• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physics,chemistry,and Hirshfeld surface analyses of gamma-irradiated thalidomide to evaluate behavior under sterilization doses

    2018-06-20 05:50:54VlnerMusselMxFerreirMriMrquesMriYoshidMrinAlmeidBernrdoRodriguesWgnerMussel
    Journal of Pharmaceutical Analysis 2018年3期

    Vlner A.F.S.N.Mussel,Mx P.Ferreir,Mri B.F.Mrques,Mri I.Yoshid,Mrin R.Almeid,Bernrdo L.Rodrigues,Wgner N.Mussel,*

    aDepartamento de Química,ICEx,Universidade Federal de Minas Gerais-UFMG,Av.Ant?nio Carlos 6627,31270-901 Belo Horizonte,MG,Brazil

    bCNEN-CDTN,Comiss?o Nacional de Energia Nuclear-Centro de Desenvolvimento da Tecnologia Nuclear,Av.Ant?nio Carlos,6627 Belo Horizonte,MG,Brazil

    1.Introduction

    To ensure adequate conditions of use,sterility is a crucial attribute to any pharmaceutical material,main component,excipient,or formulation.In general,sterilized materials should have microbial survivor probability of<10-6.This criterion is the basis of the sterility assurance level.

    There are several sterilization procedures,and each has advantages and disadvantages[1,2].There is no suitable procedure for general use.Physical removal of microorganisms by membrane filtration does not require heat.Dry heat or even moist heat promotes microbiological reduction at high temperature,but results in considerable degradation of temperature-sensitive materials or devices.Sterilization using ethylene oxide is highly effective but can leave a toxic residue in porous materials such as implants.Electron-beam radiation can be used to prevent temperature effects and toxic residues in the final material,but is limited by poor penetration in bulky materials.

    Gamma irradiation has advantages over other conventional sterilization methods in solids∶high penetration,uniform efficacy,low isothermal stability,and absence of toxic residues.The main advantage is that irradiation can be used as the final sterilization procedure in starting materials and final products.In this way,the usual 25kGy dose can ensure sterilized pharmaceutical materials[2,3].Due to the potential sensitivity of pharmaceuticals,validation procedures with lower doses are usually accepted as long as reliable and adequate reduction of the biologic burden can be ensured.In this way,the risk of undesired effects over pharmaceuticals,formulations,or devices submitted to the sterilization process is minimized[4].

    Thalidomide ((RS)-2-(2,6-dioxopiperidin-3-il)-1H-isoindol-1,3(2H)-dione)was synthesized by Chemie Grünenthal in West Germany in 1954.It was introduced to the West German market in 1956 as an antiemetic for pregnant women.In the 1960s,the teratogenic effects of this drug were recognized.Fetal malformation due to the S-isomer of thalidomide resulted in restricted use of thalidomide and increased surveillance by regulatory agencies[5].

    Since then,thalidomide has been recognized as having antiangiogenic and anti-inflammatory properties.It has been used to treat leprosy and multiple myeloma.Hence,stability studies of thalidomide under radioactive stress aimed at sterilization of the drug are warranted[5].

    2.Materials and methods

    A sample of thalidomide from a validated production batch was obtained during the shelf-life of this pharmaceutical.All analyses were conducted within the validity period of the batch.

    2.1.Powder X-ray diffraction(PXRD)

    PXRD data were collected in an XRD-7000 diffractometer(Shimadzu,Kyoto,Japan)at room temperature under 40 kV,30 mA,using CuKα (λ =1.54056 ?)equipped with polycapillary focusing optics under parallel geometry coupled with a graphite monochromator.The sample was spun at 60 rpm,and scanned over an angular range of 4–60°(2θ)with a step size of 0.01°(2θ)and a time constant of 2s/step.All fitting procedures were obtained using FullProf Suite[6,7].Crystalexplorer v 17 was used to calculate the Hirshfeld surface[8].

    2.2.Single-crystal X-ray diffraction(SCXRD)

    SCXRD data were collected in a Gemini A Ultra X-ray Diffraction system(Agilent Technologies,Santa Clara,CA,USA)at room temperature using a MoKα (λ =0.71073 ?)tube as the X-ray source,equipped with a graphite monochromator and a charge-coupled device plate detector.Data collection and re finement details are given in Table 1.

    2.3.Thermogravimetric analysis(TGA)and differential thermal analysis(DTA)

    TGA and DTA experiments were carried out on a DTG60H system(Shimadzu)in a dynamic N2atmosphere(50 mL/min)using alumina pans containing≈2.0 mg of sample.Experiments were conducted at a heating rate of 10 °C/min from 25 °C to 400 °C.

    2.4.Differential scanning calorimetry(DSC)

    DSC experiments were undertaken on a DSC60 system(Shimadzu).The equipment cell was calibrated with indium(melting point,156.6 °C;heat of fusion,ΔHfus=28.54 J/g)and lead(melting point,327.5°C).Aluminum pans containing ≈1 mg of samplewere used under a dynamic N2atmosphere(50 mL/min)and a heating rate of 10 °C/min from 25 °C to 300 °C.Thalidomide can exist as two polymorphs,α and β,and the latter shows different thermal behavior.Therefore,an isothermal experiment was carried out at 270°C to obtain a pure material for comparison,as needed.

    Table 1 Single crystal re finement data for polymorph α,space group,Hall symbol,lattice parameters a,b and c(?),? angle(θ),volume,number of formulae unit per unit cell,X-ray density,wavelength,experimental angular range(θ),crystal absorption coefficient,crystal shape and dimensions,number of reflections considered for cell parameters calculation,and independent reflections used for single crystal fitting.

