• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Seasonal Forecasts of the Summer 2016 Yangtze River Basin Rainfall

    2018-06-20 01:49:56PhilipBETTAdamSCAIFEChaofanLIChrisHEWITTNicolaGOLDINGPeiqunZHANGNickDUNSTONEDougSMITHHazelTHORNTONRiyuLUandHongLiREN
    Advances in Atmospheric Sciences 2018年8期

    Philip E.BETT,Adam A.SCAIFE,Chaofan LI,Chris HEWITT,Nicola GOLDING,Peiqun ZHANG,Nick DUNSTONE,Doug M.SMITH,Hazel E.THORNTON,Riyu LU,and Hong-Li REN

    1 Met Office Hadley Centre,FitzRoy Road,Exeter EX1 3PB,UK

    2 College of Engineering,Mathematics and Physical Sciences,University of Exeter,Exeter,Devon EX4 4QF,UK

    3 Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    4 Laboratory for Climate Studies,National Climate Center,China Meteorological Administration,Beijing 100081,China

    5 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    1.Introduction

    The Yangtze River basin cuts across central China,providing water,hydroelectricity and agricultural land for millions of people.The Yangtze has been subject to flooding throughout history(e.g.,Plate,2002;Yu et al.,2009),linked to variations in the East Asian monsoon that are sometimes driven by factors such as the El Ni?o–Southern Oscillation(ENSO;e.g.Zhang et al.,2016a,b).Large hydroelectric dams along the river and its tributaries,such as the Three Gorges Dam(Jiao et al.,2013),have flood defense as their primary responsibility.However,by lowering the water level behind the dam to protect against flooding,less electricity will be produced.There are therefore clear benefits of forecasting impactful rainfall events at long lead times,allowing mitigation planning for flooding and electricity production.

    The relationship between ENSO and the East Asian monsoon is complex and not fully understood.However,it has long been clear that a strong El Ni?o peaking in winter is likely to be followed by above-average rainfall in China the following summer(e.g.,Stuecker et al.,2015;He and Liu,2016;Xie et al.,2016;Zhang et al.,2016a,b),although this response is not symmetric under La Ni?a conditions(Hardiman et al.,2017).The extreme El Ni?o event of 1997/98 was followed by devastating floods in the Yangtze River basin(Zong and Chen,2000;Ye and Glantz,2005;Yuan et al.,2017):thousands of people died,millions were made homeless,and the economic losses ran into billions of CNY.In the subsequent years,much work has gone into better water management and flood prevention,and into improving both the accuracy and communication of climate forecasts,to prevent such a disaster happening again.

    Seasonal rainfall forecasts across China have long been produced based on statistical relationships with large-scale climate phenomena,rather than forecasting precipitation di-rectly from dynamical models.For example,Zhu et al.(2008)and Li and Lin(2015)both examined the skill of 500 hPa geopotential height(z500)data,from multi-model ensembles of dynamical seasonal forecast systems,for forecasting summer monsoon and Yangtze river valley rainfall,respectively.Tung et al.(2013),however,found that using sea level pressure performed betterthan usingz500when forecasting station-scale summer rainfall in southern China.Kwon et al.(2009),Peng et al.(2014),Wu and Yu(2016),Xing et al.(2016)and Zhang et al.(2016b)all investigated different statistical approaches to forecasting summer precipitation in China,based on various observational indices derived from sea surface temperatures(SSTs),air temperature and pressure.In many cases,these showed an improvement over dynamical models.Wang et al.(2013)found that both dynamical models and a statistical model based on SSTs and pressure were able to predict the variability in the West Pacific subtropical high,which was itself shown to be a good predictor of East Asian summer monsoon rainfall.Statistical downscaling techniques have also been shown to improve predictions of summer precipitation in China over global dynamical forecast models(e.g.,Ke et al.,2011;Liu and Fan,2012).

    Recent advances in the dynamical seasonal forecast system developed at the UK Met Office,GloSea5(MacLachlan et al.,2015),have resulted in the development of operational and prototype climate services for the UK in many sectors(e.g.,Svensson et al.,2015;Palin et al.,2016;Clark et al.,2017).Recent work has shown that GloSea5 also has useful levels of skill for various processes in China(Bettetal.,2017;Lu et al.,2017),including for summer precipitation over the Yangtze River basin(Li et al.,2016),without having to use statistical models based on larger-scale drivers.

    In parallel to these findings,Golding et al.(2017)demonstrated that there was a clear demand from users for improved seasonal forecasts for the Yangtze,both from the flood risk and hydro power production communities.The very strong El Ni?o that developed during the winter of 2015/16(Zhai et al.,2016)provided a perfect opportunity to develop a trial operational seasonal forecast using GloSea5 for the subsequent summer of 2016.

    We therefore produced forecasts for the upcoming three month period each week,from February(forecasting March–April–May)to the end of July 2016(forecasting August–September–October);our focus,however,was on forecasting the June–July–August(JJA)period,as that was where Li et al.(2016)had demonstrated skill.In the last week of each month,a forecast for the coming season was issued by the Met Office to the China Meteorological Administration(CMA).

    In this paper,we describe the observed rainfall in the Yangtze region in summer 2016,and assess how the real-time forecasts for May–June–July(MJJ)and JJA performed,with a range of lead times from zero to three months.We describe in section 2 the datasets used,and in section 3 our forecast production methodology.In section 4 we compare the forecasts to the observed behavior,and in section 5 discuss possible future developments.

