• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Structure and Photocatalytic Activity of Two 4-(2,6-Di(pyrazin-2-yl)pyridin-4-yl)benzoate-Based Chain Complexes①

    2018-06-20 12:00:36WANGZhiHongHAORuiZHUShuangZHAOXiaoJun
    結(jié)構(gòu)化學(xué) 2018年5期

    WANG Zhi-Hong HAO Rui ZHU Shuang ZHAO Xiao-Jun

    ?

    Synthesis, Structure and Photocatalytic Activity of Two 4-(2,6-Di(pyrazin-2-yl)pyridin-4-yl)benzoate-Based Chain Complexes①

    WANG Zhi-Hong HAO Rui ZHU Shuang ZHAO Xiao-Jun②

    (300387)

    4-(2,6-di(pyrazin-2-yl)pyridin-4-yl)benzoate, photocatalytic activity,crystal structure,coordination polymer;

    1 INTRODUCTION

    Recently, rapid developments of printing, cosme- tics, plastics, rubber, and paper industry have dis- charged high level of hazardous colored dyestuffs. Over 10000 kinds of dyes with a total yearly production over 7×105tons worldwide are repor- ted to be commercially available and approximately 10% of dyestuffs are lost in the industrial effluents[1, 2]. The entering of these dye effluents into the receiving water body has already caused serious damage to aquatic organisms and humans by mutagenic and carcinogenic effects.Moreover, lots ofdyes are stable and have a large degree of aromaticity, which is difficult to degrade by conventional biological techniques.Thus, it is of great significance and importance to search effective and economical methods and/or techniques to efficiently degrade these organic dyes[3].

    Acting as typically crystalline materials, coor- dination polymers (CPs) built from metal ions and/or metal-containing clusters and organic bri- dging connectors have exhibited excellent photoca- talyticproperties on the degradation of organic dyes (such as methyl orange, rhodamine B (RhB), me- thylene blue (MB) and so on) under the irradiations of UV, visible, and/or UV-vis lights due to their adjustable semiconductor nature and unsaturated metallic binding sites[4-6]. To date, lots of Cu(I/II)-, Co(II/III)-, Fe(II)/Fe(III)-, Zn(II)-, and Cd(II)-based CPs with diverse structures and intriguing topology have been prepared and used as photocatalysts to evaluate the degradation performance of organic pollutants in wastewater[7-12]. These interesting investigations have revealed that the-electron localization skeleton, binding group, andthe metal center of CPs can essentially dominate the strength and range of the illumination energy and the elec- tronic band gap of photocatalyst, which can domi- nate the photo-generated hole-electron separation process responsible for the enhanced catalytic activity. Herein, as continuous explorations on the effects of metal ion and coordination environment on the photocatalytic performance for degradation of organic pollutants, a bulky-conjugated organic ligand 4-(2,6-di(pyrazin-2-yl)pyridin-4-yl)benzoate (L-) was selected as a functional connector to self-assemble with transition metal ion and auxiliary 1,4-benzenedicarboxylate ligand (BDC). As a result, two approximately linear chains incorporated respectively with CuIIand ZnIIions were solvother- mally obtained. Their crystal structures, band gaps and photocatalytic performances towards the degradation of RhB and MB were reported.

    2 EXPERIMENTAL

    2. 1 Reagents and instruments

    All initial chemicals were commercially purchased from either J&K Scientific or Tianjin Chemical Reagent Factory and used as received without further purification. Organic ligand 4-(2,6- di(pyrazin-2-yl)pyridin-4-yl)benzoic acid (HL) was prepared by a slightly modified method[13].Ele- mental analyses for C, H, and N were carried out with a CE-440 (Leeman-Labs) analyzer. Fourier transform (FT) IR spectra (KBr pellets) were taken on an Avatar-370 (Nicolet) spectrometer in the range of 4000~400 cm–1. Thermogravimetric analyses (TGA) were performed on a Shimadzu simultaneous DTG-60A compositional analysis instrument from room temperature to 800℃ under a N2atmosphere at a heating rate of 5℃×min–1. Powder X-ray diffraction (PXRD) patterns were obtained using a Rigaku D/max-2500 diffractometer at 60 kV and 300 mA for Curadiation (= 1.5406 ?), with a scan speed of 0.2o·min–1and a step size of 0.02oin 2. The simulated PXRD pattern was calculated using single-crystal X-ray diffraction data and processed by using the free Mercury v1.4 program provided by the Cambridge Crystallographic Data Center. UV/Vis diffuse reflectance spectra (DRS) were carried out on a U-4100 spectrophotometer (Shimadzu) equipped with an integrating sphere assembly. UV-vis absorp- tion spectra of the reaction mixture were recorded using a UV-2700 spectrophotometer (Shimadzu) in the range of 200~800 nm.Electrochemical impe- dance spectroscopy (EIS) was measured on an AMETEK Princeton Applied Research (Versa STAT 4) electrochemical workstation with 1/FTO or 2/FTO as the working electrode, a platinum foil as the counter electrode, and a saturated Ag/AgCl/KCl as the reference electrode. The working electrode was prepared by dropping 50L of suspension containing photocatalyst 1 or 2 (3.0 mg), ethanol (1.0 mL) and Nafion (20L) directly onto a FTO plate. The surface area of the working electrode exposed to the electrolyte was about 0.64 cm2. The EIS measurements were performed in 0.2 M Na2SO4aqueous solution (pH = 7) with a bias of 0 V under irradiation of 300W Xe lamp (≥ 350 nm).