    2.5.Ultraviolet spectroscopy

    Ultraviolet spectroscopy was undertaken at 200–400 nm for thalidomide at 10μg/mL in ethanol on a spectrophotometer(1800;Shimadzu).Origin v9.1 was used to adjust data.

    2.6.Raman spectroscopy

    Raman spectroscopy of solid thalidomide was done on a confocal micro-Raman spectrometer(Senterra;Bruker,Billerica,MA,USA)with an excitation laser set at 785 nm.The measurement conditions were as follows∶integration time of 5 s;spectral resolution of 3–5cm-1;and spectral range of 2000–100cm-1.The laser was focused with a 4×dry objective lens,with the laser power set to 25 mW.Origin v9.1 was used to adjust data.

    2.7.Gamma irradiation

    Experiments involving gamma irradiation were done at Comiss?o Nacional de Energia Nuclear-Centro de Desenvolvimento da Tecnologia Nuclear(Belo Horizonte,MG,Brasil).The radiation system(IR-214;MDS Nordion,Ottawa,Canada)was equipped with a dry cobalt-60 source.The source had a maximum activity of 2200 TBq(60,000 Ci).The specific irradiation times were calculated,and then all samples were exposed to doses of 2,5,10,15,25,30 or 100 kGy.

    2.8.Attenuated total reflection Fourier transformed infrared spectroscopy(ATR-FTIR)

    FTIR analysis was performed at room temperature on a Spectrum 1000 spectrophotometer(PerkinElmer,United States)equipped with an attenuated total reflectance(ATR)accessory.The sample was pressed into a zinc selenide crystal,and 32 scans were averaged.For single FTIR without ATR,the samples were measured in KBr pressed pellets in the wavenumber range between 400 and 3400cm-1at room temperature,with a resolution of 4cm-1.

    2.9.Statistical analyses

    Data are the mean±standard deviation.All fitting procedures took into account three independent measurements with statistical analyses conducted using Origin v9.1.

    Fig.1.Thalidomide molecule showing the labile bond between phthalimide and glutarimide rings.

    Fig.2.The crystal structure of the polymorphs α (A)(a=8.233(1)?,b=10.070(2)?,c=14.865(2)?,α = γ =90.0°and β =102.53(2)°,monoclinic,P 21/n,Z=4)and β (B)(a=20.679(5)?,b=8.042(2)?,c=14.162(5)?,α = γ =90.0°and β =102.86(3)°,monoclinic,C 2/c,Z=8),and(C)keto-enol tautomerization.

    3.Results and discussion

    The thalidomide molecule has a labile bond that can be turned around from phthalimide and glutarimide rings(Fig.1).

    Fig.3.Powder X-ray diffraction experiments for irradiated thalidomide samples for 0,2,5,10,15,20,30 and 100 kGy.All samples were irradiated under the same conditions,only different times.

    Fig.4.Crystal projection of the asymmetric unit.Carbon(grey),oxygen(red)and nitrogen(blue)atoms.ORTEP plotted ellipsoids with 50%probability.

    In the thalidomide chemical structure,the chiral center has a neighboring ketone that may undergo to the enol form,then reforming it when switching back to the keto form.Even with uptaking of the correct R-thalidomide,a keto-enol tautomerization happened inside the human body,it would racemase into a mixture of R,S-thalidomide and the corresponding enol forms.The S-thalidomide causes the birth defects(Fig.2).

    The intensity of a diffracted peak of a certain reflection(hkl)plane for a given chemical structure is a direct contribution of the structural factor,which in turn corresponds to the number of electrons diffracting the X-ray beam on that plane.If any plane in the structure reduces its number of electrons,a direct effect of that condition will be a decrease in the intensity of that specific plane,and the resulting system will be a plane with lower electron density.In the solid state,the atoms in a structure are much less labile than in solubilized material because of numerous mutual interactions(e.g.,Van der Waals forces and/or hydrogen bonding).The fitting procedure was designed to allow the torsion angle between phthalimide and glutarimide rings to vary freely within the extraction and adjustment of the intensities in the diffraction.

    The thalidomide structure C13H10N2O4space groupP21/nhas a torsion angle of 57.28°(2θ).This structure was taken as a reference,with all procedures starting from the same template molecule, by varying the fitting sequence as follows∶(i)parameterization of the background with five polynomial terms;(ii)U,V and W(FWHM)of the pseudo-Voight function;(iii)pro file parameters NA and NB of the pseudo-Voight function;(iv)asymmetry factors P1,P2,P3 and P4 of the Berar–Baldinozzi asymmetric correction;(v)a and b beyond the beta angle of the crystal lattice;(vi)torsion angles N1-C11-C13-C2 with the initial value set to 57.28°(2θ);(vii)isotropic thermal parameter functions for all atoms.Fig.3 shows the experimental XRD pattern for all doses.

    Fig.5.Hirshfeld surface analysis and corresponding overall fingerprints for polymorphs α and β (A and B,respectively),the torsion angles(C),the fingerprint O-O interactions(π-πrespectively)(D).The 2 kGy irradiated αpolymorph with respectively torsion angle and overall fingerprint(E).

    Fig.6.Hirshfeld surface analysis and overall contributions for all atoms pairs in polymorphs α and β.

    Fig.7.Raman experimental spectra of polymorphs α and β evidencing the spectra differences.

    SCXRD was carried out on a recrystallized sample from an original polymorphαsample by solvent evaporation.To 20 mL of a methanol∶water(5∶3)solution was added 25 mg of polymorph α,which resulted in a supersaturated solution.Non-solubilized crystals were filtered out,and the solution was allowed to stand to recrystallize over 23 days.The crystal data,collection,and details of structure re finement of polymorphαare summarized in Table 1.Refinement was carried out in the absence of anomalous scattering.Changes in illuminated volume were kept to a minimum,and were taken into account[9–14]using multi-scan inter-frame scaling.Hydrogen atoms were geometrically fixed to their bonded atoms,with their thermal isotropic term,Uiso(H)in the range 1.2–1.5 times Ueqof the parent atom,after which the positions were re fined with adequate constraints.Fig.4 shows the asymmetric unit as an Ortep plot for the determination of crystal structure,as well as the unit cell ellipsoids with 50%probability.

