• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physics,chemistry,and Hirshfeld surface analyses of gamma-irradiated thalidomide to evaluate behavior under sterilization doses

    2018-06-20 05:50:54VlnerMusselMxFerreirMriMrquesMriYoshidMrinAlmeidBernrdoRodriguesWgnerMussel
    Journal of Pharmaceutical Analysis 2018年3期

    Vlner A.F.S.N.Mussel,Mx P.Ferreir,Mri B.F.Mrques,Mri I.Yoshid,Mrin R.Almeid,Bernrdo L.Rodrigues,Wgner N.Mussel,*

    aDepartamento de Química,ICEx,Universidade Federal de Minas Gerais-UFMG,Av.Ant?nio Carlos 6627,31270-901 Belo Horizonte,MG,Brazil

    bCNEN-CDTN,Comiss?o Nacional de Energia Nuclear-Centro de Desenvolvimento da Tecnologia Nuclear,Av.Ant?nio Carlos,6627 Belo Horizonte,MG,Brazil

    1.Introduction

    To ensure adequate conditions of use,sterility is a crucial attribute to any pharmaceutical material,main component,excipient,or formulation.In general,sterilized materials should have microbial survivor probability of<10-6.This criterion is the basis of the sterility assurance level.

    There are several sterilization procedures,and each has advantages and disadvantages[1,2].There is no suitable procedure for general use.Physical removal of microorganisms by membrane filtration does not require heat.Dry heat or even moist heat promotes microbiological reduction at high temperature,but results in considerable degradation of temperature-sensitive materials or devices.Sterilization using ethylene oxide is highly effective but can leave a toxic residue in porous materials such as implants.Electron-beam radiation can be used to prevent temperature effects and toxic residues in the final material,but is limited by poor penetration in bulky materials.

    Gamma irradiation has advantages over other conventional sterilization methods in solids∶high penetration,uniform efficacy,low isothermal stability,and absence of toxic residues.The main advantage is that irradiation can be used as the final sterilization procedure in starting materials and final products.In this way,the usual 25kGy dose can ensure sterilized pharmaceutical materials[2,3].Due to the potential sensitivity of pharmaceuticals,validation procedures with lower doses are usually accepted as long as reliable and adequate reduction of the biologic burden can be ensured.In this way,the risk of undesired effects over pharmaceuticals,formulations,or devices submitted to the sterilization process is minimized[4].

    Thalidomide ((RS)-2-(2,6-dioxopiperidin-3-il)-1H-isoindol-1,3(2H)-dione)was synthesized by Chemie Grünenthal in West Germany in 1954.It was introduced to the West German market in 1956 as an antiemetic for pregnant women.In the 1960s,the teratogenic effects of this drug were recognized.Fetal malformation due to the S-isomer of thalidomide resulted in restricted use of thalidomide and increased surveillance by regulatory agencies[5].

    Since then,thalidomide has been recognized as having antiangiogenic and anti-inflammatory properties.It has been used to treat leprosy and multiple myeloma.Hence,stability studies of thalidomide under radioactive stress aimed at sterilization of the drug are warranted[5].

    2.Materials and methods

    A sample of thalidomide from a validated production batch was obtained during the shelf-life of this pharmaceutical.All analyses were conducted within the validity period of the batch.

    2.1.Powder X-ray diffraction(PXRD)

    PXRD data were collected in an XRD-7000 diffractometer(Shimadzu,Kyoto,Japan)at room temperature under 40 kV,30 mA,using CuKα (λ =1.54056 ?)equipped with polycapillary focusing optics under parallel geometry coupled with a graphite monochromator.The sample was spun at 60 rpm,and scanned over an angular range of 4–60°(2θ)with a step size of 0.01°(2θ)and a time constant of 2s/step.All fitting procedures were obtained using FullProf Suite[6,7].Crystalexplorer v 17 was used to calculate the Hirshfeld surface[8].

    2.2.Single-crystal X-ray diffraction(SCXRD)

    SCXRD data were collected in a Gemini A Ultra X-ray Diffraction system(Agilent Technologies,Santa Clara,CA,USA)at room temperature using a MoKα (λ =0.71073 ?)tube as the X-ray source,equipped with a graphite monochromator and a charge-coupled device plate detector.Data collection and re finement details are given in Table 1.

    2.3.Thermogravimetric analysis(TGA)and differential thermal analysis(DTA)

    TGA and DTA experiments were carried out on a DTG60H system(Shimadzu)in a dynamic N2atmosphere(50 mL/min)using alumina pans containing≈2.0 mg of sample.Experiments were conducted at a heating rate of 10 °C/min from 25 °C to 400 °C.

    2.4.Differential scanning calorimetry(DSC)

    DSC experiments were undertaken on a DSC60 system(Shimadzu).The equipment cell was calibrated with indium(melting point,156.6 °C;heat of fusion,ΔHfus=28.54 J/g)and lead(melting point,327.5°C).Aluminum pans containing ≈1 mg of samplewere used under a dynamic N2atmosphere(50 mL/min)and a heating rate of 10 °C/min from 25 °C to 300 °C.Thalidomide can exist as two polymorphs,α and β,and the latter shows different thermal behavior.Therefore,an isothermal experiment was carried out at 270°C to obtain a pure material for comparison,as needed.

    Table 1 Single crystal re finement data for polymorph α,space group,Hall symbol,lattice parameters a,b and c(?),? angle(θ),volume,number of formulae unit per unit cell,X-ray density,wavelength,experimental angular range(θ),crystal absorption coefficient,crystal shape and dimensions,number of reflections considered for cell parameters calculation,and independent reflections used for single crystal fitting.