    2. 2 Synthesis of {[Cu(L)(BDC)0.5]·3.5H2O}n (1)

    A mixture containing CuSO4·5H2O (50.0 mg, 0.2 mmol), HL (17.7 mg, 0.05 mmol), 1,4-benzenedi- carboxylic acid (H2BDC, 28.2 mg, 0.17 mmol), doubly deionized water (5.0 mL), and DMF (5.0 mL) was sealed in a Teflon-lined stainless-steel vessel (23.0 mL) and heated at 120 ℃ for 72 h under autogenous pressure. After the mixture was cooled to room temperature at a rate of 2℃·h-1, green block-shaped crystals suitable for X-ray analysis were obtained directly, washed with cold water, and dried in air. Yield: 36% based on L-ligand. Calcd. for C48H42Cu2N10O15: C, 51.20; H, 3.76; N, 12.44%. Found: C, 51.23; H, 3.77; N, 12.48%. FT-IR (KBr pellet, cm-1): 3434 (br), 1611 (m), 1560 (s), 1458 (w), 1381 (s), 1176(w), 1150 (w), 1075 (w), 1039 (w), 1011 (w), 861(w), 823 (w), 789 (w), 745 (w), 591 (w), 516 (w), 466(w).

    2. 3 Synthesis of {[Zn(L)(BDC)0.5]·H2O}n (2)

    A mixture of ZnSO4·7H2O (57.5 mg, 0.2 mmol), HL (17.7 mg, 0.05 mmol), H2BDC (16.6 mg, 0.1 mmol), and H2O (10.0 mL) was stirred for 3.0 h in air. Then, the mixture was transferred into a 23.0 mL Teflon-lined stainless-steel vessel, and heated at 170℃ for 4 days. After the mixture was cooled slowly to room temperature, yellow block-shaped crystals of 2 were directly obtained. Yield: 46% based on L-ligand. Calcd. for C24H16N5O5Zn: C, 55.46; H, 3.10; N, 13.47%. Found: C, 55.35; H, 3.30; N, 13.57%. FT-IR (KBr pellet, cm-1): 3332 (br), 1642 (s), 1611 (m), 1582 (s), 1382(s), 1335 (s), 1179 (m), 1139 (w), 1034(m), 1010(w), 855 (m), 819 (m), 787 (m), 745 (m), 689 (w), 649(w), 590(w) 490(w), 462(w).

    2. 4 Structure determination

    Diffraction intensities of 1 (0.22mm′0.20mm′0.19mm) and 2 (0.22mm′0.21mm′0.18mm) were collected on a Bruker APEX-II CCD diffractometer equipped with graphite-monochro- mated Moradiation with radiation wavelength 0.71073 ? by using the-scan technique at 296 K, respectively. There was no evidence of crystal decay during data collection. Semi-empirical multi- scan absorption corrections were applied by SADABS[14]and the program SAINT was used for integration of the diffraction profiles. A total of 7622 reflections with 4781 unique ones (int= 0.0369) were measured in the range of 1.779≤≤26.499o, of which3704 were observed with> 2() for 1, and a total of 11673 reflections with 4278 unique ones (int= 0.0542) were measured in the range of 2.086≤≤26.494o, of which 2944 were observed with> 2() for 2.The structures were solved by direct methods and refined with full-matrix least-squares technique using the SHELXS-97 and SHELXL-97 pro- grams[15, 16]. Anisotropic thermal parameters were assigned to all non-H atoms. The organic H atoms were generated geometrically. The final= 0.0575,= 0.1386 (= 1/[2(F2) + (0.0634)2+ 0.8562], where= (F2+ 2F2)/3),= 1.078, (D)max= 0.598, (D)min=-0.661 and (D/)max= 0.001 for 1, and the final= 0.0487,= 0.0907 (= 1/[2(F2) + (0.0386)2], where= (F2+ 2F2)/3),= 1.083, (D)max= 0.835, (D)min=-0.524and (D/)max= 0.001for 2. The selected bond lengths and bond angles for 1 and 2 are shown in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    Symmetry codes for 1: a: 2-,-, 1-; 2: a:-,, 1/2-

    2. 5 Photocatalytic experiment

    Typical procedure for photocatalytic reaction was as follows: a suspension containing photocatalyst 1 or 2 (3.0 mg), 30.0 mL aqueous RhB/MB (20.0/12.0 mg·L-1) solution and 30% H2O2(50L for RhB and 10L for MB) was stirred in the dark for about 30 min to ensure the absorption-desorption equili- brium. Then, the mixture was exposed to a visible light source (500 W xenon arc lamp) for irradiation. At different time intervals, 3.0 mL sample was withdrawn from the reaction mixture and the dispersed powder in the mixture was removed by centrifugation. The absorption of the as-resulted solutions was analyzed by UV-vis spectroscopy, in which the characteristic absorption bands around 553 nm for RhB and 664 nm for MB were employed to evaluate the degradation process. The catalyst after the first run was filtered, washed several times with water, dried at room temperature, and then dropped into the next reaction.

    3 RESULTS AND DISCUSSION

    3. 1 Crystal structure of 1

    As shown in Fig. 1b, the adjacent CuIIions of 1 are alternately bridged by a pair of L-and a cen- trosymmetric BDC2-connector, leading to an appro- ximately linear chain with the intrachain CuII···CuIIseparations of 11.4137(11) and 10.9307(1) ?, respectively. The angle of three neighboring CuIIions is 168.189(1)o. The neighboring 1chains of 1 are further packed into 2and 3supramolecular networks through interchain weak C-H···O and C-H···N hydrogen bonding interactions between aromatic ring and carboxylate O or pyrazinyl N acceptors (Table S1 and Fig. S1).