    Hirschfeld surface analyses can provide a deep understanding of certain characteristics based on electron distribution,πinteractions,and the contributions of pairs of atoms.Polymorphsαand βshowed substantial differences for each fingerprint(Figs.5A and B).Polymorphβshowed a relatively largeπinteraction on the phthalimide ring.This was a direct evaluation of close contact and the internal distribution of theβcell lattice(Fig.5B).A largedistance of approximately 1.1 ? from the inside surface(di)interaction on polymorphβwas related to the appearance of hydrogenatom interaction from the phthalimide–glutarimide transversional ring arrangement within the unit cell(Figs.5B and C).The two interactions at about 1.0 and 1.3 ?(Fig.5B)from the inside surface(di)were due to the glutarimide–glutarimide nitrogen-hydrogen and carbonyl group of two close molecules within the unit cell.The overall O-H interactions showed shorter distances from the inside surface(di)of about 1.0 and 1.3 ? forα and β,respectively,and showed a more compact unit cell for polymorphβ(Fig.5D).For polymorphαirradiated at 2 kGy,the two adjacent glutarimide rings within the unit cell were responsible for the mutual O-H interactions leading to hydrogen-bond formation and/or the possibility of a tautomeric pair structure(Fig.5E).Fig.6 shows the individual contribution from each atom pair to the overall probability of interaction over the thalidomide molecule[15–17].

    Table 2 Torsion angle(degrees θ),lattice parameters(?),β (degrees θ)and Rp goodness of fitting parameter(%).

    Table 3 Experimentaland calculated Raman'sobserved peak,fully assigned forα polymorph.

    Fig.8.UV experimental spectra for α and β polymorphs.

    Raman spectroscopy was undertaken for both polymorphic forms of thalidomide.Theoretical calculations were carried out to increase understanding of the observed vibrational modes.Theoretical calculations were done using the structures of each polymorph published by the Cambridge Crystallographic Data Center(Cambridge,UK)using Spartan v14.Fig.7 shows the experimental Raman spectra for polymorphsα andβ.

    Table 2 shows the experimental and theoretical bands(as assigned)for each mode of polymorphα.For symmetric stretching of the carbonyl group,centered at 1785 and 1769 cm–1,no equivalent vibrational modes,when compared with polymorphβ,were identified.

    Asymmetric stretching of the carbonyl group was identified at 1754 cm–1.Vibrational modes appeared at two carbonyl groups for polymorphαwhereas,in polymorphβ,such modes were related primarily only to one carbonyl group.The stretching region of the CH2-CH bond in the glutarimide ring showed peaks at 1166 and 1176 cm-1,and showed a substantial difference for the ratio and axial offset for the two polymorphs.Peaks on the spectrum for polymorphαat 701 and 693 cm-1were assigned to the vibrational modes corresponding to ring deformations outside the plane.Peaks at 604 and 595 cm-1were assigned to the ring deformation and stretching of the CH group and CH bonds.For deformation out of the plane,peaks at 404,391,236 and 225 cm-1were observed.For crystalline structures in different polymorphs,the vibrational modes in the low vibrational frequency region(<200 cm-1)are attributed to vibrations of the crystal lattice,and that region can be regarded as a “second fingerprint”of the Raman spectrum for each substance(Table 3)[18,19].Comparison of these data suggested that differences in the spectra of polymorphsαand βwere due to compression of their molecules and the way they were interacting in their crystal lattices;these effects influenced their vibrational modes directly.Transformation between thalidomide polymorphs was achieved by providing adequate energy for the crystalline lattice with the aim of reorganization.This procedure was accompanied by TGA,DTA and DSC.

    Fig.9.(A)TGA/DTA simultaneous curve of α polymorph form;(B)DSC curve of α polymorph form,with inset zoom of the endothermic peak.

    In simultaneous TGA/DTA,mass loss was observed only once at an onset temperature of 264°C,suggesting that the material was anhydrous and pure.The DTA curve revealed two endothermic peaks corresponding to fusion of polymorphsα andβ,respectively.The DSC curve showed two endothermic events at onset temperatures of 245 °C and 274 °C.Fig.8 shows the UV spectra for polymorphsαandβ.We observed five bands for polymorphα(A1,A2,A3,A4 and A5)and four bands for polymorphβ(B1,B2,B3 and B4).The A1 band at 207nm is related to the n→π*transitions in aromatic compounds.The A2 and B1 bands at 221nm and 222 nm,respectively,are related toπ*conjugated systems,showing aromatic compounds to have chromophore substitution.The A3 and B2 bands at 232 nm and 233nm,respectively,are related to tautomers generated by the working pH of the solution.The A4 and B3 bands at 240nm and 241 nm,respectively,are the characteristic bands of thalidomide.The A5 and B4 bands both at 300 nm are related to groups with a low-energy configuration state,just like the carbonyl groups in thalidomide.For better visualization of the first endothermic peak,enlargement of this region in the curve is shown(Fig.9).This event was identified as a crystalline transition between the two polymorphs of thalidomide.

    The second endothermic event corresponded to decomposition of the formed material,with this being only theβform in the case of total conversion and a mixture ofαandβin the case of partial conversion[19].To confirm these occurrences,an isotherm at 270°C using the material for further powder XRD was undertaken(Fig.10).Comparison of the diffractograms and interplanar distances enabled us to confirm and identify the material as polymorphβ.