    2.5.Ultraviolet spectroscopy

    Ultraviolet spectroscopy was undertaken at 200–400 nm for thalidomide at 10μg/mL in ethanol on a spectrophotometer(1800;Shimadzu).Origin v9.1 was used to adjust data.

    2.6.Raman spectroscopy

    Raman spectroscopy of solid thalidomide was done on a confocal micro-Raman spectrometer(Senterra;Bruker,Billerica,MA,USA)with an excitation laser set at 785 nm.The measurement conditions were as follows∶integration time of 5 s;spectral resolution of 3–5cm-1;and spectral range of 2000–100cm-1.The laser was focused with a 4×dry objective lens,with the laser power set to 25 mW.Origin v9.1 was used to adjust data.

    2.7.Gamma irradiation

    Experiments involving gamma irradiation were done at Comiss?o Nacional de Energia Nuclear-Centro de Desenvolvimento da Tecnologia Nuclear(Belo Horizonte,MG,Brasil).The radiation system(IR-214;MDS Nordion,Ottawa,Canada)was equipped with a dry cobalt-60 source.The source had a maximum activity of 2200 TBq(60,000 Ci).The specific irradiation times were calculated,and then all samples were exposed to doses of 2,5,10,15,25,30 or 100 kGy.

    2.8.Attenuated total reflection Fourier transformed infrared spectroscopy(ATR-FTIR)

    FTIR analysis was performed at room temperature on a Spectrum 1000 spectrophotometer(PerkinElmer,United States)equipped with an attenuated total reflectance(ATR)accessory.The sample was pressed into a zinc selenide crystal,and 32 scans were averaged.For single FTIR without ATR,the samples were measured in KBr pressed pellets in the wavenumber range between 400 and 3400cm-1at room temperature,with a resolution of 4cm-1.

    2.9.Statistical analyses

    Data are the mean±standard deviation.All fitting procedures took into account three independent measurements with statistical analyses conducted using Origin v9.1.

    Fig.1.Thalidomide molecule showing the labile bond between phthalimide and glutarimide rings.

    Fig.2.The crystal structure of the polymorphs α (A)(a=8.233(1)?,b=10.070(2)?,c=14.865(2)?,α = γ =90.0°and β =102.53(2)°,monoclinic,P 21/n,Z=4)and β (B)(a=20.679(5)?,b=8.042(2)?,c=14.162(5)?,α = γ =90.0°and β =102.86(3)°,monoclinic,C 2/c,Z=8),and(C)keto-enol tautomerization.

    3.Results and discussion

    The thalidomide molecule has a labile bond that can be turned around from phthalimide and glutarimide rings(Fig.1).

    Fig.3.Powder X-ray diffraction experiments for irradiated thalidomide samples for 0,2,5,10,15,20,30 and 100 kGy.All samples were irradiated under the same conditions,only different times.

    Fig.4.Crystal projection of the asymmetric unit.Carbon(grey),oxygen(red)and nitrogen(blue)atoms.ORTEP plotted ellipsoids with 50%probability.

    In the thalidomide chemical structure,the chiral center has a neighboring ketone that may undergo to the enol form,then reforming it when switching back to the keto form.Even with uptaking of the correct R-thalidomide,a keto-enol tautomerization happened inside the human body,it would racemase into a mixture of R,S-thalidomide and the corresponding enol forms.The S-thalidomide causes the birth defects(Fig.2).

    The intensity of a diffracted peak of a certain reflection(hkl)plane for a given chemical structure is a direct contribution of the structural factor,which in turn corresponds to the number of electrons diffracting the X-ray beam on that plane.If any plane in the structure reduces its number of electrons,a direct effect of that condition will be a decrease in the intensity of that specific plane,and the resulting system will be a plane with lower electron density.In the solid state,the atoms in a structure are much less labile than in solubilized material because of numerous mutual interactions(e.g.,Van der Waals forces and/or hydrogen bonding).The fitting procedure was designed to allow the torsion angle between phthalimide and glutarimide rings to vary freely within the extraction and adjustment of the intensities in the diffraction.

    The thalidomide structure C13H10N2O4space groupP21/nhas a torsion angle of 57.28°(2θ).This structure was taken as a reference,with all procedures starting from the same template molecule, by varying the fitting sequence as follows∶(i)parameterization of the background with five polynomial terms;(ii)U,V and W(FWHM)of the pseudo-Voight function;(iii)pro file parameters NA and NB of the pseudo-Voight function;(iv)asymmetry factors P1,P2,P3 and P4 of the Berar–Baldinozzi asymmetric correction;(v)a and b beyond the beta angle of the crystal lattice;(vi)torsion angles N1-C11-C13-C2 with the initial value set to 57.28°(2θ);(vii)isotropic thermal parameter functions for all atoms.Fig.3 shows the experimental XRD pattern for all doses.

    Fig.5.Hirshfeld surface analysis and corresponding overall fingerprints for polymorphs α and β (A and B,respectively),the torsion angles(C),the fingerprint O-O interactions(π-πrespectively)(D).The 2 kGy irradiated αpolymorph with respectively torsion angle and overall fingerprint(E).

    Fig.6.Hirshfeld surface analysis and overall contributions for all atoms pairs in polymorphs α and β.

    Fig.7.Raman experimental spectra of polymorphs α and β evidencing the spectra differences.