    Fig. 1. (a) Local coordination environments of CuΙΙion in 1 (H atoms were omitted for clarity. Symmetry code: A = 2-,-, 1-). (b) 1D chain of 1 extended by the mixed ligands

    3. 2 Crystal structure of 2

    Similar to 1, 2 also features a 1chain with pentacoordinate ZnIIions periodically expanded by centrosymmetric BDC2-and pairs of L-connectors. Besides the replacement of CuIIion by the ZnIIsite, a quite distinction between 1 and 2 can be detected by careful checking their crystal structures. Much different from 1, 2 crystallizes in the monoclinic2/space group. The highly symmetric space group of 2 can result inthree aspects different from 1. Firstly, the coordination polyhedron of ZnIIion is more distorted (0.12, Fig. 2a). Secondly, the conjugated extent of L-ligand in 2 is much better than that in 1, and the dihedralangles between phenyl ring and polypyridyl plane are 4.8° and 45.8° for 1 and 2. Thirdly, chain structure of 2 is more bent and the angle of three adjacent ZnIIions is 16.558(2)o(Fig. 2b). Additionally, the weak interchain C-H···N hydrogen bonding interaction was absent during the crystal stacking process of 2 (Table S1 and Fig. S2).

    Fig. 2. (a) Local coordination environments of ZnΙΙion in 2 (H atoms were omitted for clarity. Symmetry code: A =-,, 0.5-). (b) 1D chain of 2 extended by L-and BDC2-connectors

    3. 3 PXRD, TGA, and FT-IR spectra

    Powder X-ray diffraction (PXRD) patterns of the as-synthesized samples were in good agreement with the simulated ones (Fig. S3), suggestingthe phase purity and the structural consistency between the as-prepared sample and the single-crystal structures.

    Both 1 and 2 display two separate weight-loss stages (Fig. S4). The first one that began at room temperature and ended at 155℃ for 1 should be ascribed to the removal of lattice water molecules (obsd. 11.8%, calcd. 11.2%). The breakof the chain of 1 began at 284℃, which was not completely finished till 800℃. The thermal stability of 2 is much higher than that of 1.The removal of lattice water molecule in 2 was between room temperature and 293℃ (obsd. 4.1%, calcd. 3.5%). The collapse of the chain structure of 2 occurred at 431℃. Similar to 1, the framework collapse of 2 was not completely finished at the highest temperature.

    As compared with the free organic ligand, an absence of a strong band at 1679cm-1in the FT-IR spectra confirmed the complete deprotonation of H2BDC in both 1 and 2[18].Multiple strong bands corresponding to the asymmetric and symmetric stretching vibrations of carboxylate group appeared at 1611, 1560, and 1458, 1381 cm-1for 1 and at 1642, 1582, 1382, 133cm-1for 2.

    3. 4 Optical properties

    Complex 1 exhibits three strong absorption bands centered at 286, 368 and 699 nm (Fig. 3), respec- tively, which can be ascribed to intraligand→* transition, ligand-to-metal charge transfer (LMCT), andspin-allowed transition of CuIIion. By contrast, only two absorptions are observed for 2 at 275 and 358 nm, which correspond to the intra- ligand→* transition and LMCT of 2.Energy band gaps (Eg) for 1 and 2 are 2.04 and 2.81 eV obtained from the intersection point between the energy axis and the line extrapolated from the linear portion of the absorption edge in a plot of Kubelka- Munk function (Fig. 3 inset), indicating that the CPs have semiconductor nature and can be potentially used as photocatalysts.

    Fig. 3. UV-Vis absorption spectra of HL, H2BDC, 1, and 2 (Inset: Diffuse reflectance UV-vis spectra of K-M function. energy of 1 and 2)

    3. 5 Photocatalytic properties

    Catalytic performance of the as-synthesized sample as a photocatalyst was evaluated by photo- degradation of RhB and MB in aqueous solution. As shown in Fig. 4, in the presence of 1, the charac- teristic absorptions of RhB (664 nm) and MB (553 nm) decreased remarkably with the extension of the irradiation time, suggesting a detectable degradation of RhB and MB with the aid of 1. The photoca- talytic efficiency of RhB and MB by 190% and 95% after 150 min reaction. By contrast, the degradation efficiency of the organic dyes by 2 was 53% and 60% for RhB and MB, respectively. Under the same experimental conditions, the degradation efficiency of RhB and MB without a photocatalyst was only 28% and 32%. Thus, both 1 and 2 can exhibit good photocatalytic activities upon the photodegradation of organic dyes, in which 1 has a much higher catalytic performance than that of 2. Herein, the lower photodegradation efficiency of 2 than 1 is significantly due to the large band gap and the weak response of 2 to visible irradiation. Furthermore, to compare the difference on the charge separation and transfer process between 1 and 2, the EIS measurements were carried out. As shown in Fig. 5, the smaller semicircle diameter of 1 than 2 indicates the resistance of 2/PTO electrode is bigger than that of 1/FTO, that is to say, the faster interfacial charge transfer and lower charge recombination occur in 1. On the other hand, as compared with the previously reported CuII-based photocatalysts exhibiting high degradation per- formance of RhB and MB, such as centrosymmetric dinuclear [Cu2(2,2?-bipy)2(pfbz)4] (pfbz = pen- tafluorobenzoate)[19], pyridine-2,6-dicarbohydrazide based imine linked ligands extended one-dimen- sional CuIIchains with distinct coordination en- vironments[20]and three-dimensional [Cu(mip)(bpy)0.5](mip = 5-methylisophthalate and bpy = 4,4?-bipyridine) with jsm topology[21], the dimensionality, unsaturated coordination site of CuIIcenter and the chemical structure of the organic ligand play important roles for the enhancement of the photocatalytic activity.