    We wished to visualize possible changes in thermal behavior of the material after irradiation.Hence,DSC was done with samples receiving doses of 2,5,30 or 100 kGy.In the DSC curve of the samples irradiated with 2 and 5kGy,a single endothermic peak with an onset temperature of 275°C was noted for both samples.This finding suggested total conversion of theαform into theβ form during heating,so this peak was designated as the fusion follow by decomposition of polymorphβ(Fig.11).The DSC curves of samples irradiated with 30 and 100 kGy revealed two endothermic peaks with onset temperatures of 272 °C and 275 °C for samples irradiated with 30 kGy and at 272 °C and 274 °C for samples irradiated with 100 kGy(Fig.12).

    Fig.10.Comparative diffractogram between α and β polymorphs.

    We designated the first peak as the fusion of polymorphαand the second peak as the fusion of polymorphβfor both curves.Different from the report by Reepmeyer and colleagues[14],the DSC curve in our study was carried out at a heating rate of 10°C/min,but we observed values very close to those reported by Reepmeyer and colleagues.We propose that after irradiation with doses of 30 and 100 kGy,polymorphαacquired higher thermal stability in relation to polymorphic transformation.Therefore,the fusion and decomposition temperature ofαform was visualized in DSC curves instead of its crystalline transformation,as shown in the physicochemical characterization of the material.The irradiated sample had a more compact unit cell,so there was an increase in hydrogen-atom interactions within the unit cell,resulting in an increase in thermal stability of polymorphα.

    4.Conclusion

    Fig.11.DSC curves of α polymorph form after(A)2 kGy dose and(B)5 kGy dose.

    Fig.12.DSC curves of α polymorph form after(A)30 kGy dose and(B)100 kGy dose.

    The observed turning around phthalimide and glutarimide rings already occurs at low radiation values(e.g.,2kGy).Eventually,the absorbed energy will overcome the repulsive force due to the proximity of the carboxyl group and produce a full turn.With a continuous supply of energy,the system rotates completely at higher doses of 15,20,30 and 100kGy.With higher doses,the full turning effect is reached,allowing the network to relax its tension.The thalidomide molecule has a center of symmetry.Therefore,one full turn of phthalimide and glutarimide rings between each other,starting from 57.3°,will lead to the same molecule,with stabilization of the final angle based on the total amount of absorbed energy.After a full turn,the process starts again.Irradiated samples at 30 and 100kGy had more compact unit cells and a lower volume,so there was an increase in the intermolecular interaction between hydrogen atoms within the unit cell,which resulted in higher thermal stability for polymorphα.At 30 and 100kGy,each melting point could be seen separately,which was a different situation compared with that of the non-irradiated sample.A fourfold increase in the usual dose used in pharmaceuticals is employed for gamma-ray sterilization.Thalidomide molecules can release excess energy by turning the bond between phthalimide and glutarimide rings.Hence,gamma-ray sterilization of pure thalidomide before use in fixed-dose pharmaceutical formulations is possible.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    The authors would like to thank the CNEN-CDTN(Comiss?o Nacional de Energia Nuclear–Centro de Desenvolvimento da Tecnologia Nuclear)LIG(Laboratório de Irradia??o Gama)facility for the assistance,and Funda??o de Amparo à Pesquisa do Estado de Minas Gerais(FAPEMIG)(APQ-02087-14),Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)(245914/2012),Coordena??o de Aperfei?oamento de Pessoal de Nível Superior(CAPES)(PNPD-N-1648694-scholarship No2016752283)and Pró-Reitoria de Pesquisa/UFMG for financial support.

    [1]Health Products and Food Branch Inspectorate∶Process Validation∶Terminal Sterilization Processes for Pharmaceutical Products,Supersedes∶GUI-0007,GUI-0009 and GUI-0010,(GUIDE-0074),OTTAWA,Ontario,Canada,2006.

    [2]EN ISO 13408-1∶2008(en),Aseptic processing of health care products—Part 1∶General requirements,compilation prepared by Online Browsing Platform(OBP),2008,〈https∶//www.iso.org/obp/ui/#iso∶std∶iso∶13408∶-1∶ed-2∶v1∶en〉.

    [3]AAMI/ISO 11137-2∶2013,Sterilization of health care products-Radiation-Part 2∶Establishing the sterilization dose(revision of 11137-2∶2012),ISBN(s)∶1570205027,2013.

    [4]J.Agalloco,USP Microbiology&Sterility Assurance,Expert Committee USP∶Activities Impacting Sterilization&Sterility Assurance,USP 35 1211,revision 2008.

    [5]F.Hasanain,K.Guenther,W.M.Mullett,et al.,Gamma sterilization of pharmaceuticals-a review of the irradiation of excipients,active pharmaceutical ingredients and final drug product formulations,J.Pharm.Sci.Technol.68(2014)113–137.

    [6]T.Roisnel,J.Rodriguez-Carvajal,WinPLOTR∶a Windows tool for powder diffraction patterns analysis Materials Science Forum,Proceedings of the Seventh European Powder Diffraction Conference,EPDIC 7,2000∶118–123.

    [7]J.Rodriguez-Carvajal,T.Roisnel,FullProf.98 and WinPLOTR∶new windows 95/NT applications for diffraction.Commission for powder,Int.Union Crystallogr.Newsl.20(1998)35.

    [8]M.J.Turner,J.J.McKinnon,S.K.Wolff,et al.,CrystalExplorer17,University of Western,Australia,2017 〈http∶//crystalexplorer.scb.uwa.edu.au〉.

    [9]C.H.G?rbitz,What is the best crystal size for collection of X-ray data?Reif nement of the structure of glycyl-L-serine based on data from a very large crystal,Acta Cryst.B55(1999)1090–1098.