    SCXRD was carried out on a recrystallized sample from an original polymorphαsample by solvent evaporation.To 20 mL of a methanol∶water(5∶3)solution was added 25 mg of polymorph α,which resulted in a supersaturated solution.Non-solubilized crystals were filtered out,and the solution was allowed to stand to recrystallize over 23 days.The crystal data,collection,and details of structure re finement of polymorphαare summarized in Table 1.Refinement was carried out in the absence of anomalous scattering.Changes in illuminated volume were kept to a minimum,and were taken into account[9–14]using multi-scan inter-frame scaling.Hydrogen atoms were geometrically fixed to their bonded atoms,with their thermal isotropic term,Uiso(H)in the range 1.2–1.5 times Ueqof the parent atom,after which the positions were re fined with adequate constraints.Fig.4 shows the asymmetric unit as an Ortep plot for the determination of crystal structure,as well as the unit cell ellipsoids with 50%probability.

    Hirschfeld surface analyses can provide a deep understanding of certain characteristics based on electron distribution,πinteractions,and the contributions of pairs of atoms.Polymorphsαand βshowed substantial differences for each fingerprint(Figs.5A and B).Polymorphβshowed a relatively largeπinteraction on the phthalimide ring.This was a direct evaluation of close contact and the internal distribution of theβcell lattice(Fig.5B).A largedistance of approximately 1.1 ? from the inside surface(di)interaction on polymorphβwas related to the appearance of hydrogenatom interaction from the phthalimide–glutarimide transversional ring arrangement within the unit cell(Figs.5B and C).The two interactions at about 1.0 and 1.3 ?(Fig.5B)from the inside surface(di)were due to the glutarimide–glutarimide nitrogen-hydrogen and carbonyl group of two close molecules within the unit cell.The overall O-H interactions showed shorter distances from the inside surface(di)of about 1.0 and 1.3 ? forα and β,respectively,and showed a more compact unit cell for polymorphβ(Fig.5D).For polymorphαirradiated at 2 kGy,the two adjacent glutarimide rings within the unit cell were responsible for the mutual O-H interactions leading to hydrogen-bond formation and/or the possibility of a tautomeric pair structure(Fig.5E).Fig.6 shows the individual contribution from each atom pair to the overall probability of interaction over the thalidomide molecule[15–17].

    Table 2 Torsion angle(degrees θ),lattice parameters(?),β (degrees θ)and Rp goodness of fitting parameter(%).

    Table 3 Experimentaland calculated Raman'sobserved peak,fully assigned forα polymorph.

    Fig.8.UV experimental spectra for α and β polymorphs.

    Raman spectroscopy was undertaken for both polymorphic forms of thalidomide.Theoretical calculations were carried out to increase understanding of the observed vibrational modes.Theoretical calculations were done using the structures of each polymorph published by the Cambridge Crystallographic Data Center(Cambridge,UK)using Spartan v14.Fig.7 shows the experimental Raman spectra for polymorphsα andβ.

    Table 2 shows the experimental and theoretical bands(as assigned)for each mode of polymorphα.For symmetric stretching of the carbonyl group,centered at 1785 and 1769 cm–1,no equivalent vibrational modes,when compared with polymorphβ,were identified.

    Asymmetric stretching of the carbonyl group was identified at 1754 cm–1.Vibrational modes appeared at two carbonyl groups for polymorphαwhereas,in polymorphβ,such modes were related primarily only to one carbonyl group.The stretching region of the CH2-CH bond in the glutarimide ring showed peaks at 1166 and 1176 cm-1,and showed a substantial difference for the ratio and axial offset for the two polymorphs.Peaks on the spectrum for polymorphαat 701 and 693 cm-1were assigned to the vibrational modes corresponding to ring deformations outside the plane.Peaks at 604 and 595 cm-1were assigned to the ring deformation and stretching of the CH group and CH bonds.For deformation out of the plane,peaks at 404,391,236 and 225 cm-1were observed.For crystalline structures in different polymorphs,the vibrational modes in the low vibrational frequency region(<200 cm-1)are attributed to vibrations of the crystal lattice,and that region can be regarded as a “second fingerprint”of the Raman spectrum for each substance(Table 3)[18,19].Comparison of these data suggested that differences in the spectra of polymorphsαand βwere due to compression of their molecules and the way they were interacting in their crystal lattices;these effects influenced their vibrational modes directly.Transformation between thalidomide polymorphs was achieved by providing adequate energy for the crystalline lattice with the aim of reorganization.This procedure was accompanied by TGA,DTA and DSC.

    Fig.9.(A)TGA/DTA simultaneous curve of α polymorph form;(B)DSC curve of α polymorph form,with inset zoom of the endothermic peak.

    In simultaneous TGA/DTA,mass loss was observed only once at an onset temperature of 264°C,suggesting that the material was anhydrous and pure.The DTA curve revealed two endothermic peaks corresponding to fusion of polymorphsα andβ,respectively.The DSC curve showed two endothermic events at onset temperatures of 245 °C and 274 °C.Fig.8 shows the UV spectra for polymorphsαandβ.We observed five bands for polymorphα(A1,A2,A3,A4 and A5)and four bands for polymorphβ(B1,B2,B3 and B4).The A1 band at 207nm is related to the n→π*transitions in aromatic compounds.The A2 and B1 bands at 221nm and 222 nm,respectively,are related toπ*conjugated systems,showing aromatic compounds to have chromophore substitution.The A3 and B2 bands at 232 nm and 233nm,respectively,are related to tautomers generated by the working pH of the solution.The A4 and B3 bands at 240nm and 241 nm,respectively,are the characteristic bands of thalidomide.The A5 and B4 bands both at 300 nm are related to groups with a low-energy configuration state,just like the carbonyl groups in thalidomide.For better visualization of the first endothermic peak,enlargement of this region in the curve is shown(Fig.9).This event was identified as a crystalline transition between the two polymorphs of thalidomide.

    The second endothermic event corresponded to decomposition of the formed material,with this being only theβform in the case of total conversion and a mixture ofαandβin the case of partial conversion[19].To confirm these occurrences,an isotherm at 270°C using the material for further powder XRD was undertaken(Fig.10).Comparison of the diffractograms and interplanar distances enabled us to confirm and identify the material as polymorphβ.

