• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    4-Pyrazolecarboxylic Acid-based MOF-5 Analogs Framework with High Adsorption and Separation of Light Hydrocarbons①

    2018-06-20 12:00:16FUHongRuYANLiBinXIETao
    結(jié)構(gòu)化學(xué) 2018年5期

    FU Hong-Ru YAN Li-Bin XIE Tao

    ?

    4-Pyrazolecarboxylic Acid-based MOF-5 Analogs Framework with High Adsorption and Separation of Light Hydrocarbons①

    FU Hong-Ru②YAN Li-Bin XIE Tao

    (471934)

    One porous framework [Zn4(4-O)(4-4-pca)3]·2(DEF)·2(H2O) (1, 4-H2Pca = 4-pyrazolecarboxylic acid, DEF = N,N-diethylformamide) with MOF-5 type topology has been synthesized solvothermally. Significantly, this compound exhibits high capacity of C2 hydrocarbons. C2H2capacity could compare with the highest value of the reported MOFs, far exceeding that of MOF-5, as well as the high selectivity adsorption of C2over C1.

    4-pyrazolecarboxylic acid, MOF-5-type, light hydrocarbons, adsorption and separation;

    1 INTRODUCTION

    Light hydrocarbons are great important raw materials for chemical industry, energy security and global climate. The methane as the principal com- ponent of natural gas is the priori alternative fuel. C2 hydrocarbons (C2) play a crucial role in the Indus- trial process. However, it’s necessary to develop more efficient separation approach to purify paraffin, adsorption-based storage method in porous materials, which is considered to be very promising[1], andmaterials that can preferentially capture C2H2and CO2over CH4are very desirable.

    Compared with traditional porous materials such as zeolites and activated carbon, metal-organic frameworks (MOFs) as a class of crystal materials with ultra-high pore volume and surface area[2, 3]and outstanding tunability[4-8]have shown great advan- tages for gas storage and separation[9, 10]. Recently, MOFs have been regarded as potential materials for the adsorption and purification of light hydrocarbons owing to the tunable microenvironment of the pore and surface. Chen and coworkers have done a lot of pioneering studies on metal-organic frameworks for the purification and storage of C1, C2 and C3 light hydrocarbons[11, 12]. Li group revealed the light hydrocarbon-induced structure transformation of flexible MOFs[13, 14]. In addition, some parts of JLU and FIR series were reported by Liu and Zhang groups, respectively[15-18].

    Efficient gas adsorption and separation of MOFs depend on high surface areas, narrow pore width distributions and chemical functionality[19]. Ultramic- roporous materials (pore width < 0.7 nm) display remarkableperformance as separating agents, and feature the advantageous properties in close relationship with the intrinsic characteristics ofthe gas molecules (such as size, shape and chemical/e- lectronicproperties), which could dramatically enhance the adsorption of gas species[20], thus todesign and construct porous materials with the pore size near the ultramicropore is an efficient approach to improve the capacity of small gas molecules. Selecting the rigid linker with smaller scale is the straightest and simplest method to synthesize ultramicroporous MOFs.

    Here, our synthetic strategy focuses on the small linker 4-pyrazolecarboxylic acid-based metal-organic frameworks. The compound [Zn4(4-O)(4-4- pca)3]·2(DEF)·2(H2O) was synthesized solvother- mally. This compoundexhibits high capacity of C2as well as high selectivity of C2over CH4.

    2 EXPERIMENTAL

    2. 1 Materials and physical measurements

    All commercially available solvents and chemicals were of analytical grade. Elemental analyses for carbon, hydrogen, and nitrogen atoms were performed on a Vario EL III elemental analyzer (Elementar, Germany). The crystal was determined on a Bruker SMART APEX II CCD diffractometer (Madison, WI, USA) equipped with a graphite-mo- nochromatized Moradiation (= 0.71073 ?). Gas adsorption was measured using an ASAP 2020 instrument (Micromeritics, USA). Powder X-ray diffraction(PXRD) pattern was recorded on a RigakuD/Max-2500 diffractometer at 40 kV and 30 mA with aCu-target tube and a graphite-mono-chromator. Thermalgravimetric analysis (TGA) was conducted on aNETZSCH STA 449F3 instrument in flowing N2ata heating rate of 5 ℃/min.

    2. 2 Synthesis of the title complex

    [Zn4(4-O)(4-4-pca)3]·2(DEF)·2(H2O) (1): A mixture of 4-H2Pca (28.0 mg, 0.25 mmol) and Zn(NO3)2·6H2O (90.0 mg, 0.3 mmol) was dissolved in DEF (4 mL), CH3CN (1 mL) and HNO3(5 drops, 0.1 M in H-2O) in a screw capped vial. The vial was capped and placed in an oven at 100 ℃ for 36 h. Colorless block crystals (0.5 mg, 37%) were obtained. Elemental analysis calcd. (%) for 1 (Zn4O11C22H32N8): C, 31.47; H, 3.81; N, 13.35. Found: C, 29.57; H, 3.83; N, 13.01.