    [10]R.I.Cooper,A.L.Thompson,D.J.Watkin,CRYSTALS enhancements∶dealing with hydrogen atoms in re finement,J.Appl.Cryst.43(2010)1100–1107.

    [11]G.M.Sheldrick,A short history of SHELX,Acta Cryst.A64(2008)112–122.

    [12]P.W.Betteridge,J.R.Carruthers,R.I.Cooper,et al.,CRYSTALS Version 12∶software for guided crystal structure analysis,J.Appl.Cryst.36(2003)1487.

    [13]D.J.Watkin,C.K.Prout,J.R.Carruthers,et al.,Crystals Issue 10,Chemical CrystallographyLaboratory,Oxford,UK,1996.

    [14]J.C.Reepmeyer,M.O.Rhodes,D.C.Cox,et al.,Characterization and crystal structure of two polymorphic forms of racemic thalidomide,J.Chem.Soc.Perkin Trans.2(9)(1994)2063–2067.

    [15]M.A.Spackman,D.Jayatilaka,Hirshfeld surface analysis,CrystEngComm 11(2009)19–32.

    [16]M.A.Spackman,J.J.McKinnon,Fingerprinting intermolecular interactions in molecular crystals,CrystEngComm 4(2002)378–392.

    [17]M.J.Turner,J.J.McKinnon,D.Jayatilaka,et al.,Visualisation and characterisation of voids in crystalline materials,CrystEngComm 13(2011)1804–1813.

    [18]P.J.Larking,M.Dabros,B.Sars field,et al.,Polymorph characterization of active pharmaceutical ingredients(APIs)using low-frequency Raman spectroscopy,Appl.Spectrosc.68(7)(2014)758–776.

    [19]E.P.J.Parrot,B.M.Fischer,L.F.Fladden,et al.,Terahertz spectroscopy of crystalline and non-crystalline solids,Terahertz spectroscopy and imaging Springer Series in Optical Sciences book series(SSOS),171,2012∶191–227.