    We wished to visualize possible changes in thermal behavior of the material after irradiation.Hence,DSC was done with samples receiving doses of 2,5,30 or 100 kGy.In the DSC curve of the samples irradiated with 2 and 5kGy,a single endothermic peak with an onset temperature of 275°C was noted for both samples.This finding suggested total conversion of theαform into theβ form during heating,so this peak was designated as the fusion follow by decomposition of polymorphβ(Fig.11).The DSC curves of samples irradiated with 30 and 100 kGy revealed two endothermic peaks with onset temperatures of 272 °C and 275 °C for samples irradiated with 30 kGy and at 272 °C and 274 °C for samples irradiated with 100 kGy(Fig.12).

    Fig.10.Comparative diffractogram between α and β polymorphs.

    We designated the first peak as the fusion of polymorphαand the second peak as the fusion of polymorphβfor both curves.Different from the report by Reepmeyer and colleagues[14],the DSC curve in our study was carried out at a heating rate of 10°C/min,but we observed values very close to those reported by Reepmeyer and colleagues.We propose that after irradiation with doses of 30 and 100 kGy,polymorphαacquired higher thermal stability in relation to polymorphic transformation.Therefore,the fusion and decomposition temperature ofαform was visualized in DSC curves instead of its crystalline transformation,as shown in the physicochemical characterization of the material.The irradiated sample had a more compact unit cell,so there was an increase in hydrogen-atom interactions within the unit cell,resulting in an increase in thermal stability of polymorphα.

    4.Conclusion

    Fig.11.DSC curves of α polymorph form after(A)2 kGy dose and(B)5 kGy dose.

    Fig.12.DSC curves of α polymorph form after(A)30 kGy dose and(B)100 kGy dose.

    The observed turning around phthalimide and glutarimide rings already occurs at low radiation values(e.g.,2kGy).Eventually,the absorbed energy will overcome the repulsive force due to the proximity of the carboxyl group and produce a full turn.With a continuous supply of energy,the system rotates completely at higher doses of 15,20,30 and 100kGy.With higher doses,the full turning effect is reached,allowing the network to relax its tension.The thalidomide molecule has a center of symmetry.Therefore,one full turn of phthalimide and glutarimide rings between each other,starting from 57.3°,will lead to the same molecule,with stabilization of the final angle based on the total amount of absorbed energy.After a full turn,the process starts again.Irradiated samples at 30 and 100kGy had more compact unit cells and a lower volume,so there was an increase in the intermolecular interaction between hydrogen atoms within the unit cell,which resulted in higher thermal stability for polymorphα.At 30 and 100kGy,each melting point could be seen separately,which was a different situation compared with that of the non-irradiated sample.A fourfold increase in the usual dose used in pharmaceuticals is employed for gamma-ray sterilization.Thalidomide molecules can release excess energy by turning the bond between phthalimide and glutarimide rings.Hence,gamma-ray sterilization of pure thalidomide before use in fixed-dose pharmaceutical formulations is possible.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    The authors would like to thank the CNEN-CDTN(Comiss?o Nacional de Energia Nuclear–Centro de Desenvolvimento da Tecnologia Nuclear)LIG(Laboratório de Irradia??o Gama)facility for the assistance,and Funda??o de Amparo à Pesquisa do Estado de Minas Gerais(FAPEMIG)(APQ-02087-14),Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)(245914/2012),Coordena??o de Aperfei?oamento de Pessoal de Nível Superior(CAPES)(PNPD-N-1648694-scholarship No2016752283)and Pró-Reitoria de Pesquisa/UFMG for financial support.

    [1]Health Products and Food Branch Inspectorate∶Process Validation∶Terminal Sterilization Processes for Pharmaceutical Products,Supersedes∶GUI-0007,GUI-0009 and GUI-0010,(GUIDE-0074),OTTAWA,Ontario,Canada,2006.

    [2]EN ISO 13408-1∶2008(en),Aseptic processing of health care products—Part 1∶General requirements,compilation prepared by Online Browsing Platform(OBP),2008,〈https∶//www.iso.org/obp/ui/#iso∶std∶iso∶13408∶-1∶ed-2∶v1∶en〉.

    [3]AAMI/ISO 11137-2∶2013,Sterilization of health care products-Radiation-Part 2∶Establishing the sterilization dose(revision of 11137-2∶2012),ISBN(s)∶1570205027,2013.

    [4]J.Agalloco,USP Microbiology&Sterility Assurance,Expert Committee USP∶Activities Impacting Sterilization&Sterility Assurance,USP 35 1211,revision 2008.

    [5]F.Hasanain,K.Guenther,W.M.Mullett,et al.,Gamma sterilization of pharmaceuticals-a review of the irradiation of excipients,active pharmaceutical ingredients and final drug product formulations,J.Pharm.Sci.Technol.68(2014)113–137.

    [6]T.Roisnel,J.Rodriguez-Carvajal,WinPLOTR∶a Windows tool for powder diffraction patterns analysis Materials Science Forum,Proceedings of the Seventh European Powder Diffraction Conference,EPDIC 7,2000∶118–123.

    [7]J.Rodriguez-Carvajal,T.Roisnel,FullProf.98 and WinPLOTR∶new windows 95/NT applications for diffraction.Commission for powder,Int.Union Crystallogr.Newsl.20(1998)35.

    [8]M.J.Turner,J.J.McKinnon,S.K.Wolff,et al.,CrystalExplorer17,University of Western,Australia,2017 〈http∶//crystalexplorer.scb.uwa.edu.au〉.