    3. 6 Stability and reusability of the photocatalysts

    The stability of photocatalyst was confirmed by comparison of the PXRD patterns before and after the photocatalytic reactions. After this reaction, the PXRD patterns of 1 and 2 were almost the same as those of the as-prepared samples (Fig. S3), sug- gesting the robust stability of the two photocatalysts during the process of photocatalytic reaction. Additionally, the reusability of 1 with better catalytic performance was examined by performing three consecutive runs. The degradation efficiency of 1 only varied from 90% to 64% after three runs (Fig. 6), implying that 1can be re-used without a significant loss of the catalytic activity.

    Fig. 4. UV-vis absorption spectra and degradation efficiency for degradation of RhB and MB by using 1 and 2 as photocatalysts under visible irradiation at different time intervals (insert: photographs of RhB and MB solution before and after photocatalytic reaction by 1 and 2)

    Fig. 5. EIS Nyquist plots of 1 and 2 as electrode materials under the irradiation of visble light

    Fig. 6. Cycle performance of 1 on the photodegradation of aqueous RhB solution

    4 CONCLUSION

    Two bulky conjugated 4-(2,6-di(pyrazin-2-yl)py- ridin-4-yl)benzoate-derived one-dimensional chains were solvothermally obtained by varying the transition metal ions and were used as photocata- lysts to degrade organic dyes. Due to the narrower band gap and broader response to visible irradiation, the CuII-based chain exhibits better photocatalytic activity than those of ZnII-chain.

    (1) Yener, J.; Kopac, T.; Dogu, G.; Dogu, T. Dynamic analysis of sorption of methylene blue dye on granular and powdered activated carbon.2008, 144, 400-406.

    (2) Wu, Z. B.; Yuan, X. Z.; Zhang, J.; Wang, H.; Jiang, L. B.; Zeng, G. G. Photocatalytic decontamination of wastewater containing organic dyes by metal-organic frameworks and their derivatives.2017, 9, 41-64.

    (3) Saha, T. K.; Frauendorf, H.; John, M.; Dechert, S.; Meyer, F. Efficient oxidative degradation of azo dyes by a water-soluble manganese porphyrin catalyst.2013, 5, 796-805.

    (4) Zhang, H. B.; Liu, G. G.; Shi, L.; Liu, H. M.; Wang, T.; Ye, J. H. Engineering coordination polymers for photocatalysis.2016, 22, 149-168.

    (5) Wang, C. C.; Li, R. J.; Lv, X. L.; Zhang, Y. Q.; Guo, G. S. Photocatalytic organic pollutants degradation in metal-organic frameworks.2014, 7, 2831-2867.

    (6) Dai, M.; Li, H. X.; Lang, J. P. New approaches to the degradation of organic dyes, and nitro- and chloroaromatics using coordination polymers as photocatalysts.2015, 17, 4741-4753.

    (7) Chen, M. M.; Li, X. H.; Lang, J. P. Two coordination polymers and their silver(I)-doped species: synthesis, characterization, and high catalytic activity for the photodegradation of various organic pollutants in water.2016,15-16, 2508-2515.

    (8) Du, J. J.; Yuan, Y. P.; Sun, J. X.; Peng, F. M.; Jiang, X.; Qiu, L. G.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye.2011, 190, 945-951.

    (9) Wang, X. L.; Le, M.; Lin, H. Y.; Luan, J.; Liu, G. C.; Sui, F. F.; Chang, Z. H. Assembly, structures, photophysical, properties and photocatalytic activities of a series of coordination polymers constructed from semi-rigid bis-pyridyl-bisamide and benzenetricarboxylic acid.2015, 2, 373-383.

    (10) Hou, Y. L.; Sun, W. Y.; Zhou, X. P.; Wang, J. H.; Li, D. A copper(I)/copper(II)-salen coordination polymer as a bimetallic catalyst for three-component Strecker reactions and degradation of organic dyes.2014, 50, 2295-2297.

    (11) Liu, L.; Wu, D. Q.; Zhao, B.; Han, X.; Wu, J.; Hou, H. W.; Fan, Y. T. Copper(II) coordination polymers: tunable structures and a different activation effect of hydrogen peroxide for the degradation of methyl orange under visible light irradiation.2015, 44, 1406-1411.

    (12) Li, K.; Lv, X. X.; Shi, L. L.; Liu, L.; Li, B. L.; Wu, B. A new strategy to obtain tetranuclear cobalt(II) metal-organic frameworks based on the [Co4(3-OH)2]cluster: synthesis, structures and properties.2016, 45, 15078-15088.

    (13) Stublla, A.; Potvin, P. G. Ruthenium(II) complexes of carboxylated terpyridines and dipyrazinylpyridines.2010, 3040-3050.

    (14) Sheldrick, G. M.University of G?ttingen, Germany 1996.

    (15) Sheldrick, G. M.. University of G?ttingen, Germany 1997.

    (16) Sheldrick, G. M.t. University of G?ttingen, Germany 1997.

    (17) Addison, A. W.; Rao, T. N.; Reedijk, J.; Rijn, J. V.; Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(-methylbenzimidazol-2′-yl)-2,6-dithiaheptane] copper(II) perchlorate.1984, 1349-1356.

    (18) Nakamoto, K.,edWiley Press, New York 1986.