    久久国内精品自在自线图片| 国产大屁股一区二区在线视频| 免费人成在线观看视频色| 啦啦啦啦在线视频资源| 亚洲av成人精品一区久久| 亚洲无线观看免费| 村上凉子中文字幕在线| 99在线人妻在线中文字幕| 99热只有精品国产| 亚洲精品国产成人久久av| 色噜噜av男人的天堂激情| 成人三级黄色视频| 亚洲精品成人久久久久久| 国产精品av视频在线免费观看| 国内揄拍国产精品人妻在线| 亚洲美女视频黄频| 悠悠久久av| 美女大奶头视频| 免费观看a级毛片全部| 毛片女人毛片| 好男人视频免费观看在线| 久久99热6这里只有精品| 色播亚洲综合网| 99热6这里只有精品| 最近最新中文字幕大全电影3| 看黄色毛片网站| 久久久久久久久久久免费av| 麻豆久久精品国产亚洲av| 欧美日韩精品成人综合77777| 97人妻精品一区二区三区麻豆| avwww免费| 国产亚洲91精品色在线| 麻豆国产97在线/欧美| 中国国产av一级| 毛片一级片免费看久久久久| 亚洲欧美日韩高清专用| 99热这里只有是精品在线观看| 亚洲国产精品国产精品| 日韩大尺度精品在线看网址| 啦啦啦观看免费观看视频高清| 看黄色毛片网站| 国产成人freesex在线| 精品久久久久久久久久免费视频| 国产欧美日韩精品一区二区| 亚洲欧美成人精品一区二区| 欧美+日韩+精品| 啦啦啦观看免费观看视频高清| 国产激情偷乱视频一区二区| 熟妇人妻久久中文字幕3abv| 在线观看免费视频日本深夜| 午夜福利在线在线| 少妇被粗大猛烈的视频| www.色视频.com| 亚洲自偷自拍三级| 久久久精品欧美日韩精品| 舔av片在线| 国产成人a∨麻豆精品| 欧美色视频一区免费| 麻豆乱淫一区二区| 桃色一区二区三区在线观看| 欧美另类亚洲清纯唯美| 最近最新中文字幕大全电影3| 免费观看精品视频网站| 免费av观看视频| 老熟妇乱子伦视频在线观看| 在线观看免费视频日本深夜| 精品人妻偷拍中文字幕| 亚洲精品日韩av片在线观看| 精品一区二区免费观看| 亚州av有码| 爱豆传媒免费全集在线观看| 听说在线观看完整版免费高清| 狠狠狠狠99中文字幕| 99久国产av精品国产电影| 成年免费大片在线观看| 亚洲国产精品久久男人天堂| a级一级毛片免费在线观看| 日韩在线高清观看一区二区三区| 人人妻人人澡人人爽人人夜夜 | 精品久久久久久久久久免费视频| 日韩一区二区视频免费看| 赤兔流量卡办理| 一级黄色大片毛片| 悠悠久久av| 精品人妻视频免费看| 久久婷婷人人爽人人干人人爱| 丰满人妻一区二区三区视频av| 床上黄色一级片| 亚洲无线在线观看| 欧美zozozo另类| av女优亚洲男人天堂| 欧美丝袜亚洲另类| 久久精品久久久久久久性| 亚洲人成网站在线播| 老师上课跳d突然被开到最大视频| 国产精品野战在线观看| 亚洲性久久影院| av天堂中文字幕网| 精品久久久久久久久久久久久| 真实男女啪啪啪动态图| 久久久欧美国产精品| 亚洲国产精品合色在线| 伦理电影大哥的女人| 国产精品不卡视频一区二区| 天天一区二区日本电影三级| 一个人看的www免费观看视频| 国内精品美女久久久久久| 日本与韩国留学比较| 国产不卡一卡二| 97超视频在线观看视频| 中国国产av一级| 久久久久久大精品| 亚洲欧美精品自产自拍| 国产爱豆传媒在线观看| 岛国毛片在线播放| 免费在线观看成人毛片| 久久草成人影院| 亚洲在线观看片| 人体艺术视频欧美日本| 国产三级在线视频| 国产成人精品婷婷| 国产高清有码在线观看视频| 亚洲欧美中文字幕日韩二区| 亚洲av不卡在线观看| 小蜜桃在线观看免费完整版高清| 国产精品.久久久| 亚洲av中文av极速乱| 亚洲av.av天堂| 成人漫画全彩无遮挡| 亚洲av免费高清在线观看| 蜜桃亚洲精品一区二区三区| 国产探花在线观看一区二区| 色5月婷婷丁香| 亚洲电影在线观看av| 此物有八面人人有两片| av免费在线看不卡| 搡老妇女老女人老熟妇| 一本一本综合久久| 非洲黑人性xxxx精品又粗又长| 国产精品永久免费网站| 色5月婷婷丁香| 精品人妻偷拍中文字幕| 国产 一区精品| 成人特级av手机在线观看| 18禁裸乳无遮挡免费网站照片| 国产精品伦人一区二区| 国产精品麻豆人妻色哟哟久久 | 久久久久久九九精品二区国产| 色噜噜av男人的天堂激情| 亚洲av成人av| 国产精品久久久久久精品电影| 亚洲精品粉嫩美女一区| 青青草视频在线视频观看| 亚洲国产欧美人成| 插阴视频在线观看视频| 精品无人区乱码1区二区| 国产成人精品一,二区 | 日韩成人av中文字幕在线观看| 免费观看的影片在线观看| 韩国av在线不卡| 国产精品麻豆人妻色哟哟久久 | 国产精品久久视频播放| 欧美精品一区二区大全| 久久99蜜桃精品久久| 搡女人真爽免费视频火全软件| 欧美性感艳星| 亚洲人与动物交配视频| 国内精品久久久久精免费| 国产色婷婷99| 国产伦精品一区二区三区视频9| 青春草视频在线免费观看| 国产视频内射| 青青草视频在线视频观看| 亚洲欧美清纯卡通| 亚洲一区高清亚洲精品| 国内精品久久久久精免费| 久久鲁丝午夜福利片| 大型黄色视频在线免费观看| 久久中文看片网| 亚洲高清免费不卡视频| 亚洲成a人片在线一区二区| 国产日韩欧美在线精品| a级一级毛片免费在线观看| 1000部很黄的大片| 精品一区二区免费观看| 亚洲av第一区精品v没综合| 狂野欧美白嫩少妇大欣赏| 男女那种视频在线观看| 免费人成在线观看视频色| 精品熟女少妇av免费看| 国产精品无大码| 乱人视频在线观看| 在线观看午夜福利视频| 亚洲不卡免费看| 国产成人freesex在线| 国产精品无大码| 中文字幕熟女人妻在线| 国产美女午夜福利| 极品教师在线视频| 亚洲欧美成人精品一区二区| 人体艺术视频欧美日本| 成人三级黄色视频| 最近视频中文字幕2019在线8| 蜜桃久久精品国产亚洲av| 国产伦精品一区二区三区四那| 两个人的视频大全免费| 亚洲av免费在线观看| 欧美成人a在线观看| 亚洲美女搞黄在线观看| 麻豆成人av视频| 蜜臀久久99精品久久宅男| 久久久久久伊人网av| 亚洲国产欧洲综合997久久,| 97在线视频观看| 国产老妇伦熟女老妇高清| av在线老鸭窝| 国产精品1区2区在线观看.