    [9]C.H.G?rbitz,What is the best crystal size for collection of X-ray data?Reif nement of the structure of glycyl-L-serine based on data from a very large crystal,Acta Cryst.B55(1999)1090–1098.

    [10]R.I.Cooper,A.L.Thompson,D.J.Watkin,CRYSTALS enhancements∶dealing with hydrogen atoms in re finement,J.Appl.Cryst.43(2010)1100–1107.

    [11]G.M.Sheldrick,A short history of SHELX,Acta Cryst.A64(2008)112–122.

    [12]P.W.Betteridge,J.R.Carruthers,R.I.Cooper,et al.,CRYSTALS Version 12∶software for guided crystal structure analysis,J.Appl.Cryst.36(2003)1487.

    [13]D.J.Watkin,C.K.Prout,J.R.Carruthers,et al.,Crystals Issue 10,Chemical CrystallographyLaboratory,Oxford,UK,1996.

    [14]J.C.Reepmeyer,M.O.Rhodes,D.C.Cox,et al.,Characterization and crystal structure of two polymorphic forms of racemic thalidomide,J.Chem.Soc.Perkin Trans.2(9)(1994)2063–2067.

    [15]M.A.Spackman,D.Jayatilaka,Hirshfeld surface analysis,CrystEngComm 11(2009)19–32.

    [16]M.A.Spackman,J.J.McKinnon,Fingerprinting intermolecular interactions in molecular crystals,CrystEngComm 4(2002)378–392.

    [17]M.J.Turner,J.J.McKinnon,D.Jayatilaka,et al.,Visualisation and characterisation of voids in crystalline materials,CrystEngComm 13(2011)1804–1813.

    [18]P.J.Larking,M.Dabros,B.Sars field,et al.,Polymorph characterization of active pharmaceutical ingredients(APIs)using low-frequency Raman spectroscopy,Appl.Spectrosc.68(7)(2014)758–776.

    [19]E.P.J.Parrot,B.M.Fischer,L.F.Fladden,et al.,Terahertz spectroscopy of crystalline and non-crystalline solids,Terahertz spectroscopy and imaging Springer Series in Optical Sciences book series(SSOS),171,2012∶191–227.