    (19) Han, L. J.; Kong, Y. J.; Yan, T. J.; Fan, L. T.; Zhang, Q.; Zhao, H. J.; Zheng, H. G. A new five-coordinated copper compound for efficient degradation of methyl orange and Congo red in the absence of UV-visible radiation.2016, 45, 18566-18571.

    (20) Hussain, N.; Bhardwaj, V. K. The influence of different coordination environment in one-dimensional Cu(II) coordination polymers on photo-degradation of organic dyes.2016, 45, 7697-7707.

    (21) Xu, B.; Chen, Z. M.; Zhi, P. F.; Liu, G. N.; Li, C. C. Structure and photocatalytic property of a new Cu(II) based framework with jsm topology.2015, 52, 9-11.

    27 September 2017;

    20 December 2017 (CCDC 1573596 for 1 and 1573597 for 2)

    ① This work was supported by NNSFC (No. 21671149)

    . Zhao Xiao-Jun, born in 1955, professor, majoring in coordination chemistry. E-mail: xiaojun_zhao15@163.com

    10.14102/j.cnki.0254-5861.2011-1834

    午夜日韩欧美国产| 久久久久久久午夜电影| 国语自产精品视频在线第100页| 中出人妻视频一区二区| 深爱激情五月婷婷| 国产伦人伦偷精品视频| 超碰av人人做人人爽久久 | tocl精华| 日韩欧美国产在线观看| 亚洲狠狠婷婷综合久久图片| 高清日韩中文字幕在线| 久久人人精品亚洲av| 动漫黄色视频在线观看| 久久国产精品影院| 亚洲av二区三区四区| 老司机深夜福利视频在线观看| a级一级毛片免费在线观看| 国产av麻豆久久久久久久| 亚洲天堂国产精品一区在线| 蜜桃久久精品国产亚洲av| 一卡2卡三卡四卡精品乱码亚洲| 日本黄色片子视频| 午夜精品在线福利| 一个人观看的视频www高清免费观看| 岛国在线免费视频观看| 午夜亚洲福利在线播放| 欧美性猛交黑人性爽| 久久精品国产清高在天天线| 3wmmmm亚洲av在线观看| 午夜福利在线在线| 午夜福利在线观看免费完整高清在 | 麻豆国产av国片精品| 欧美xxxx黑人xx丫x性爽| 最近最新中文字幕大全免费视频| 听说在线观看完整版免费高清| 久久久久久大精品| 国产毛片a区久久久久| 天堂影院成人在线观看| 免费在线观看亚洲国产| 国产真实乱freesex| 久久午夜亚洲精品久久| 嫁个100分男人电影在线观看| 欧美成人一区二区免费高清观看| 亚洲五月天丁香| 久久6这里有精品| 国产精品自产拍在线观看55亚洲| 精品乱码久久久久久99久播| 亚洲国产精品999在线| 91字幕亚洲| 我的老师免费观看完整版| 亚洲一区二区三区色噜噜| 一级黄色大片毛片| 免费无遮挡裸体视频| 国产伦在线观看视频一区| 99久久精品一区二区三区| 99热这里只有是精品50| 亚洲第一电影网av| 色综合欧美亚洲国产小说| 三级毛片av免费| 免费在线观看亚洲国产| 99热6这里只有精品| 无人区码免费观看不卡| 国内精品久久久久久久电影| 亚洲第一欧美日韩一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 老汉色∧v一级毛片| 黄色日韩在线| 国产精品国产高清国产av| 搡老熟女国产l中国老女人| 国产av麻豆久久久久久久| 一级毛片女人18水好多| 内地一区二区视频在线| 三级毛片av免费| 国产中年淑女户外野战色| 国产亚洲精品久久久com| 男女视频在线观看网站免费| 国产黄色小视频在线观看| 亚洲av日韩精品久久久久久密| 有码 亚洲区| 久久久久久国产a免费观看| 亚洲狠狠婷婷综合久久图片| 亚洲国产精品成人综合色| 日本 欧美在线| 女人十人毛片免费观看3o分钟| 精品久久久久久久末码| 亚洲五月婷婷丁香| 国产淫片久久久久久久久 | 国产精品一区二区三区四区久久| or卡值多少钱| 我要搜黄色片| 色播亚洲综合网| 欧美黑人巨大hd| 欧美成人一区二区免费高清观看| 日韩亚洲欧美综合| 首页视频小说图片口味搜索| 观看免费一级毛片| 午夜久久久久精精品| 