    2. 3 Crystal structure determination

    Single-crystal X-ray diffraction analysis of the complex was carried out on a Bruker SMART APEX II CCD diffractometer (Madison, WI, USA) equip- ped with a graphite-monochromatized Moradia- tion (= 0.71073 ?) by using the-scan mode at room temperature. The structure was solved by direct methods with SHELXS-2014[21]. The hydrogen atoms were assigned with common isotropic displa- cement factors and included in the final refinement by use of geometrical restrains. A full-matrix least-squares refinement on2was carried out using SHELXL-2014. The disorder guests were removed with SQUEEZE instructionby PLATON soft[22]. The selected bond lengths and bond angles are listed in Table 1.

    Complex 1 crystallizes in cubic with space group-3,= 20.1349(4),= 20.1349(4),= 20.1349(4) ?,= 8163.0(3) ?3,= 2,D= 0.9792g/m3,(000) = 2320 and= 2.882mm-1. A total of 1797 reflections were obtained and 433 unique (int= 0.0228) were collected in the range of 3.7880≤≤67.40o by anscan mode, of which 6488 reflections with> 2() were used in the succeeding refinement. The final= 0.0403,= 0.1603 (= 1/[2(F2) + (0.1068)2+ 33.0000], where= (F2+ 2F2)/3), (Δ)max= 0.6263, (Δ)min= –0.8043 e/?3, (Δ/)max= 0.0002 and= 1.0754.

    Table 1. Selected Bond Distances (nm) and Bond Angles (o) for Compound 1

    Symmetry transformations used to generate the equivalent atoms: #1: 1/2–,,1/2–;#2:,1/2–,1/2–; #3: 1/2–,1/2–,

    3 RESULTS AND DISCUSSION

    3. 1 Structural description of 1

    Compound 1 was synthesized according to the previous reports[23]. It crystallizes in a 3structure with cubic-3space group. As shown in Fig. 1a, the coordination model of nitrogen atom is identical to that of oxygen atom, so that the asymmetry unit consists of two similar building units of Zn4O and Zn-4N, respectively. Thus, each Zn4O cluster forms an octahedral Zn4O(CO2)6secondary building unit (SBU) through edge-bridging coordination of six carboxylate groups, and each Zn-4N cluster forms an octahedral Zn4O(pz)3SBU through edge-bridging coordination of six pyrazolates. The SBUs connect each other to form the non-interpenetrated frame- work, formulated as [Zn4(4-O)(4-4-pca)3]. Totally, the structure of 1 is analogous to the MOF-5 system, with the cross-section windows of ~7.5×7.5 ?2and a void volume of 63.5 % (5291.4 ?3/ 8092.8 ?3, accessible free volume/unit cell volume calculated by PLATON analyses[22]) after removing solvent guests and framework hydrogen, indicating that the size of window is nearly close to the ultramicropore. Comparably, the total unit cell volume of MOF-5 reaches up to 17349.4 ?3with a 76.8% void volume and the 11.5×11.5 ?2open window, which is attributed to the much longer-phthalic acid[24].

    Fig. 1. View of the crystal structure of 1. (a) Coordination environment of 1. (b) 3D structure in the direction ofaxis

    3. 2 PXRD and thermal properties

    In order to check the phase purity of 1, the X-ray powder diffraction (XRPD) pattern was checked at room temperature. As shown in Fig. 2, the peak positions of the simulated and experimental XRPD patterns are in agreement with each other, demon- strating the good phase purity of 1. Also, the XRPD peaks of the activated sample match well with the simulated shape, indicating the sample still maintains the crystalline state.

    Fig. 2. XRPD patterns for complex 1: the as-synthesized patterns,the activated isorthem andthe simulated based on X-ray single-crystal data

    Fig. 3. TGA plots of 1 and the activated sample

    TG curve for complex 1 is shown in Fig. 3. The TG curve of 1 shows the weight loss (19.2%) at 30~100℃, corresponding to the removal of a free water molecule and the guest organic molecules (calcd.: 20%). The framework keeps stable in the range of 100~400 ℃, then the framework collapses with rapid weight loss. In addition, TG analyses of activated frameworks were performed, and theplateaus range from 40 to 400 ℃ shows well that the initialguest molecules werealmost completely exchanged by methanol, andmethanol molecules can be completely removed by thethermal/vacuum activation at 60℃. The results of theeffective activation laid the foundation for gas sorption.

    3. 3 Adsorption properties

    The rigidity of the porous framework 1 as well as the high porosity was assessed by solid-gas adsorption experiments with N2and CO2as probe molecule. The N2adsorption isotherms show type-I behaviors, with BET speci?c surface areas of 1138.8 m2×g-1(Fig. 4). The CO2uptakes for 1 are 110.5 and 64.6 cm3×g-1at 273 and 294 K, respectively.