    欧美人与善性xxx| 欧美一区二区精品小视频在线| 少妇熟女aⅴ在线视频| 欧美不卡视频在线免费观看| 不卡视频在线观看欧美| 亚洲国产精品合色在线| 少妇高潮的动态图| 国产高潮美女av| 中文欧美无线码| 久久久久久久久大av| 哪里可以看免费的av片| 免费大片18禁| 国产精品久久久久久av不卡| 嫩草影院入口| 精品人妻熟女av久视频| 久久精品国产亚洲网站| 欧美另类亚洲清纯唯美| 精品人妻一区二区三区麻豆| 老师上课跳d突然被开到最大视频| 亚洲av成人精品一区久久| 伦精品一区二区三区| 成人亚洲欧美一区二区av| 免费观看在线日韩| 只有这里有精品99| 日本色播在线视频| 色吧在线观看| 亚洲欧洲日产国产| 日本免费a在线| 一级毛片我不卡| 久久久色成人| 一级av片app| 最近最新中文字幕大全电影3| 免费一级毛片在线播放高清视频| 欧美日本视频| 欧美激情久久久久久爽电影| 亚洲国产高清在线一区二区三| 欧美精品一区二区大全| 只有这里有精品99| www.色视频.com| 床上黄色一级片| 嫩草影院精品99| 久久6这里有精品| 一级毛片我不卡| 一级黄片播放器| 中文字幕制服av| 欧美一级a爱片免费观看看| 国产伦精品一区二区三区四那| 黄色配什么色好看| 午夜福利高清视频| 少妇丰满av| 国产国拍精品亚洲av在线观看| 免费大片18禁| 国产成人精品婷婷| 精品久久国产蜜桃| 天美传媒精品一区二区| 一本久久中文字幕| 国产真实乱freesex| 久久久国产成人精品二区| 日本黄色片子视频| av黄色大香蕉| 国产亚洲精品av在线| 99视频精品全部免费 在线| 不卡一级毛片| 成年女人看的毛片在线观看| 永久网站在线| 欧美三级亚洲精品| 日韩一本色道免费dvd| 欧美日本亚洲视频在线播放| 91av网一区二区| 亚洲18禁久久av| 国产成人福利小说| 国产高清有码在线观看视频| 日本一二三区视频观看| 成人av在线播放网站| 麻豆精品久久久久久蜜桃| 欧美高清性xxxxhd video| 免费观看精品视频网站| 国产成人一区二区在线| av福利片在线观看| 亚洲成人久久性| 12—13女人毛片做爰片一| 男人舔奶头视频| 91aial.com中文字幕在线观看| 婷婷色综合大香蕉| 亚洲综合色惰| 亚洲18禁久久av| 深爱激情五月婷婷| 日本一二三区视频观看| 18禁裸乳无遮挡免费网站照片| 狂野欧美白嫩少妇大欣赏| 日本在线视频免费播放| 欧美高清成人免费视频www| 色5月婷婷丁香| 国产白丝娇喘喷水9色精品| 九九在线视频观看精品| 大型黄色视频在线免费观看| 婷婷色综合大香蕉| 国产高清视频在线观看网站| 乱人视频在线观看| 天天躁日日操中文字幕| 午夜爱爱视频在线播放| 国产精品久久久久久久久免| 国产亚洲av片在线观看秒播厂 | 久久人妻av系列| 亚洲,欧美,日韩| 悠悠久久av| 五月伊人婷婷丁香| 国产一区二区在线av高清观看| 久久久久九九精品影院| 国产av麻豆久久久久久久| 男女啪啪激烈高潮av片| 亚洲av一区综合| 老司机福利观看| 国产精品一区二区在线观看99 | av天堂中文字幕网| 久久久精品94久久精品| 成人亚洲精品av一区二区| h日本视频在线播放| 亚洲欧美成人综合另类久久久 | 中文字幕人妻熟人妻熟丝袜美| 天堂中文最新版在线下载 | 又爽又黄a免费视频| 亚洲中文字幕日韩| 色哟哟·www| 久久人人爽人人片av| 成人永久免费在线观看视频| 精品一区二区免费观看| 一进一出抽搐动态| 国产毛片a区久久久久| 日日撸夜夜添| 日本撒尿小便嘘嘘汇集6| 特级一级黄色大片| 深夜精品福利| 国产亚洲欧美98| 久久鲁丝午夜福利片| 婷婷六月久久综合丁香| 一进一出抽搐动态| 国产精品.久久久| 免费电影在线观看免费观看| 少妇熟女欧美另类| 国内精品一区二区在线观看| 亚洲熟妇中文字幕五十中出| 女人被狂操c到高潮| 不卡视频在线观看欧美| 2021天堂中文幕一二区在线观| 国产成人精品婷婷| 性插视频无遮挡在线免费观看| 国产精品一二三区在线看| 亚洲av成人精品一区久久| 日韩,欧美,国产一区二区三区 | 高清午夜精品一区二区三区 | 成人鲁丝片一二三区免费| 亚洲丝袜综合中文字幕| 三级男女做爰猛烈吃奶摸视频| 国产av在哪里看| 少妇的逼好多水| 久久久久九九精品影院| 九九爱精品视频在线观看| 熟妇人妻久久中文字幕3abv| 亚洲精品亚洲一区二区| 亚洲18禁久久av| 性色avwww在线观看| 亚洲久久久久久中文字幕| 国产黄片美女视频| 国产大屁股一区二区在线视频| 夜夜看夜夜爽夜夜摸| 国国产精品蜜臀av免费| 日本三级黄在线观看| 亚洲欧美精品自产自拍| 一夜夜www| 精品人妻一区二区三区麻豆| 自拍偷自拍亚洲精品老妇| 性插视频无遮挡在线免费观看| 成人亚洲精品av一区二区| 久久人妻av系列| 久久6这里有精品| 美女 人体艺术 gogo| 午夜精品一区二区三区免费看| 一级黄色大片毛片| 国产精品av视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 黄色配什么色好看| 在线观看一区二区三区| 亚洲av熟女| 干丝袜人妻中文字幕| 亚洲,欧美,日韩| 亚洲av第一区精品v没综合| 久久精品夜色国产| 午夜免费男女啪啪视频观看| 中文字幕av成人在线电影| 亚洲国产欧美在线一区| 亚洲最大成人手机在线| 久久人人爽人人片av| 免费av观看视频| 22中文网久久字幕| 国产成年人精品一区二区| 夜夜爽天天搞| 特大巨黑吊av在线直播| 最近最新中文字幕大全电影3| 尾随美女入室| 久久久久久九九精品二区国产| 丰满的人妻完整版| 亚洲高清免费不卡视频| 午夜精品国产一区二区电影 | 国产成人a区在线观看| 小说图片视频综合网站| 久久久成人免费电影| 夜夜爽天天搞| 色尼玛亚洲综合影院| 