亚洲avbb在线观看| 最新美女视频免费是黄的| 夜夜躁狠狠躁天天躁| 国产欧美日韩精品一区二区| 色综合婷婷激情| 香蕉久久夜色| 国产黄片美女视频| 999久久久精品免费观看国产| 精品电影一区二区在线| 午夜福利18| 一区福利在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产私拍福利视频在线观看| 欧美一区二区国产精品久久精品| 免费看美女性在线毛片视频| 亚洲av一区综合| 一个人观看的视频www高清免费观看| 国模一区二区三区四区视频| 亚洲av免费高清在线观看| 97超级碰碰碰精品色视频在线观看| 蜜桃久久精品国产亚洲av| 中文字幕久久专区| av专区在线播放| 小蜜桃在线观看免费完整版高清| 国产熟女xx| 少妇熟女aⅴ在线视频| 老熟妇乱子伦视频在线观看| 在线观看免费视频日本深夜| 精品人妻偷拍中文字幕| 村上凉子中文字幕在线| 丰满的人妻完整版| 亚洲av成人av| 国内毛片毛片毛片毛片毛片| 欧美zozozo另类| tocl精华| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站在线播| 一个人观看的视频www高清免费观看| 欧美日韩中文字幕国产精品一区二区三区| 俄罗斯特黄特色一大片| 成人午夜高清在线视频| av片东京热男人的天堂| 高潮久久久久久久久久久不卡| 波多野结衣巨乳人妻| 国产探花极品一区二区| 国产精品亚洲一级av第二区| 大型黄色视频在线免费观看| 亚洲国产精品sss在线观看| av欧美777| 黄片小视频在线播放| 久久精品综合一区二区三区| 亚洲18禁久久av| 欧美日韩中文字幕国产精品一区二区三区| 91在线精品国自产拍蜜月 | 99国产精品一区二区三区| 99久久九九国产精品国产免费| 国产精品久久久久久久电影 | 无人区码免费观看不卡| 精品午夜福利视频在线观看一区| 男女那种视频在线观看| 日韩欧美在线乱码| 欧美最新免费一区二区三区 | 香蕉久久夜色| 99国产精品一区二区三区| 久久精品91蜜桃| 国产精品久久久久久亚洲av鲁大| 成人三级黄色视频| 五月玫瑰六月丁香| 岛国在线免费视频观看| 午夜精品在线福利| 一级黄片播放器| 老司机午夜福利在线观看视频| 久久国产精品人妻蜜桃| 波多野结衣巨乳人妻| 三级男女做爰猛烈吃奶摸视频| 午夜福利高清视频| 国产真人三级小视频在线观看| 免费av毛片视频| 亚洲精品国产精品久久久不卡| 母亲3免费完整高清在线观看| 一进一出抽搐动态| 内地一区二区视频在线| 一级毛片高清免费大全| 一级黄色大片毛片| 日本五十路高清| 国产欧美日韩一区二区三| 综合色av麻豆| 亚洲精华国产精华精| 亚洲成人久久爱视频| 中文在线观看免费www的网站| 亚洲一区二区三区不卡视频| 在线天堂最新版资源| 亚洲自拍偷在线| 有码 亚洲区| 亚洲五月天丁香| 色视频www国产| 亚洲av成人精品一区久久| 757午夜福利合集在线观看| 嫩草影视91久久| 国产精品一及| 成人午夜高清在线视频| 国产成人av教育| 国产aⅴ精品一区二区三区波| 久久精品亚洲精品国产色婷小说| 日本黄色视频三级网站网址| 久久婷婷人人爽人人干人人爱| 舔av片在线| 午夜老司机福利剧场| 性欧美人与动物交配| av专区在线播放| 免费av不卡在线播放| 欧美av亚洲av综合av国产av| 国产精品日韩av在线免费观看| 桃红色精品国产亚洲av| 99久久综合精品五月天人人| 怎么达到女性高潮| 黄色成人免费大全| 无遮挡黄片免费观看| 国产精品三级大全| 欧美成人一区二区免费高清观看| 美女高潮的动态| 啦啦啦韩国在线观看视频| 亚洲av五月六月丁香网| 两个人的视频大全免费| 久久亚洲精品不卡| 久久精品综合一区二区三区| 黄片大片在线免费观看| 日韩欧美在线二视频| 国产成+人综合+亚洲专区| 人妻夜夜爽99麻豆av| 午夜免费观看网址| 国产成年人精品一区二区| 88av欧美| 91久久精品国产一区二区成人 | 看免费av毛片| 夜夜看夜夜爽夜夜摸| 久久精品夜夜夜夜夜久久蜜豆| 欧美性猛交╳xxx乱大交人| 午夜精品在线福利| 精品久久久久久成人av| av专区在线播放| 欧美三级亚洲精品| 亚洲片人在线观看| av在线天堂中文字幕| 亚洲国产色片| 久久久久精品国产欧美久久久| 在线十欧美十亚洲十日本专区| 国内精品美女久久久久久| 国内揄拍国产精品人妻在线| 日本免费a在线| 热99re8久久精品国产| 成人欧美大片| 在线天堂最新版资源| 久久亚洲精品不卡| 国内毛片毛片毛片毛片毛片| 一进一出抽搐动态| 国内精品久久久久精免费| 亚洲精品一卡2卡三卡4卡5卡| 午夜a级毛片| 制服丝袜大香蕉在线| 黄色片一级片一级黄色片| 免费在线观看日本一区| 亚洲色图av天堂| 亚洲美女黄片视频| 天天添夜夜摸| 亚洲欧美激情综合另类| 国产欧美日韩精品一区二区| 麻豆成人av在线观看| 色噜噜av男人的天堂激情| 国产一区二区激情短视频| 日韩高清综合在线| 色综合欧美亚洲国产小说| 