| 婷婷色综合大香蕉| 观看美女的网站| 麻豆乱淫一区二区| 18+在线观看网站| 亚洲精品亚洲一区二区| 少妇的逼好多水| 少妇人妻精品综合一区二区 | 人妻制服诱惑在线中文字幕| 国产真实伦视频高清在线观看| 国产一区二区三区在线臀色熟女| 久久久色成人| 国产 一区 欧美 日韩| 国产精品人妻久久久久久| 欧美三级亚洲精品| 高清日韩中文字幕在线| а√天堂www在线а√下载| 免费看av在线观看网站| 亚洲性久久影院| 夜夜看夜夜爽夜夜摸| 日韩三级伦理在线观看| 免费人成视频x8x8入口观看| 国产亚洲欧美98| 成人一区二区视频在线观看| 国产亚洲精品久久久久久毛片| 99久久中文字幕三级久久日本| 最后的刺客免费高清国语| 在线播放国产精品三级| 免费av不卡在线播放| 国产蜜桃级精品一区二区三区| 欧美zozozo另类| 亚洲不卡免费看| 亚洲经典国产精华液单| 日韩精品有码人妻一区| 国产黄片视频在线免费观看| 亚洲精品乱码久久久v下载方式| 国语自产精品视频在线第100页| 国产午夜精品久久久久久一区二区三区| 久久久久久久午夜电影| 亚洲人与动物交配视频| 18+在线观看网站| 久久久午夜欧美精品| 青春草亚洲视频在线观看| 日本一二三区视频观看| 午夜精品一区二区三区免费看| 男女啪啪激烈高潮av片| 欧美一区二区国产精品久久精品| 亚洲欧美中文字幕日韩二区| 久久久欧美国产精品| 欧美又色又爽又黄视频| 我要搜黄色片| 国产av一区在线观看免费| 九九在线视频观看精品| 国产精品人妻久久久影院| 在现免费观看毛片| 亚洲三级黄色毛片| 22中文网久久字幕| 丰满乱子伦码专区| 青春草国产在线视频 | eeuss影院久久| 性色avwww在线观看| av黄色大香蕉| 人人妻人人澡人人爽人人夜夜 | 久久精品国产99精品国产亚洲性色| 少妇熟女aⅴ在线视频| 日日撸夜夜添| 在现免费观看毛片| 联通29元200g的流量卡| 亚洲精品久久久久久婷婷小说 | 亚洲18禁久久av| 国产成人aa在线观看| 国产成人一区二区在线| 日韩欧美精品v在线| 国产一区二区激情短视频| 亚洲va在线va天堂va国产| 欧美潮喷喷水| 亚洲av中文av极速乱| 亚洲欧美日韩卡通动漫| 精品久久久久久成人av| 熟女电影av网| 变态另类丝袜制服| 精品欧美国产一区二区三| av专区在线播放| 一进一出抽搐gif免费好疼| 国产私拍福利视频在线观看| 精品久久久久久久末码| 久久久久久久亚洲中文字幕| 一区二区三区高清视频在线| 久久久久久久久久黄片| 国产美女午夜福利| 免费一级毛片在线播放高清视频| 亚洲真实伦在线观看| 日日干狠狠操夜夜爽| 麻豆av噜噜一区二区三区| 看十八女毛片水多多多| 日韩欧美三级三区| 日本欧美国产在线视频| 欧美潮喷喷水| 国产av在哪里看| 狂野欧美激情性xxxx在线观看| 欧美bdsm另类| 岛国在线免费视频观看| 日韩亚洲欧美综合| 国产探花在线观看一区二区| 91午夜精品亚洲一区二区三区| 少妇裸体淫交视频免费看高清| 99热这里只有精品一区| 波野结衣二区三区在线| 男人舔女人下体高潮全视频| 美女内射精品一级片tv| 乱码一卡2卡4卡精品| 我的老师免费观看完整版| av在线天堂中文字幕| 成人亚洲精品av一区二区| 两个人的视频大全免费| 色综合亚洲欧美另类图片| 老司机影院成人| 亚洲国产日韩欧美精品在线观看| 亚洲精品日韩在线中文字幕 | 伊人久久精品亚洲午夜| 精品国产三级普通话版| 男人和女人高潮做爰伦理| 国产高清三级在线| 亚洲电影在线观看av| 国产一区二区在线av高清观看| 成年免费大片在线观看| 久久鲁丝午夜福利片| 99热只有精品国产| 国产人妻一区二区三区在| 亚洲国产日韩欧美精品在线观看| 免费观看a级毛片全部| 插阴视频在线观看视频| 成人欧美大片| 亚洲成人精品中文字幕电影| 嫩草影院入口| 99精品在免费线老司机午夜| 亚洲精品日韩在线中文字幕 | 熟妇人妻久久中文字幕3abv| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清专用| 国产伦在线观看视频一区| 国产高清激情床上av| 日韩亚洲欧美综合| 国产精品99久久久久久久久| 蜜臀久久99精品久久宅男| 日韩av不卡免费在线播放| 有码 亚洲区| 在线免费观看不下载黄p国产| 欧美日韩国产亚洲二区| av免费观看日本| 国产成人a∨麻豆精品| 午夜精品一区二区三区免费看| 两个人的视频大全免费| 久久久久久大精品| 亚洲国产精品国产精品| 91久久精品电影网| 亚洲内射少妇av| 久久99热6这里只有精品| 人妻久久中文字幕网| 午夜激情福利司机影院| 欧美激情久久久久久爽电影| 床上黄色一级片| 老司机福利观看| 99久久久亚洲精品蜜臀av| 亚洲无线在线观看| 亚洲av不卡在线观看| 久久久久久九九精品二区国产| 我要搜黄色片| 久久人妻av系列| 日韩一本色道免费dvd| 亚洲av熟女| 亚洲丝袜综合中文字幕| 久久国产乱子免费精品| 男插女下体视频免费在线播放| a级一级毛片免费在线观看| avwww免费| 51国产日韩欧美| 人体艺术视频欧美日本| 国产精品爽爽va在线观看网站| 亚洲美女搞黄在线观看| 成人毛片60女人毛片免费| 日本爱情动作片www.