观看免费视频网站a站| 亚洲av男天堂| 国产深夜福利视频在线观看| 日韩精品有码人妻一区| 如何舔出高潮| av国产免费在线观看| 少妇熟女欧美另类| 男女边摸边吃奶| 国产精品熟女久久久久浪| 久久女婷五月综合色啪小说| av卡一久久| 日韩国内少妇激情av| 欧美少妇被猛烈插入视频| 国产日韩欧美在线精品| 国产一区亚洲一区在线观看| 免费黄频网站在线观看国产| 久久久久久伊人网av| 国产欧美日韩一区二区三区在线 | 国产永久视频网站| 久久久久精品性色| 精品熟女少妇av免费看| av国产久精品久网站免费入址| 久久久久久久久久成人| 观看美女的网站| 国产91av在线免费观看| www.av在线官网国产| 日日撸夜夜添| 国产精品一区www在线观看| 国产精品久久久久久久电影| 亚洲综合精品二区| 九九在线视频观看精品| av国产久精品久网站免费入址| 看免费成人av毛片| 免费观看无遮挡的男女| 国产成人精品福利久久| 啦啦啦中文免费视频观看日本| 日韩在线高清观看一区二区三区| 国产高清国产精品国产三级 | 激情 狠狠 欧美| 成人综合一区亚洲| 国产亚洲欧美精品永久| 国产av码专区亚洲av| 噜噜噜噜噜久久久久久91| 国产欧美日韩精品一区二区| 国产亚洲91精品色在线| 成人一区二区视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产成人精品一,二区| 一级毛片 在线播放| 我要看日韩黄色一级片| 免费看不卡的av| 精品久久久久久久久av| 成人一区二区视频在线观看| 男女边吃奶边做爰视频| h视频一区二区三区| 五月玫瑰六月丁香| 美女中出高潮动态图| av免费在线看不卡| 国产高清三级在线| 中文精品一卡2卡3卡4更新| 中文在线观看免费www的网站| 亚洲怡红院男人天堂| 晚上一个人看的免费电影| 日本与韩国留学比较| 国产精品国产三级国产专区5o| 国产爱豆传媒在线观看| 日韩 亚洲 欧美在线| 成人毛片60女人毛片免费| 国内精品宾馆在线| 午夜福利网站1000一区二区三区| 在线 av 中文字幕| 在线观看av片永久免费下载| 秋霞在线观看毛片| 亚洲欧美精品专区久久| 蜜桃亚洲精品一区二区三区| 观看av在线不卡| 男人狂女人下面高潮的视频| 久久精品国产自在天天线| 欧美 日韩 精品 国产| 深夜a级毛片| 成人二区视频| 日韩中字成人| 99热这里只有精品一区| 亚洲综合色惰| 在线观看一区二区三区激情| 国产男女内射视频| 国产精品人妻久久久久久| 国产亚洲最大av| 蜜桃在线观看..| 激情 狠狠 欧美| 日韩在线高清观看一区二区三区| 国产综合精华液| 99国产精品免费福利视频| 人人妻人人添人人爽欧美一区卜 | 国产精品三级大全| 日韩在线高清观看一区二区三区| 少妇裸体淫交视频免费看高清| 日日摸夜夜添夜夜添av毛片| 久久精品久久精品一区二区三区| 色综合色国产| 插阴视频在线观看视频| 1000部很黄的大片| 人妻少妇偷人精品九色| 免费高清在线观看视频在线观看| 亚洲av综合色区一区| 国产一区二区三区av在线| 国产精品伦人一区二区| 日韩不卡一区二区三区视频在线| 国产大屁股一区二区在线视频| 亚洲一级一片aⅴ在线观看| 国产精品麻豆人妻色哟哟久久| 国产一区亚洲一区在线观看| 日韩欧美一区视频在线观看 | 久久久色成人| 亚洲激情五月婷婷啪啪| 婷婷色av中文字幕| 男女下面进入的视频免费午夜| 99热这里只有精品一区| 丰满人妻一区二区三区视频av| 99热这里只有是精品50| 久久久精品94久久精品| 人妻一区二区av| 日本爱情动作片www.在线观看| 岛国毛片在线播放| 精品久久久精品久久久| 成人毛片60女人毛片免费| 精品人妻熟女av久视频| 国产精品成人在线| 免费黄网站久久成人精品| 精品一区二区免费观看| 日韩视频在线欧美| 久久ye,这里只有精品| 亚洲精品一二三| 日本av手机在线免费观看| 不卡视频在线观看欧美| 欧美xxxx黑人xx丫x性爽| 大陆偷拍与自拍| 国内精品宾馆在线| 亚洲精品乱码久久久久久按摩| 久久99热6这里只有精品| 日本色播在线视频| 97在线人人人人妻| 久久久国产一区二区| 少妇的逼水好多| 免费大片18禁| 夫妻性生交免费视频一级片| 日韩亚洲欧美综合| 亚洲精品乱码久久久久久按摩| 日本黄色片子视频| 日本wwww免费看| 国产高清三级在线| 91久久精品国产一区二区三区| 中国美白少妇内射xxxbb| 国产高清有码在线观看视频| 熟女电影av网| 亚洲人与动物交配视频| 一区在线观看完整版| 99久久人妻综合| av免费观看日本| 少妇 在线观看| 国产男女超爽视频在线观看| a级毛片免费高清观看在线播放| 国产av一区二区精品久久 | 国产欧美日韩精品一区二区| 欧美一区二区亚洲| 亚洲色图av天堂| 中文字幕精品免费在线观看视频 | 制服丝袜香蕉在线| 