    Fig. 4. N2sorption isotherms of compound 1

    The adsorption of light hydrocarbons was carried out at 273 K and room temperature (Fig. 5). Porous material 1 exhibits notable adsorption capacities of C2H6, C2H4and C2H2in the following order: C2H2?C2H6? C2H4? CH4. Particularly, the C2H2capacity of 1 is up to 182.1 and 130.6 cm3×g-1at 273 K and room temperature, respectively. Although the surface area in 1 is lower than that of UMCM-150 (3330 m2×g-1)[25], ZIF-8 (1758 m2×g-1)[26], the amount of absorbed C2H2in 1 is higher than the C2H2capacity of UMCM-150 (129 cm3×g-1at 296 K) and ZIF-8 (25 cm3×g-1at 296 K). Furthermore, this value is comparable with that of NOTT-102 (146 cm3×g-1at 296 K)[27].These results mean that compound 1 shows the top adsorption of light hydrocarbons. It is worthy of mention that the hydrocarbon adsorption capacities of 1 far exceeded that of MOF-5 (C2H2, 26 cm3×g-1at 295 K)[25]. Compared to the pore scale of MOF-5 (11.5 × 11.5 × 11.5 ?3), the dimension of pore is only about 7.5 × 7.5 × 7.5 ?3, which is relatively close to the dynamic diameter of small hydrocarbons. The smaller and confined channels enhance the interactions with small hydrocarbons, and further capture the small gases[28].

    To evaluate the gas separation ability of 1, the adsorption selectivity of C2/C1and CO2/CH4(equimolarbinary mixtures) was calculated by the ideal adsorption solution theory (IAST)[29].IASTis a method for predicting the adsorption equilibria for components in a mixture using only single-com- ponent adsorptiondata at the same temperature and on the same adsorbent. As shown in Fig. 5, C2H2/CH4adsorption selectivity of 1 is 13.3 and 16.2 at 297 and 273 K, respectively. The separation valve of C2H2/CH4is higher than that of ZJU-30 (9.58, 298 K)[30]and ZJU-48a(7.5, 296 K)[31]. Moreover, the selectivity value of C2H6/CH4of 1 exceeds 11.5 (Mg-MOF-74)[25]and 12 (NOTT-101)[25]at room temperature. Such high selectivity further confirms that this MOF has great potential in the separation of light hydrocarbons.

    Fig.5. CO2, CH4, C2H2, C2H4and C2H6sorption isotherms of compound 1:(a) at 297 K, (b) at 273 K. IAST-predicted adsorption selectivity: (c) at 297 K, (d) at 273 K

    4 CONCLUSION

    In summary, one porous metal-organic framework was successfully synthesized based on 4-carboxy- pyrazole. As expected, this porous material exhibits high capacity of light hydrocarbons. The C2H2uptake of 1 is up to 180.1 at 273 K and 1 bar. More valuably, 1 shows high-efficient selectivity for C2 over CH4. These results indicate this porous material could act as a promising platform for the fuel gas purification and the separation of light hydrocarbons.

    (1) Herm, Z. R.; Wiers, B. M.; Mason, J. A.; van Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishna, R.; Long, J. R. Separation of hexane isomers in a metal-organic framework with triangular channels.2013, 340, 960–964.

    (2) Sheng, D.; Dan, W. Y.; Luo, G. X.; Deng, M. A new coordination polymer built of 4-(5H-tetrazol)-benzoic acid and 3,5-dimethyl-1H,1,2,4-triazole showing a rarely observed (3,5)-connected lhh topology: synthesis, structure, CO2 adsorption and luminescent property.2016, 2, 264–270.

    (3) Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma. L. F. Tetraphenylethylene immobilized metal-organic frameworks: highly sensitive fluorescent sensor for the detection of Cr2O72–and nitroaromatic explosives.2017, 17, 6041–6048.

    (4) Qiu, S. L.; Xue, M. S.; Zhu, G. Metal-organic framework membranes: from synthesis to separation application.2014,6116–6140.

    (5) Gu, C. S.; Hao, X.-M.; Zhang, Z. Y.; Ji, L. L.; Li, Y.; Song, W. D. Syntheses, structures and luminescent properties of the cadmium(II) complex with 3,3?-thiodipropionic acid.2017, 3, 478-484..

    (6) Lang, J. P.; Xu Q. F.; Yuan R. X.; Abrahams, B. F. [[WS4Cu4(4,4?-bpy)4][WS4Cu4I4(4,4?-bpy)2]] infinity – an unusual 3D porous coordination polymer formed from the preformed cluster [Et4N]4[WS4Cu4I6].2004, 43, 4741–4745.

    (7) Liu, D.; Lang, J. P.; Xu, Q. F.; Yuan, R. X.; Abrahams, B. F. Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal-to-single-crystal transformation.2011, 133, 11042–11045.

    Wu, H. Y.; Li, H. H.; Zhen, Z. R. Synthesis, crystal structure and characterization of the host-guest type UOF.–

    (9) Li, B.; Wen, H. M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Emerging multifunctional metal-organic framework materials.2016, 28, 8819–8860.

    (10) Chen, Z.; Weseliński, ?. J.; Adil, K.; Belmabkhout, Y.; Shkurenko, A.; Jiang, H.; Bhatt, P. M.; Guillerm, V.; Dauzon, E.; Xue, D. X.; O’Keeffe, M.; Eddaoudi, M. Applying the power of reticular chemistry to finding the missing alb-MOF platform based on the (6,12)-coordinated edge-transitive net.2017, 139, 3265–3274.

    (11) He, Y.; Zhang, Z.; Xiang, S.; Fronczek, F. R.; Krishna, R.; Chen, B. A microporous metal-organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperature.2012, 18, 613–619.