在线观看| 精品久久久噜噜| www日本黄色视频网| 午夜精品在线福利| 亚洲性久久影院| 国产精品人妻久久久影院| 国产69精品久久久久777片| 99久久九九国产精品国产免费| 国产亚洲91精品色在线| 精品人妻熟女av久视频| 在线观看66精品国产| 精品免费久久久久久久清纯| 国内精品久久久久精免费| 亚洲成人久久性| 偷拍熟女少妇极品色| 观看免费一级毛片| 日韩人妻高清精品专区| 日本一二三区视频观看| 特级一级黄色大片| 亚洲内射少妇av| 午夜久久久久精精品| 精品人妻视频免费看| 亚洲国产精品成人久久小说 | av在线蜜桃| 美女内射精品一级片tv| 日韩在线高清观看一区二区三区| 国产精品免费一区二区三区在线| 久久久国产成人精品二区| 亚洲人成网站在线播放欧美日韩| 超碰av人人做人人爽久久| 国产精品电影一区二区三区| 免费av毛片视频| 亚洲欧美精品综合久久99| av天堂在线播放| 国产淫片久久久久久久久| 久久鲁丝午夜福利片| 综合色av麻豆| 久久久精品大字幕| 成人国产麻豆网| 国产单亲对白刺激| 日本免费一区二区三区高清不卡| 69av精品久久久久久| 久久亚洲国产成人精品v| АⅤ资源中文在线天堂| 高清毛片免费看| 欧美日韩在线观看h| 99热6这里只有精品| 99久久久亚洲精品蜜臀av| 一级毛片我不卡| 欧美日韩国产亚洲二区| 精品国产三级普通话版| 性欧美人与动物交配| 亚洲一区二区三区色噜噜| 亚洲五月天丁香| 日韩成人伦理影院| 久久精品影院6| 级片在线观看| 草草在线视频免费看| 国产单亲对白刺激| 此物有八面人人有两片| 精品一区二区三区视频在线| 看十八女毛片水多多多| av在线播放精品| 看片在线看免费视频| 国产av不卡久久| 久久人妻av系列| 婷婷六月久久综合丁香| 好男人在线观看高清免费视频| 免费av不卡在线播放| 69av精品久久久久久| av在线亚洲专区| 久久久久久大精品| 国产欧美日韩精品一区二区| 亚州av有码| 又黄又爽又刺激的免费视频.| 男女做爰动态图高潮gif福利片| 成年免费大片在线观看| 国产精品伦人一区二区| 亚洲精品国产av成人精品| 日韩强制内射视频| 精品久久久噜噜| 亚洲乱码一区二区免费版| 亚洲va在线va天堂va国产| 天堂影院成人在线观看| 日韩国内少妇激情av| 精品久久久久久久久av| 亚洲久久久久久中文字幕| 在线观看av片永久免费下载| 性色avwww在线观看| 成人欧美大片| 菩萨蛮人人尽说江南好唐韦庄 | 搞女人的毛片| 国国产精品蜜臀av免费| 久久草成人影院| 波多野结衣高清无吗| 我要看日韩黄色一级片| 亚洲精品乱码久久久v下载方式| 久久精品91蜜桃| 久久午夜福利片| 91狼人影院| 中文字幕熟女人妻在线| 亚洲国产日韩欧美精品在线观看| a级毛片免费高清观看在线播放| 日韩一区二区视频免费看| 一边亲一边摸免费视频| 国内久久婷婷六月综合欲色啪| 久久精品人妻少妇| 国产精品美女特级片免费视频播放器| 国产午夜福利久久久久久| 春色校园在线视频观看| 国产精品久久久久久久电影| 18禁裸乳无遮挡免费网站照片| 熟女电影av网| 禁无遮挡网站| 精品熟女少妇av免费看| 亚洲四区av| 人体艺术视频欧美日本| 国模一区二区三区四区视频| 色综合色国产| 精品久久久久久久久av| 欧美变态另类bdsm刘玥| 激情 狠狠 欧美| 中文资源天堂在线| 我要看日韩黄色一级片| 99久久精品一区二区三区| 色哟哟·www| 亚洲av不卡在线观看| 欧美一区二区精品小视频在线| 国模一区二区三区四区视频| 少妇高潮的动态图| 天天躁日日操中文字幕| 国产精品国产高清国产av| 最近视频中文字幕2019在线8| 亚洲精品乱码久久久v下载方式| 日产精品乱码卡一卡2卡三| 国产中年淑女户外野战色| 一个人看的www免费观看视频| 激情 狠狠 欧美| 91精品一卡2卡3卡4卡| 亚洲av一区综合| av在线亚洲专区| 欧美日韩乱码在线| 伊人久久精品亚洲午夜| 91在线精品国自产拍蜜月| 婷婷亚洲欧美| 91久久精品国产一区二区成人| 人人妻人人澡人人爽人人夜夜 | 又黄又爽又刺激的免费视频.| 国产精品免费一区二区三区在线| 国产大屁股一区二区在线视频| 色吧在线观看| 国产 一区 欧美 日韩| 国产高清视频在线观看网站| 中文字幕久久专区| 色哟哟·www| 波多野结衣巨乳人妻| 国产精品三级大全| 午夜免费男女啪啪视频观看| 国产精品日韩av在线免费观看| 看黄色毛片网站| 国产精品日韩av在线免费观看| 亚洲欧美成人精品一区二区| 免费看美女性在线毛片视频| 久久精品国产亚洲av涩爱 | 91狼人影院| 日日干狠狠操夜夜爽| 99久久九九国产精品国产免费| 六月丁香七月| 中文亚洲av片在线观看爽| 午夜精品在线福利| 12—13女人毛片做爰片一| 非洲黑人性xxxx精品又粗又长| av在线观看视频网站免费| 免费看av在线观看网站| 婷婷色综合大香蕉| 国产久久久一区二区三区| 国产高清激情床上av| 国产av一区在线观看免费| 国产精品一及| 中文字幕久久专区| 亚洲无线在线观看| 国产伦在线观看视频一区| 成人午夜高清在线视频| 伦理电影大哥的女人| 国产精品久久久久久av不卡| .国产精品久久| 99久国产av精品国产电影| 日韩一本色道免费dvd| 久久精品国产99精品国产亚洲性色| 国产高清激情床上av| 国产精品麻豆人妻色哟哟久久 | 特级一级黄色大片| 免费搜索国产男女视频| 在线观看免费视频日本深夜| 禁无遮挡网站| 亚洲av中文av极速乱| 日本黄色片子视频| 搡女人真爽免费视频火全软件| 久久久久久久亚洲中文字幕| 九九热线精品视视频播放| 看免费成人av毛片| 午夜老司机福利剧场| 高清午夜精品一区二区三区 | 在线观看av片永久免费下载| 女人被狂操c到高潮| 日韩欧美一区二区三区在线观看| 国产成人精品一,二区 | 日韩成人伦理影院| av卡一久久| 国产女主播在线喷水免费视频网站 | 国产黄色视频一区二区在线观看 | 中文字幕av在线有码专区| 在线观看美女被高潮喷水网站| 中文字幕av在线有码专区| 日韩av在线大香蕉| 亚洲成人av在线免费| 亚洲内射少妇av| 啦啦啦观看免费观看视频高清|