国产淫片久久久久久久久| 人妻夜夜爽99麻豆av| 免费黄色在线免费观看| 观看av在线不卡| 日日啪夜夜爽| 高清av免费在线| 国产精品不卡视频一区二区| 国产黄片视频在线免费观看| 久久久久久久久久人人人人人人| 国产淫片久久久久久久久| 亚洲av国产av综合av卡| 亚洲av不卡在线观看| 国产伦精品一区二区三区视频9| av在线app专区| 国产一区亚洲一区在线观看| 欧美高清成人免费视频www| 日韩成人av中文字幕在线观看| 国产白丝娇喘喷水9色精品| 亚洲欧美清纯卡通| 久久精品人妻少妇| 欧美日韩亚洲高清精品| 最近最新中文字幕免费大全7| 大又大粗又爽又黄少妇毛片口| 国产精品精品国产色婷婷| 成人免费观看视频高清| 成年人午夜在线观看视频| 自拍偷自拍亚洲精品老妇| 高清毛片免费看| 亚洲精品色激情综合| 欧美高清成人免费视频www| 亚洲aⅴ乱码一区二区在线播放| 亚洲电影在线观看av| 国产精品99久久99久久久不卡 | 免费高清在线观看视频在线观看| 国产欧美日韩一区二区三区在线 | 精品久久久久久电影网| 久久这里有精品视频免费| 天美传媒精品一区二区| 人体艺术视频欧美日本| 少妇熟女欧美另类| 日韩制服骚丝袜av| 国产在线男女| 男男h啪啪无遮挡| 精品熟女少妇av免费看| 美女高潮的动态| 草草在线视频免费看| 成人一区二区视频在线观看| av国产精品久久久久影院| 亚洲国产高清在线一区二区三| 久久人人爽人人片av| 搡女人真爽免费视频火全软件| 男女无遮挡免费网站观看| 在线观看美女被高潮喷水网站| 美女脱内裤让男人舔精品视频| 久久久久国产精品人妻一区二区| 亚洲欧洲国产日韩| 久热这里只有精品99| 国精品久久久久久国模美| 亚洲av日韩在线播放| 国产精品久久久久久精品古装| 高清日韩中文字幕在线| 欧美日本视频| videossex国产| 久久精品人妻少妇| 老熟女久久久| 国产视频首页在线观看| 国产高清不卡午夜福利| 久久人人爽人人片av| 精品久久久久久电影网| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美精品自产自拍| 亚洲精品456在线播放app| 亚洲精品色激情综合| 麻豆成人av视频| 高清欧美精品videossex| 自拍偷自拍亚洲精品老妇| 涩涩av久久男人的天堂| 色哟哟·www| 看免费成人av毛片| 国产淫片久久久久久久久| 欧美日韩精品成人综合77777| tube8黄色片| 视频中文字幕在线观看| 日本黄大片高清| 免费看日本二区| 大码成人一级视频| 久久久久国产网址| 乱系列少妇在线播放| 26uuu在线亚洲综合色| 久久婷婷青草| 嫩草影院入口| 蜜臀久久99精品久久宅男| 中文在线观看免费www的网站| 国产精品精品国产色婷婷| 一级毛片黄色毛片免费观看视频| 欧美3d第一页| 亚洲精品乱久久久久久| 不卡视频在线观看欧美| 在线免费十八禁| 亚洲欧洲国产日韩| 18+在线观看网站| 一级毛片我不卡| av在线观看视频网站免费| 老女人水多毛片| 少妇裸体淫交视频免费看高清| 久久人妻熟女aⅴ| 国产v大片淫在线免费观看| 国产亚洲欧美精品永久| 女性生殖器流出的白浆| 亚洲精品成人av观看孕妇| 国产精品一及| 久久精品国产亚洲av涩爱| 男人爽女人下面视频在线观看| 26uuu在线亚洲综合色| 国产av一区二区精品久久 | 黄色配什么色好看| 最近2019中文字幕mv第一页| 99热网站在线观看| 亚洲久久久国产精品| 亚洲国产色片| 九九久久精品国产亚洲av麻豆| 亚洲精品一二三| 毛片女人毛片| 欧美bdsm另类| 欧美变态另类bdsm刘玥| 亚洲va在线va天堂va国产| 欧美日韩视频精品一区| 秋霞伦理黄片| 午夜老司机福利剧场| 国产真实伦视频高清在线观看| 精品一区二区三卡| 嫩草影院入口| 亚洲欧美精品专区久久| 联通29元200g的流量卡| 国产精品久久久久久av不卡| 欧美亚洲 丝袜 人妻 在线| 国产成人a区在线观看| 国产成人免费无遮挡视频| 午夜福利在线在线| 亚洲第一av免费看| 天天躁日日操中文字幕| av播播在线观看一区| 国产淫语在线视频| av国产久精品久网站免费入址| 国产精品无大码| 精品视频人人做人人爽| videossex国产| 成人黄色视频免费在线看| 久热这里只有精品99| 精品久久久精品久久久| av国产免费在线观看| 国产精品国产av在线观看| 高清欧美精品videossex| 精品国产乱码久久久久久小说| 亚洲精华国产精华液的使用体验| 亚洲av免费高清在线观看| 搡女人真爽免费视频火全软件| 国产成人一区二区在线| 丝袜脚勾引网站| 色吧在线观看| 伦理电影大哥的女人| 国产精品一二三区在线看| 一级片'在线观看视频| 人人妻人人澡人人爽人人夜夜| 欧美3d第一页| 欧美国产精品一级二级三级 | 一级片'在线观看视频| 国产男女超爽视频在线观看|