    (12) Xiang, S.; Zhou, W.; Zhang, Z.; Green, M. A.; Liu, Y.; Chen, B. Open metal sites within isostructural metal-organic frameworks for differential recognition of acetylene and extraordinarily high acetylene storage capacity at room temperature.2010, 49, 4615?4618.

    (13) Nijem, N.; Wu, H. H.; Canepa, P.; Marti, A.; Balkus, Jr. K. J.; Thonhauser, T.; Li, J.; Chabal, Y. J. Tuning the gate opening pressure of metal-organic frameworks (MOFs) for the selective separation of hydrocarbons.2012, 134, 15201–15204.

    (14) Li, K. H.; Olson, D. H.; Seidel, J.; Emge, T. J.; Gong, H. W.; Zeng, H. P.; Li, J. Zeolitic imidazolate frameworks for kinetic separation of propane and propene.2009, 131, 10368–10369.

    (15) Yao, S.; Sun, X.; Liu, B.; Krishna, R.; Li, G.; Huo, Q.; Liu, Y. Two heterovalent copper-organic frameworks with multiple secondary building units: high performance for gas adsorption and separation and I2sorption and release.2016, 4, 15081–15087.

    (16) Liu, B.; Yao, S.; Shi, C.; Li, G.; Huo, Q.; Liu, Y. Significant enhancement of gas uptake capacity and selectivity via the judicious increase of open metal sites and Lewis basic sites within two polyhedron-based metal-organic frameworks.2016, 52, 3223–3226.

    (17) He, Y. P.; Tan, Y. X.; Zhang, J. Tuning a layer to a pillared-layer metal-organic framework for adsorption and separation of light hydrocarbons.2013, 49, 11323–11325.

    (18) He, Y. P.; Tan, Y. X.; Zhang, J. Gas sorption, second-order nonlinear optics and luminescence properties of a multifunctional srs-type MOF built by tris((4-carboxyl)phenylduryl)amine.2015, 54, 6653–6656.

    (19) Nandasiria, M. I.; Jambovanea, S. R.; McGrailb, B. P.; Schaefc, H. T.; Nuneb, S. K. Adsorption, separation, and catalytic properties of densified metal-organic frameworks.2016, 311, 38–52.

    (20) Adil, K.; Belmabkhout,Y.; Pillai,R. S.; Cadiau,A.; Bhatt,P. M.; Assen,A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship.2017, 46,3402–3430.

    (21) Spek, A. L. Crystal structure refinement with SHELXL.2015, 71, 3–8.

    (22) Spek, A. L. Single-crystal structure validation with the program PLATON.2003, 36, 7?13.

    (23) Tu, B.; Pang, Q.; Wu, D.; Song, Y.; Weng, L.; Li, Q. Ordered vacancies and their chemistry in metal-organic frameworks.2014,14465-14471.

    (24) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A.?.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh porosity in metal-organic frameworks.2010, 329, 424–428.

    (25) He, Y.; Krishna, R.; Chen, B. L. Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons.2012, 5, 9107–9120.

    (26) Xiang, S.; Zhou, W.; Gallegos, J. M.; Liu, Y.; Chen, B. L. Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites.2009, 131, 12415–12419.

    (27) Lin, X.; Telepeni, I.; Blake, A. J.; Dailly, A.; Brown, C. M.; Simmons, J. M.; Zoppi, M.; Walker, G. S.; Thomas, K. M.; Mays, T. J.; Hubberstey, P.; Champness, N. R.; Schr?der, M. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites.2009, 131, 2159–2171.

    (28) Das, M. C.; Xu, H.; Xiang, S. C.; Zhang, Z. J.; Arman, H. D.; Qian, G. D.; Chen,B. L. Anew approach to construct a doubly interpenetrated microporous metal-organic framework of primitive cubic net for highly selective sorption of small hydrocarbon molecules.2011, 17, 7817–7822.

    (29) Chen, J.; Loo, L. S.; Wang, K. An ideal absorbed solution theory (IAST) study of adsorption equilibria of binary mixtures of methane and ethane on a templated carbon.2011, 56, 1209–1212.

    (30) Das, M. C.; Xu, H.; Wang, Z.; Srinivas, G.; Zhou, W.; Yue, Y. F.; Nesterov, V. N.; Qian, G. D.; Chen, B. L. A Zn4O-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orange.2011, 47, 11715–11717.

    (31) He, Y.; Zhang, Z.; Xiang, S.; Fronczek, F. R.; Krishna, R.; Chen, B. L. A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons.2012, 48, 6493–6495.