午夜日韩欧美国产| 色哟哟哟哟哟哟| 美女黄网站色视频| 欧美黑人巨大hd| 欧美极品一区二区三区四区| 91九色精品人成在线观看| 91字幕亚洲| 国产一区二区亚洲精品在线观看| 亚洲最大成人手机在线| 尤物成人国产欧美一区二区三区| 伊人久久精品亚洲午夜| 免费看a级黄色片| 国产精品日韩av在线免费观看| 亚洲欧美日韩高清专用| 黄色丝袜av网址大全| 国产伦一二天堂av在线观看| 亚洲精品在线观看二区| 欧美黑人欧美精品刺激| 国产精品久久视频播放| 色尼玛亚洲综合影院| 白带黄色成豆腐渣| 国产精品香港三级国产av潘金莲| 俄罗斯特黄特色一大片| 国产成人aa在线观看| 看片在线看免费视频| 亚洲 欧美 日韩 在线 免费| 国产蜜桃级精品一区二区三区| 欧美日韩乱码在线| 欧美色欧美亚洲另类二区| 中文字幕高清在线视频| 欧美日韩黄片免| 高清日韩中文字幕在线| 国产成人影院久久av| 国产单亲对白刺激| 欧美乱码精品一区二区三区| 日韩精品青青久久久久久| 久久久久久国产a免费观看| 18禁黄网站禁片午夜丰满| 亚洲在线自拍视频| 国产高清视频在线播放一区| 少妇的逼好多水| 精品一区二区三区视频在线 | 欧美av亚洲av综合av国产av| 九九热线精品视视频播放| 熟女人妻精品中文字幕| 高潮久久久久久久久久久不卡| 人妻夜夜爽99麻豆av| 亚洲精品美女久久久久99蜜臀| 99riav亚洲国产免费| 国产在视频线在精品| 日本成人三级电影网站| 精品国产美女av久久久久小说| 免费人成视频x8x8入口观看| 久久久久精品国产欧美久久久| 日本黄大片高清| 成人特级av手机在线观看| 久久性视频一级片| 亚洲在线观看片| 亚洲精品在线美女| 久久精品影院6| 黄色片一级片一级黄色片| 国产亚洲精品一区二区www| 久久久久亚洲av毛片大全| 一个人免费在线观看的高清视频| 国产日本99.免费观看| 欧美日韩国产亚洲二区| 精品人妻1区二区| 亚洲欧美日韩卡通动漫| 亚洲avbb在线观看| 国产精品1区2区在线观看.| 草草在线视频免费看| 嫩草影院入口| xxx96com| 日韩人妻高清精品专区| 极品教师在线免费播放| 又爽又黄无遮挡网站| 国产免费男女视频| 国产成人系列免费观看| 亚洲七黄色美女视频| 国产精品 欧美亚洲| av天堂中文字幕网| 国产91精品成人一区二区三区| 一级作爱视频免费观看| 搡老熟女国产l中国老女人| 人人妻人人澡欧美一区二区| 成人午夜高清在线视频| 蜜桃久久精品国产亚洲av| 女同久久另类99精品国产91| 99精品欧美一区二区三区四区| 操出白浆在线播放| 国产亚洲精品av在线| 亚洲精品日韩av片在线观看 | 欧美日韩福利视频一区二区| 国产亚洲精品一区二区www| 亚洲精品日韩av片在线观看 | 法律面前人人平等表现在哪些方面| 亚洲色图av天堂| 久久精品国产清高在天天线| 亚洲欧美日韩高清专用| 国产欧美日韩精品一区二区| 成人三级黄色视频| 国内毛片毛片毛片毛片毛片| 在线观看免费午夜福利视频| 精品日产1卡2卡| 国产精品久久久人人做人人爽| aaaaa片日本免费| 日韩欧美国产一区二区入口| 亚洲中文日韩欧美视频| 又黄又粗又硬又大视频| 日韩成人在线观看一区二区三区| 国产黄色小视频在线观看| 国产精品永久免费网站| 国产99白浆流出| 淫秽高清视频在线观看| 日韩欧美在线二视频| 亚洲一区二区三区色噜噜| 欧美性猛交╳xxx乱大交人| 欧美日韩亚洲国产一区二区在线观看| av福利片在线观看| 日本精品一区二区三区蜜桃| 两人在一起打扑克的视频| www日本在线高清视频| 色吧在线观看| 在线观看日韩欧美| 白带黄色成豆腐渣| 有码 亚洲区| 最新在线观看一区二区三区| 变态另类成人亚洲欧美熟女| 深爱激情五月婷婷| 欧美一级a爱片免费观看看| 3wmmmm亚洲av在线观看| 18禁黄网站禁片午夜丰满| 欧美日韩瑟瑟在线播放| 免费电影在线观看免费观看| 操出白浆在线播放| 色老头精品视频在线观看| 美女黄网站色视频| 两人在一起打扑克的视频| 欧美日韩综合久久久久久 | x7x7x7水蜜桃| 欧美最新免费一区二区三区 | 波多野结衣高清无吗| 亚洲国产精品成人综合色| 啦啦啦观看免费观看视频高清| 国产成人系列免费观看| 午夜福利视频1000在线观看| 香蕉久久夜色| 久久久久久久久大av| 日本撒尿小便嘘嘘汇集6| 国产精品98久久久久久宅男小说| 丰满乱子伦码专区| 色尼玛亚洲综合影院| 亚洲成人久久性| 成人午夜高清在线视频| 免费在线观看日本一区| 一级a爱片免费观看的视频| 1024手机看黄色片| 国产亚洲精品一区二区www| 丰满的人妻完整版| 精品无人区乱码1区二区| 老熟妇乱子伦视频在线观看| 国产精品日韩av在线免费观看| 国产v大片淫在线免费观看| 人妻夜夜爽99麻豆av| 最近最新中文字幕大全免费视频| 亚洲在线观看片| 亚洲精品日韩av片在线观看 | 亚洲第一电影网av| 不卡一级毛片| a级毛片a级免费在线| 精品久久久久久成人av| 中文字幕av成人在线电影| 