伦理电影大哥的女人| 国内揄拍国产精品人妻在线| 亚洲欧美日韩卡通动漫| 国产一级毛片在线| 黄色一级大片看看| 国产伦精品一区二区三区视频9| 久久久久网色| 婷婷亚洲欧美| 一级二级三级毛片免费看| 国内久久婷婷六月综合欲色啪| 国产三级中文精品| 成人无遮挡网站| 亚洲国产日韩欧美精品在线观看| 精品午夜福利在线看| 欧美丝袜亚洲另类| 悠悠久久av| 久久韩国三级中文字幕| 国产伦理片在线播放av一区 | 中文字幕制服av| 边亲边吃奶的免费视频| 亚洲精品久久国产高清桃花| 人妻制服诱惑在线中文字幕| 少妇的逼好多水| 内地一区二区视频在线| 中文欧美无线码| 99久国产av精品国产电影| 伦精品一区二区三区| 波多野结衣高清作品| 久久精品国产99精品国产亚洲性色| 国产极品精品免费视频能看的| 日本av手机在线免费观看| 亚洲三级黄色毛片| 国产私拍福利视频在线观看| 午夜福利成人在线免费观看| 久久99精品国语久久久| 国产亚洲av嫩草精品影院| 成人高潮视频无遮挡免费网站| 97超视频在线观看视频| av女优亚洲男人天堂| 日本一二三区视频观看| 国产视频首页在线观看| 久久久久九九精品影院| 欧美极品一区二区三区四区| 人妻制服诱惑在线中文字幕| 免费电影在线观看免费观看| 久久久国产成人免费| 波多野结衣巨乳人妻| 亚洲成人精品中文字幕电影| 一区二区三区四区激情视频 | 又粗又爽又猛毛片免费看| 中国国产av一级| 久久久久性生活片| 午夜免费男女啪啪视频观看| 大香蕉久久网| 亚洲自拍偷在线| 久久综合国产亚洲精品| 成年免费大片在线观看| 亚洲最大成人中文| 色综合亚洲欧美另类图片| 亚洲婷婷狠狠爱综合网| 成人美女网站在线观看视频| 亚洲国产高清在线一区二区三| 色综合亚洲欧美另类图片| 黄片wwwwww| 国产精品福利在线免费观看| 97在线视频观看| 99热全是精品| 日本熟妇午夜| 婷婷六月久久综合丁香| 18禁裸乳无遮挡免费网站照片| 亚洲在线观看片| 国产精品久久久久久亚洲av鲁大| videossex国产| 免费观看精品视频网站| 少妇人妻一区二区三区视频| 能在线免费看毛片的网站| 看黄色毛片网站| av在线观看视频网站免费| 99国产精品一区二区蜜桃av| 精品日产1卡2卡| 99久久九九国产精品国产免费| 久久婷婷人人爽人人干人人爱| 欧美在线一区亚洲| 午夜久久久久精精品| 国产爱豆传媒在线观看| or卡值多少钱| 乱系列少妇在线播放| 简卡轻食公司| kizo精华| 久久国产乱子免费精品| 国产老妇伦熟女老妇高清| 中国美白少妇内射xxxbb| 欧美高清成人免费视频www| 精品国产三级普通话版| 免费看美女性在线毛片视频| 国产视频内射| 国产精品久久久久久久电影| 菩萨蛮人人尽说江南好唐韦庄 | 插逼视频在线观看| 我的女老师完整版在线观看| 国产av不卡久久| 午夜福利视频1000在线观看| 国产免费男女视频| 美女国产视频在线观看| 非洲黑人性xxxx精品又粗又长| 波野结衣二区三区在线| 久久精品国产亚洲av香蕉五月| 亚洲精品影视一区二区三区av| 特大巨黑吊av在线直播| 亚洲成人av在线免费| 国产av不卡久久| 免费看日本二区| 熟女电影av网| 色哟哟·www| 特大巨黑吊av在线直播| 免费观看在线日韩| 国产精品爽爽va在线观看网站| 国产精品久久久久久久久免| 美女脱内裤让男人舔精品视频 | 日本爱情动作片www.在线观看| 亚洲国产精品国产精品| 欧美+亚洲+日韩+国产| 日日摸夜夜添夜夜爱| 99热精品在线国产| 成人国产麻豆网| 啦啦啦啦在线视频资源| 国产精品福利在线免费观看| 亚洲精品国产av成人精品| 国产午夜精品论理片| 日产精品乱码卡一卡2卡三| 麻豆成人av视频| 成人国产麻豆网| 最近手机中文字幕大全| 久久久欧美国产精品| 男人舔女人下体高潮全视频| 在现免费观看毛片| 黄色配什么色好看| 99在线人妻在线中文字幕| 中出人妻视频一区二区| 成年女人看的毛片在线观看| 免费看美女性在线毛片视频| 国产又黄又爽又无遮挡在线| 黄片无遮挡物在线观看| 国产亚洲精品久久久com| 国产伦在线观看视频一区| 久久中文看片网| 性欧美人与动物交配| 久久精品91蜜桃| 亚洲精品国产成人久久av| 国产精品野战在线观看| 成人特级av手机在线观看| 亚洲丝袜综合中文字幕| 成年女人永久免费观看视频| 日韩在线高清观看一区二区三区| 国产精品女同一区二区软件| 久久精品国产亚洲av涩爱 | 赤兔流量卡办理| 欧美一区二区国产精品久久精品| 成人午夜精彩视频在线观看| 亚洲精品粉嫩美女一区| 看黄色毛片网站| 国产视频首页在线观看| 国产成人一区二区在线| 一区二区三区四区激情视频 | 久久久色成人| 22中文网久久字幕| 麻豆精品久久久久久蜜桃| 久久99精品国语久久久| 性欧美人与动物交配| 成人三级黄色视频| 精品久久久久久成人av| 国产私拍福利视频在线观看| 国产色婷婷99| 久久久久久国产a免费观看| 波多野结衣巨乳人妻| a级毛片a级免费在线| 国产成人午夜福利电影在线观看| 免费大片18禁| 成年版毛片免费区| 一边摸一边抽搐一进一小说| 日本黄大片高清| 久久久久九九精品影院| 12—13女人毛片做爰片一| 人妻少妇偷人精品九色| 此物有八面人人有两片| 日本黄色片子视频| 最新中文字幕久久久久| 午夜久久久久精精品| 97超视频在线观看视频| 日韩一区二区视频免费看| 九九热线精品视视频播放| 亚洲精华国产精华液的使用体验 | 夫妻性生交免费视频一级片| 99久久精品国产国产毛片| 成年女人看的毛片在线观看| 国产精品美女特级片免费视频播放器| 国产av在哪里看| 一级av片app| 久久精品国产自在天天线| 99热这里只有精品一区| 99久久中文字幕三级久久日本| 精品久久久久久久久久免费视频| 国产一区二区在线av高清观看| 久久久欧美国产精品| 