    25 September 2017;

    12 December 2017 (CCDC949597)

    ①This work was supported financially by the National Natural Science Foundation of China (No. 21601080), and the Key Scientific Research Projects of Higher Education of He'nan Province (16A150016)

    . E-mail: hongrufu2015@163.com

    10.14102/j.cnki.0254-5861.2011-1836

    av卡一久久| 国产日韩欧美在线精品| 久久人人爽av亚洲精品天堂| 男人操女人黄网站| 90打野战视频偷拍视频| 欧美成人午夜免费资源| 亚洲精品国产av成人精品| 色哟哟·www| 最近最新中文字幕大全免费视频 | 在线观看免费高清a一片| 国产精品一国产av| 制服丝袜香蕉在线| 亚洲精品美女久久久久99蜜臀 | 国产成人欧美| 免费观看无遮挡的男女| 国产激情久久老熟女| 亚洲av.av天堂| 天天躁夜夜躁狠狠久久av| 性高湖久久久久久久久免费观看| 国产爽快片一区二区三区| 黄网站色视频无遮挡免费观看| 国产国拍精品亚洲av在线观看| 又大又黄又爽视频免费| 亚洲第一区二区三区不卡| 亚洲图色成人| 少妇猛男粗大的猛烈进出视频| 成人毛片60女人毛片免费| 精品亚洲成a人片在线观看| 久久久久精品性色| 免费观看性生交大片5| 精品国产一区二区久久| 高清视频免费观看一区二区| 欧美精品亚洲一区二区| 中文字幕av电影在线播放| 中文字幕最新亚洲高清| 亚洲天堂av无毛| 99精国产麻豆久久婷婷| 亚洲av电影在线进入| 少妇精品久久久久久久| 青春草国产在线视频| 久久 成人 亚洲| av又黄又爽大尺度在线免费看| 我要看黄色一级片免费的| 欧美性感艳星| 久久久久久伊人网av| 日产精品乱码卡一卡2卡三| 99精国产麻豆久久婷婷| 性高湖久久久久久久久免费观看| 国产xxxxx性猛交| 久久久久久久国产电影| 美女国产高潮福利片在线看| 我的女老师完整版在线观看| 久久99蜜桃精品久久| 大香蕉久久成人网| 九草在线视频观看| 日韩视频在线欧美| 欧美3d第一页| av国产久精品久网站免费入址| 桃花免费在线播放| 一级毛片黄色毛片免费观看视频| 宅男免费午夜| 亚洲三级黄色毛片| 精品亚洲成国产av| 丝袜在线中文字幕| 热re99久久精品国产66热6| 亚洲精品成人av观看孕妇| 精品一区二区三区视频在线| 咕卡用的链子| 一级a做视频免费观看| 日本av免费视频播放| 制服丝袜香蕉在线| 岛国毛片在线播放| 精品视频人人做人人爽| 国语对白做爰xxxⅹ性视频网站| 激情五月婷婷亚洲| 少妇人妻久久综合中文| 成人亚洲精品一区在线观看| 熟女av电影| 欧美日韩亚洲高清精品| 麻豆乱淫一区二区| 欧美xxxx性猛交bbbb| 中文乱码字字幕精品一区二区三区| 欧美 亚洲 国产 日韩一| 午夜91福利影院| 精品久久久精品久久久| 好男人视频免费观看在线| 91精品伊人久久大香线蕉| 日韩成人av中文字幕在线观看| 亚洲精品久久午夜乱码| 黑人猛操日本美女一级片| 美女国产视频在线观看| 久久99蜜桃精品久久| 亚洲国产精品一区二区三区在线| 免费av不卡在线播放| 看十八女毛片水多多多| 成人免费观看视频高清| 伦理电影大哥的女人| 波野结衣二区三区在线| 一级毛片黄色毛片免费观看视频| 中文字幕人妻丝袜制服| 亚洲av欧美aⅴ国产| 国产一区二区激情短视频 | 日韩 亚洲 欧美在线| 久久午夜福利片| 欧美日韩国产mv在线观看视频| videossex国产| 大片免费播放器 马上看| 国产av国产精品国产| 精品久久久精品久久久| 免费日韩欧美在线观看| av不卡在线播放| 国产精品一区www在线观看| 国产精品久久久久久精品电影小说| 婷婷色av中文字幕| 成人18禁高潮啪啪吃奶动态图| 国产激情久久老熟女| 黄片播放在线免费| 少妇的逼好多水| 日本vs欧美在线观看视频| 成人手机av| 人成视频在线观看免费观看| 久久精品人人爽人人爽视色| 尾随美女入室| 国产色婷婷99| 超碰97精品在线观看| 国产精品久久久久成人av| 亚洲情色 制服丝袜| 成人国语在线视频| 91aial.com中文字幕在线观看| 人人妻人人澡人人爽人人夜夜| 天天影视国产精品| 国产精品久久久久久久久免| 男人爽女人下面视频在线观看| 