男女之事视频高清在线观看| 中文字幕人妻熟人妻熟丝袜美 | 久久午夜亚洲精品久久| 国产精品亚洲美女久久久| 香蕉av资源在线| 在线免费观看不下载黄p国产 | 亚洲欧美一区二区三区黑人| 国产综合懂色| 欧美av亚洲av综合av国产av| 久久性视频一级片| 两性午夜刺激爽爽歪歪视频在线观看| 夜夜看夜夜爽夜夜摸| 久久久久久大精品| 最近最新中文字幕大全电影3| 在线视频色国产色| av女优亚洲男人天堂| 亚洲av五月六月丁香网| 国产成人福利小说| 精品日产1卡2卡| 嫩草影视91久久| 日本 欧美在线| 99久久精品一区二区三区| 国产一区二区在线观看日韩 | 国产成人啪精品午夜网站| 精品人妻1区二区| 俺也久久电影网| 日本熟妇午夜| 国产亚洲欧美在线一区二区| 中文在线观看免费www的网站| 久久人人精品亚洲av| 国产精品嫩草影院av在线观看 | 美女免费视频网站| 在线观看日韩欧美| 九九在线视频观看精品| 亚洲无线在线观看| 黄色丝袜av网址大全| 精品久久久久久,| 可以在线观看的亚洲视频| 国产亚洲精品久久久久久毛片| 国产黄色小视频在线观看| a级一级毛片免费在线观看| 国产私拍福利视频在线观看| 亚洲第一欧美日韩一区二区三区| 大型黄色视频在线免费观看| 日韩高清综合在线| 亚洲国产精品合色在线| 国产一区二区三区在线臀色熟女| 国产成人a区在线观看| 一级a爱片免费观看的视频| 精品无人区乱码1区二区| 国产99白浆流出| 色精品久久人妻99蜜桃| 两性午夜刺激爽爽歪歪视频在线观看| 欧美一区二区国产精品久久精品| 国产aⅴ精品一区二区三区波| 3wmmmm亚洲av在线观看| 国产亚洲欧美98| 老熟妇仑乱视频hdxx| a在线观看视频网站| 又黄又爽又免费观看的视频| 天堂√8在线中文| a级毛片a级免费在线| 亚洲人成网站高清观看| 搡女人真爽免费视频火全软件 | 午夜福利成人在线免费观看| 久久欧美精品欧美久久欧美| 黄片大片在线免费观看| 欧美不卡视频在线免费观看| 俄罗斯特黄特色一大片| 国产伦精品一区二区三区四那| 欧美黑人欧美精品刺激| 国产综合懂色| 久久99热这里只有精品18| 成人亚洲精品av一区二区| 村上凉子中文字幕在线| 51国产日韩欧美| 12—13女人毛片做爰片一| 久久久色成人| 在线天堂最新版资源| 嫩草影院入口| 久久久久国产精品人妻aⅴ院| 乱人视频在线观看| 小蜜桃在线观看免费完整版高清| 天堂√8在线中文| 久久久精品大字幕| 久久精品国产清高在天天线| svipshipincom国产片| 少妇丰满av| 国产v大片淫在线免费观看| 一级a爱片免费观看的视频| 非洲黑人性xxxx精品又粗又长| 国产高潮美女av| 亚洲国产色片| 国产极品精品免费视频能看的| 日韩高清综合在线| 国产精品1区2区在线观看.| 色播亚洲综合网| 在线观看舔阴道视频| 99在线人妻在线中文字幕| 国产在线精品亚洲第一网站| 国产精品免费一区二区三区在线| 色尼玛亚洲综合影院| avwww免费| 成人鲁丝片一二三区免费| 日韩精品青青久久久久久| bbb黄色大片| 亚洲 国产 在线| 毛片女人毛片| 亚洲成人免费电影在线观看| 色精品久久人妻99蜜桃| 日本熟妇午夜| 18禁美女被吸乳视频| 国产成+人综合+亚洲专区| 欧美一区二区亚洲| 亚洲一区二区三区不卡视频| 国产精品自产拍在线观看55亚洲| 欧美最黄视频在线播放免费| 一二三四社区在线视频社区8| xxx96com| 在线观看一区二区三区| 精品日产1卡2卡| 午夜a级毛片| 99久久综合精品五月天人人| 亚洲成人中文字幕在线播放| 女人被狂操c到高潮| 午夜影院日韩av| 国产单亲对白刺激| 日韩 欧美 亚洲 中文字幕| 91麻豆av在线| 国产一区二区在线观看日韩 | 色综合婷婷激情| 国产一区二区三区在线臀色熟女| 日韩欧美在线乱码| 国产精品精品国产色婷婷| 亚洲一区二区三区不卡视频| 免费观看人在逋| 亚洲欧美日韩东京热| 母亲3免费完整高清在线观看| 变态另类成人亚洲欧美熟女| 日韩欧美精品免费久久 | 亚洲电影在线观看av| 午夜福利视频1000在线观看| 久久精品91蜜桃| tocl精华| 精品电影一区二区在线| bbb黄色大片| 国产精品久久久久久亚洲av鲁大| 97超级碰碰碰精品色视频在线观看| 男女午夜视频在线观看| 两人在一起打扑克的视频| 97人妻精品一区二区三区麻豆| 欧美成人免费av一区二区三区| 一a级毛片在线观看| 亚洲不卡免费看| www.色视频.com| 国产精品一区二区免费欧美| 国产av不卡久久| 亚洲中文日韩欧美视频| 俄罗斯特黄特色一大片| 成人高潮视频无遮挡免费网站| 亚洲aⅴ乱码一区二区在线播放| 一级黄色大片毛片| 给我免费播放毛片高清在线观看| 12—13女人毛片做爰片一| 女警被强在线播放| 老汉色∧v一级毛片| 中文字幕精品亚洲无线码一区| 日韩欧美精品v在线| 蜜桃久久精品国产亚洲av| 国产91精品成人一区二区三区| 啦啦啦观看免费观看视频高清| 久久久国产精品麻豆| 国产亚洲精品一区二区www| 嫩草影院入口|