国产精品女同一区二区软件| 老熟妇乱子伦视频在线观看| 18禁裸乳无遮挡免费网站照片| 日本黄色视频三级网站网址| 国产美女午夜福利| 少妇人妻一区二区三区视频| 亚洲第一电影网av| 亚洲av成人av| 中国美白少妇内射xxxbb| 国产黄片视频在线免费观看| 一个人看的www免费观看视频| 日韩欧美精品免费久久| 一区二区三区高清视频在线| a级毛色黄片| av国产免费在线观看| 亚洲人成网站在线播| 美女国产视频在线观看| 大又大粗又爽又黄少妇毛片口| 五月玫瑰六月丁香| 中文字幕制服av| 亚洲三级黄色毛片| 欧美最黄视频在线播放免费| 亚洲精品乱码久久久久久按摩| 欧美成人a在线观看| 免费观看精品视频网站| 99久久精品热视频| 女人被狂操c到高潮| 国产极品天堂在线| 亚洲成人久久爱视频| 边亲边吃奶的免费视频| 一本久久精品| 在线a可以看的网站| 一个人观看的视频www高清免费观看| 免费观看精品视频网站| 亚洲国产欧洲综合997久久,| 老女人水多毛片| 久久亚洲精品不卡| 校园春色视频在线观看| 亚洲精品日韩av片在线观看| 美女高潮的动态| 久久99精品国语久久久| 在线免费观看不下载黄p国产| 99久久久亚洲精品蜜臀av| 亚洲四区av| 三级男女做爰猛烈吃奶摸视频| 中文字幕熟女人妻在线| 国产精品电影一区二区三区| 日韩欧美三级三区| 女人被狂操c到高潮| 欧美又色又爽又黄视频| 国产精品嫩草影院av在线观看| 国产伦一二天堂av在线观看| 高清日韩中文字幕在线| 久久人妻av系列| 一级黄片播放器| 婷婷色av中文字幕| 免费无遮挡裸体视频| 久久综合国产亚洲精品| 国产精品人妻久久久久久| 成年女人永久免费观看视频| 青春草视频在线免费观看| 99久久中文字幕三级久久日本| 国产精品永久免费网站| 男人舔女人下体高潮全视频| 亚洲av不卡在线观看| 日本色播在线视频| 久久久国产成人精品二区| 中文欧美无线码| 欧美丝袜亚洲另类| 91午夜精品亚洲一区二区三区| 午夜爱爱视频在线播放| 午夜福利高清视频| 亚洲欧美日韩高清专用| 搞女人的毛片| 国产精品国产三级国产av玫瑰| 在线播放国产精品三级| 日韩欧美 国产精品| 少妇裸体淫交视频免费看高清| 午夜视频国产福利| 国产精品人妻久久久影院| 中文字幕免费在线视频6| 日本色播在线视频| 麻豆av噜噜一区二区三区| 神马国产精品三级电影在线观看| 国产成人aa在线观看| 边亲边吃奶的免费视频| 精品一区二区三区视频在线| 不卡一级毛片| 男人和女人高潮做爰伦理| 天堂中文最新版在线下载 | 少妇的逼好多水| 精品国内亚洲2022精品成人| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕| 99热只有精品国产| av在线老鸭窝| 精品午夜福利在线看| 国内精品久久久久精免费| 99热只有精品国产| 一本一本综合久久| 男女那种视频在线观看| 99久久中文字幕三级久久日本| 内地一区二区视频在线| 久久精品久久久久久噜噜老黄 | 韩国av在线不卡| 亚洲精品日韩在线中文字幕 | 国产精品久久久久久亚洲av鲁大| 美女 人体艺术 gogo| 欧美又色又爽又黄视频| 人妻系列 视频| 久久人人精品亚洲av| 免费看av在线观看网站| 国产精品无大码| 国产亚洲欧美98| 国产 一区精品| 女的被弄到高潮叫床怎么办| 国产一区二区在线观看日韩| 午夜福利成人在线免费观看| avwww免费| 久久精品国产鲁丝片午夜精品| 精品一区二区免费观看| 日韩视频在线欧美| 成人午夜高清在线视频| 一区二区三区高清视频在线| 精品99又大又爽又粗少妇毛片| 床上黄色一级片| 99久久九九国产精品国产免费| 国产真实乱freesex| 色噜噜av男人的天堂激情| 国产精品电影一区二区三区| 色播亚洲综合网| 久久久久久九九精品二区国产| 精品99又大又爽又粗少妇毛片| 国产一区二区激情短视频| 大香蕉久久网| 51国产日韩欧美| 国产蜜桃级精品一区二区三区| 在线国产一区二区在线| 国模一区二区三区四区视频| 人人妻人人澡欧美一区二区| 国产综合懂色| 超碰av人人做人人爽久久| 日本黄色视频三级网站网址| 国产一级毛片在线| 少妇的逼好多水| 久久久久久久久久久免费av| 国产麻豆成人av免费视频| 久久精品久久久久久噜噜老黄 | 色哟哟哟哟哟哟| 成人亚洲精品av一区二区| 国国产精品蜜臀av免费| 三级男女做爰猛烈吃奶摸视频| 日韩一区二区三区影片| 久久久久久久久久黄片| 国产成人freesex在线| 国产人妻一区二区三区在| 国产精品av视频在线免费观看| 免费av观看视频| 春色校园在线视频观看| 日韩欧美精品v在线| 日韩视频在线欧美| 99久久无色码亚洲精品果冻| av天堂在线播放| 男女那种视频在线观看| av视频在线观看入口| 一进一出抽搐gif免费好疼| 亚洲国产精品久久男人天堂| 青春草亚洲视频在线观看| 日本黄色视频三级网站网址| 欧美成人免费av一区二区三区| 国国产精品蜜臀av免费| 亚洲人成网站在线播放欧美日韩| 一级av片app| 国产一区二区在线av高清观看| 变态另类成人亚洲欧美熟女| 国产日本99.免费观看| 日韩欧美三级三区| 国产毛片a区久久久久| 热99re8久久精品国产| 免费av毛片视频| 内射极品少妇av片p| 久99久视频精品免费| 美女国产视频在线观看| 精品少妇黑人巨大在线播放 | 欧美变态另类bdsm刘玥| 一本久久中文字幕| 黄片wwwwww| 国产精品人妻久久久久久| 国内精品宾馆在线| 亚洲欧洲国产日韩| 久久久久免费精品人妻一区二区| 日韩高清综合在线| 国产高潮美女av| 亚洲一区高清亚洲精品| 亚洲丝袜综合中文字幕| 日韩三级伦理在线观看| 国产精品人妻久久久久久| 日本av手机在线免费观看| 一级黄色大片毛片| 国产老妇伦熟女老妇高清| 国产极品天堂在线|