久久国内精品自在自线图片| 91精品国产国语对白视频| 亚洲欧洲精品一区二区精品久久久 | 免费观看无遮挡的男女| 久久久久久伊人网av| 一区二区三区精品91| 欧美精品一区二区免费开放| 精品久久久精品久久久| 日本av手机在线免费观看| 精品第一国产精品| 国产精品国产三级国产av玫瑰| 亚洲美女黄色视频免费看| 亚洲一码二码三码区别大吗| 人妻 亚洲 视频| 男女午夜视频在线观看 | 女的被弄到高潮叫床怎么办| 久久国产亚洲av麻豆专区| 黑人猛操日本美女一级片| 最新中文字幕久久久久| 成人手机av| freevideosex欧美| 日韩一本色道免费dvd| 午夜福利网站1000一区二区三区| 亚洲第一区二区三区不卡| 你懂的网址亚洲精品在线观看| 午夜福利在线观看免费完整高清在| 国产精品国产av在线观看| 久久国产精品男人的天堂亚洲 | 90打野战视频偷拍视频| 老司机影院毛片| 亚洲精品美女久久久久99蜜臀 | 美女中出高潮动态图| 激情视频va一区二区三区| 黄色视频在线播放观看不卡| 国产 精品1| 色婷婷久久久亚洲欧美| 亚洲综合精品二区| 亚洲欧美中文字幕日韩二区| 水蜜桃什么品种好| 在线 av 中文字幕| 久久国内精品自在自线图片| 美女福利国产在线| 在线天堂最新版资源| 久久久久久久国产电影| 黄色视频在线播放观看不卡| 亚洲国产精品成人久久小说| 亚洲av免费高清在线观看| 久久午夜福利片| 亚洲色图综合在线观看| videossex国产| 亚洲国产最新在线播放| 亚洲精品国产av成人精品| √禁漫天堂资源中文www| 天堂8中文在线网| 青青草视频在线视频观看| 精品国产国语对白av| 一本久久精品| 国产精品一区www在线观看| av国产精品久久久久影院| 亚洲综合色网址| 日产精品乱码卡一卡2卡三| 亚洲精品美女久久av网站| 妹子高潮喷水视频| 咕卡用的链子| 黄片播放在线免费| 国产精品一区二区在线不卡| 两个人看的免费小视频| 国产精品一区二区在线不卡| www.熟女人妻精品国产 | av国产精品久久久久影院| 九色成人免费人妻av| 久久影院123| 久久人人爽人人爽人人片va| 免费观看a级毛片全部| 午夜日本视频在线| 精品福利永久在线观看| 中文字幕人妻丝袜制服| 亚洲人成网站在线观看播放| 亚洲美女搞黄在线观看| 久久精品久久久久久久性| 男的添女的下面高潮视频| 国产成人aa在线观看| 久久99热这里只频精品6学生| 日韩大片免费观看网站| 亚洲精品自拍成人| 另类亚洲欧美激情| 亚洲第一av免费看| 日韩精品免费视频一区二区三区 | 亚洲精品av麻豆狂野| 制服人妻中文乱码| 少妇的逼好多水| 女人精品久久久久毛片| 亚洲欧美成人综合另类久久久| av免费在线看不卡| 亚洲精品乱久久久久久| 亚洲国产av新网站| 久久精品久久久久久噜噜老黄| 国产黄频视频在线观看| 婷婷色麻豆天堂久久| 成人免费观看视频高清| 久久毛片免费看一区二区三区| 丝袜喷水一区| 久久精品国产a三级三级三级| 女的被弄到高潮叫床怎么办| a 毛片基地| 日本av手机在线免费观看| 十分钟在线观看高清视频www| 亚洲av日韩在线播放| 国产午夜精品一二区理论片| 免费少妇av软件| 欧美亚洲日本最大视频资源| a级毛色黄片| 丝袜脚勾引网站| 中文字幕制服av| 婷婷色av中文字幕| 亚洲国产精品国产精品| 人妻 亚洲 视频| 久久久久久久久久成人| www.av在线官网国产| 国产男女超爽视频在线观看| a级毛片在线看网站| 一级,二级,三级黄色视频| 1024视频免费在线观看| 亚洲美女黄色视频免费看| 人人妻人人澡人人看| 我的女老师完整版在线观看| 亚洲av.av天堂| 中文天堂在线官网| 国产精品国产三级专区第一集| 亚洲色图 男人天堂 中文字幕 | 国国产精品蜜臀av免费| 国产日韩一区二区三区精品不卡| 色5月婷婷丁香| 免费看av在线观看网站| 国产色爽女视频免费观看| 久久久久网色| 最近2019中文字幕mv第一页| 免费看av在线观看网站| 精品视频人人做人人爽| 日本免费在线观看一区| 人成视频在线观看免费观看| 男女边摸边吃奶| 亚洲熟女精品中文字幕| 少妇的逼好多水| 日韩成人av中文字幕在线观看| 亚洲国产最新在线播放| 欧美国产精品va在线观看不卡| 91精品伊人久久大香线蕉| 精品久久久精品久久久| 国产 精品1| av在线app专区| 日本黄色日本黄色录像| 亚洲欧美一区二区三区黑人 | 观看美女的网站| 免费观看无遮挡的男女| 欧美 亚洲 国产 日韩一| 曰老女人黄片| 在线免费观看不下载黄p国产| 亚洲欧美中文字幕日韩二区| 国产亚洲一区二区精品| 亚洲美女搞黄在线观看| 免费人成在线观看视频色| 美女中出高潮动态图| 午夜免费观看性视频| 人妻一区二区av| 久久久久久久久久久免费av| 最近中文字幕2019免费版| 夫妻性生交免费视频一级片| 免费观看在线日韩| 免费观看a级毛片全部| 欧美人与性动交α欧美精品济南到 | 久热久热在线精品观看| 午夜福利,免费看| 蜜桃在线观看..| 欧美精品一区二区大全| 国产熟女午夜一区二区三区| 黑人猛操日本美女一级片| 色婷婷久久久亚洲欧美| av黄色大香蕉| 九草在线视频观看| 蜜臀久久99精品久久宅男| 国产男人的电影天堂91| 国产精品熟女久久久久浪| 久久精品aⅴ一区二区三区四区 | 韩国av在线不卡| 免费少妇av软件| 1024视频免费在线观看| 精品久久蜜臀av无| 久久青草综合色| 亚洲欧美清纯卡通| 97精品久久久久久久久久精品| 日日啪夜夜爽| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 王馨瑶露胸无遮挡在线观看| 一边摸一边做爽爽视频免费| 午夜影院在线不卡| 国产一区二区在线观看日韩| 欧美丝袜亚洲另类| 久久av网站| 国产高清不卡午夜福利| 精品午夜福利在线看| 人人妻人人澡人人看| 久久精品久久久久久久性| 伦精品一区二区三区| 亚洲av.av天堂| 亚洲精品国产色婷婷电影| 老司机亚洲免费影院| 久久久亚洲精品成人影院| 极品人妻少妇av视频| 天天影视国产精品| 夜夜爽夜夜爽视频| 免费高清在线观看视频在线观看| 乱码一卡2卡4卡精品| 男女边吃奶边做爰视频| 久久精品国产亚洲av涩爱| 免费久久久久久久精品成人欧美视频 | 国产成人一区二区在线| 一本久久精品| 久久毛片免费看一区二区三区| 街头女战士在线观看网站| 看免费成人av毛片| 美国免费a级毛片| 亚洲第一区二区三区不卡| 国产欧美另类精品又又久久亚洲欧美| 精品视频人人做人人爽| 亚洲一区二区三区欧美精品| 久久精品久久久久久久性| 国产日韩欧美在线精品| 熟女电影av网| 男人添女人高潮全过程视频| 欧美性感艳星| 不卡视频在线观看欧美| 只有这里有精品99| 91精品国产国语对白视频| 捣出白浆h1v1| 午夜福利影视在线免费观看| 男人添女人高潮全过程视频| 精品一品国产午夜福利视频| 欧美日韩视频高清一区二区三区二| 亚洲丝袜综合中文字幕| 亚洲综合色惰| 久久久久久久亚洲中文字幕| 欧美精品一区二区免费开放| 男人舔女人的私密视频| 性高湖久久久久久久久免费观看| 香蕉精品网在线| 国产视频首页在线观看| 亚洲三级黄色毛片| 亚洲精品乱久久久久久| 精品一品国产午夜福利视频| 国产精品免费大片| 在线亚洲精品国产二区图片欧美| 国产免费现黄频在线看| 国产欧美另类精品又又久久亚洲欧美| 99九九在线精品视频| a级毛片黄视频| 国产精品久久久久久久电影| 寂寞人妻少妇视频99o| 丝袜美足系列| 人体艺术视频欧美日本| 秋霞在线观看毛片| av国产精品久久久久影院| 51国产日韩欧美| 国产在线一区二区三区精| 婷婷成人精品国产| 日本欧美国产在线视频| 卡戴珊不雅视频在线播放| 亚洲五月色婷婷综合| 高清在线视频一区二区三区| 捣出白浆h1v1| 制服人妻中文乱码| 高清视频免费观看一区二区| 国产片内射在线| 亚洲国产成人一精品久久久| 久久久久久人人人人人| 香蕉精品网在线| 久久狼人影院| 免费女性裸体啪啪无遮挡网站| 一级毛片黄色毛片免费观看视频| 国产精品一区二区在线观看99| 欧美日韩综合久久久久久| 国产亚洲欧美精品永久| 亚洲av在线观看美女高潮| 国产精品久久久久久久电影| 亚洲国产精品专区欧美| 男女边吃奶边做爰视频| 哪个播放器可以免费观看大片| 日日撸夜夜添| 精品久久国产蜜桃| 亚洲一级一片aⅴ在线观看| 亚洲精品国产色婷婷电影| 制服人妻中文乱码| 韩国av在线不卡| 亚洲第一av免费看| 夫妻性生交免费视频一级片| 九九在线视频观看精品| av.在线天堂| 两性夫妻黄色片 | 午夜免费男女啪啪视频观看| 日本黄大片高清| 18禁在线无遮挡免费观看视频| 久久久国产一区二区| 亚洲五月色婷婷综合| 亚洲,欧美,日韩| 欧美激情国产日韩精品一区| 在线看a的网站| 日本wwww免费看| av.在线天堂| 亚洲国产精品一区二区三区在线| 欧美精品一区二区大全| 咕卡用的链子| 少妇高潮的动态图| 精品午夜福利在线看| 日日啪夜夜爽| 91国产中文字幕| 视频中文字幕在线观看| 99久国产av精品国产电影| 少妇熟女欧美另类| 热re99久久精品国产66热6| 99热6这里只有精品| 国产av一区二区精品久久| 两个人免费观看高清视频| 久久99精品国语久久久| 下体分泌物呈黄色| 人成视频在线观看免费观看| 亚洲一级一片aⅴ在线观看| 国产视频首页在线观看| 日韩av不卡免费在线播放| 一级毛片黄色毛片免费观看视频| 欧美国产精品一级二级三级| 黄色视频在线播放观看不卡| 国产在线一区二区三区精| 成人综合一区亚洲| 日本黄色日本黄色录像| 在线精品无人区一区二区三| 国产精品久久久久久久电影| 波多野结衣一区麻豆| 中文字幕最新亚洲高清| 少妇熟女欧美另类| 精品视频人人做人人爽| 涩涩av久久男人的天堂| 深夜精品福利| 国产免费一级a男人的天堂| 亚洲一区二区三区欧美精品| 9色porny在线观看| 少妇人妻精品综合一区二区| 免费人成在线观看视频色| 欧美精品一区二区大全| 美女主播在线视频| 18禁裸乳无遮挡动漫免费视频| 99久久综合免费| 亚洲av在线观看美女高潮| 黄网站色视频无遮挡免费观看| 巨乳人妻的诱惑在线观看| 精品人妻在线不人妻| 成人黄色视频免费在线看| 嫩草影院入口| 国产精品麻豆人妻色哟哟久久| 欧美激情 高清一区二区三区| 高清黄色对白视频在线免费看| 日韩成人伦理影院| 日韩精品有码人妻一区| 欧美精品高潮呻吟av久久| 亚洲精品色激情综合| 新久久久久国产一级毛片| 日韩中字成人| 秋霞在线观看毛片| 欧美精品人与动牲交sv欧美| 精品卡一卡二卡四卡免费| 考比视频在线观看| 精品久久国产蜜桃| av线在线观看网站| 99香蕉大伊视频| 人妻系列 视频| 久久久亚洲精品成人影院| 2021少妇久久久久久久久久久| 99re6热这里在线精品视频| 亚洲内射少妇av| av在线老鸭窝| 国产麻豆69| 欧美成人精品欧美一级黄| 观看av在线不卡| 国产色爽女视频免费观看| 制服人妻中文乱码| 精品国产露脸久久av麻豆| 秋霞在线观看毛片| 99香蕉大伊视频| 高清毛片免费看| 精品国产一区二区久久| 久久久久久人妻| 免费高清在线观看视频在线观看| 免费日韩欧美在线观看| 亚洲,欧美,日韩| 91久久精品国产一区二区三区| 男女无遮挡免费网站观看| 少妇的丰满在线观看| 免费黄网站久久成人精品| 婷婷色综合大香蕉| 蜜桃国产av成人99| 国产精品一国产av| 精品99又大又爽又粗少妇毛片| 精品久久蜜臀av无| 亚洲,欧美,日韩| 99久久精品国产国产毛片| 日本与韩国留学比较| 丁香六月天网| 久久热在线av| 亚洲中文av在线| 9191精品国产免费久久| 看十八女毛片水多多多| 青青草视频在线视频观看| 日韩在线高清观看一区二区三区| 一级片'在线观看视频| 天天影视国产精品| 国产国拍精品亚洲av在线观看| 国产日韩欧美在线精品| 色婷婷av一区二区三区视频| 国产爽快片一区二区三区| 久久精品久久久久久噜噜老黄| 纯流量卡能插随身wifi吗| 日韩中字成人| 精品99又大又爽又粗少妇毛片| 一本色道久久久久久精品综合| 成人综合一区亚洲| 黑人猛操日本美女一级片| 国产精品人妻久久久久久| 一级毛片电影观看| 国产精品人妻久久久久久| 欧美另类一区| 亚洲精华国产精华液的使用体验| 丰满乱子伦码专区| 久久毛片免费看一区二区三区| 免费大片18禁| 少妇高潮的动态图| av电影中文网址| 天天操日日干夜夜撸| 国产精品久久久久久精品电影小说| 免费女性裸体啪啪无遮挡网站| 国语对白做爰xxxⅹ性视频网站| 欧美激情国产日韩精品一区| 亚洲精品久久午夜乱码| 免费观看av网站的网址| 国语对白做爰xxxⅹ性视频网站| 午夜福利在线观看免费完整高清在| 高清欧美精品videossex| 免费观看av网站的网址| 中文字幕精品免费在线观看视频 | 啦啦啦在线观看免费高清www| 考比视频在线观看| 人人澡人人妻人| 美女脱内裤让男人舔精品视频| 久久久久网色| 久久久亚洲精品成人影院| 妹子高潮喷水视频| 国产黄频视频在线观看| 欧美亚洲日本最大视频资源| 69精品国产乱码久久久| 国产精品久久久久久精品古装| 欧美bdsm另类| 乱码一卡2卡4卡精品| 午夜激情久久久久久久| 极品少妇高潮喷水抽搐| 七月丁香在线播放| 老女人水多毛片| 777米奇影视久久| 国产午夜精品一二区理论片| 亚洲色图综合在线观看| 日韩人妻精品一区2区三区| 亚洲国产精品国产精品| 国产精品女同一区二区软件| 亚洲国产精品999| av国产精品久久久久影院| 国产免费现黄频在线看| 春色校园在线视频观看| 插逼视频在线观看| 一本大道久久a久久精品| 国产成人精品久久久久久| 9热在线视频观看99| 久久99精品国语久久久| 妹子高潮喷水视频| 最新中文字幕久久久久| 国产爽快片一区二区三区|