    2.Datasets

    The current operational version of Glo Sea5(MacLachlan et al.,2015)is based on the Global Coupled 2(GC2)configuration of the HadGEM3 global climate model,described in detail in Williams et al.(2015)and references therein.Within HadGEM3-GC2,the atmospheric component[the Met Office Unified Model(Walters et al.,2017)]is coupled to the JULES land surface model(Best et al.,2011),the NEMO ocean model(Madec,2008;Megann et al.,2014)and the CICE sea ice model(Hunke and Lipscomb,2010;Rae et al.,2015).The atmosphere is modelled on a grid of 0.83?in longitude and 0.55?in latitude,with 85 levels vertically,including a well-resolved stratosphere;the ocean model is modelled on a 0.25?horizontal grid,with 75 levels vertically.

    Using this configuration,GloSea5 runs operationally,producing both forecasts and corresponding hindcasts(intended to bias-correct the forecasts).Each day,two initialized forecasts are produced,running out to seven months.To produce a complete forecast ensemble for a given start date,the last three weeks of individual forecasts are collected together to form a 42-member lagged forecast ensemble.

    At the same time,an ensemble of hindcasts is produced each week.As described by MacLachlan et al.(2015),three members are run from each of four fixed initialization dates in each month(the 1st,9th,17th and 25th),for each of the 14 years covering 1996–2009.The full hindcast ensemble is made by collecting together the four hindcast dates nearest to the forecast start date,yielding a 12-member,14-year hindcast.Note that the hindcast was extended at the end of April 2016 to cover 23 years(1993–2015).

    This operational hindcast is not intended to be used for skill assessments:with only 12 members,skill estimates would be biased low(Scaife et al.,2014).However,a separate,dedicated hindcast was produced for skill assessment,with 24 members and 20 years.Using that hindcast,we find a correlation skill of 0.56 for summer Yangtze rainfall,statistically indistinguishable from the previous value of 0.55 found by Li et al.(2016).

    We use precipitation data from the Global Precipitation Climatology Project(GPCP)as our observational dataset.This is derived from both satellite data and surface rain gauges,covering the period from 1979 to the present at a spatial resolution of 2.5?(Adler et al.,2003).The verification we present here uses version 2.3 of the data(Adler et al.,2016).Only version 2.2 was available when we started our operational trial,although we have confirmed that the choice of version 2.2 or 2.3 makes negligible difference to our forecasts or results.

    3.Forecast production

    Typically,when producing a seasonal forecast,the distribution of forecast ensemble members is used to repre-sent the forecast probability distribution directly.However,experience has shown that the GloSea5 ensemble members may contain anomalously small signals,such that the predictable signal only emerges through averaging a large ensemble(Eade et al.,2014;Scaife et al.,2014).While this effect is less pronounced in subtropical regions like the Yangtze Basin,it is still present(Li et al.,2016).

    We therefore implemented a simple precipitation forecasting methodology,based entirely on the historical relationship between the hindcast ensemble means and the observed precipitation,averaged over the Yangtze River basin region(25?–35?N,91?–122?E),following Li et al.(2016),for the season in question.The prediction intervals,derived from the linear regression of the hindcasts to the observations(e.g.,Wilks,2011),provide a calibrated forecast probability distribution.

    This is illustrated in Fig.1,where we show the precipitation forecasts issued in late April for MJJ,and in late May for JJA.The distribution of hindcasts and observations is shown as a scatter plot,with the ensemble mean forecast also included as a green circle.The uncertainty in the linear regression(gray)determines the forecast probabilities(green bars).The GloSea5 data are shown in standardized units—that is,the anomaly of each year from the mean,as a fraction of the standard deviation of hindcast ensemble means.The observations on the vertical axis are presented as seasonal means of monthly precipitation totals.The relationship with ENSO is indicated though color-coding of the hindcast points:years are labelled as El Ni?o(red)or La Ni?a(blue)according to whether their Oceanic Ni?o Index(http://www.cpc.noaa.gov/products/analysismonitoring/ensostuff/ensoyears.shtml),based on observed SST anomalies in the Ni?o3.4 region,is above 0.5 K or below?0.5 K,respectively.

    Fig.1.Forecasts for MJJ(produced 25 April 2016)and JJA(produced 23 May 2016),as labeled,using GPCP observations.Observation/hindcast points are color-coded according to their observed winter ENSO index:red points are El Ni?o years,blue points are La Ni?a years,and gray points are neutral.The horizontal width of the green forecast bars is the standard error on the ensemble mean,i.e.,the forecast ensemble spread divided by the number of ensemble members.The 75%and 95%prediction intervals are shown as gray shading.The variability in the observations is indicated by the pink horizontal dotted lines,at±1 and 2 standard deviations.The correlation r between hindcast and observations is marked on each panel(coincidentally the same when rounded).

    Forecasts like those shown in Fig.1 were produced each Monday starting in February 2016,using the forecast model runs initialized each day of the preceding three weeks to generate the 42-member ensemble,and the four nearest weeks of hindcast runs for the 12-member hindcast ensemble.The forecast produced near the end of each month was issued to the CMA:the MJJ release was produced on 25 April and the JJA release on 23 May.

    It is important to note that,due to the linear regression method we employ,our forecast probabilities are explicitly linked to both the hindcasts and the observations.The correlations between hindcasts and observations are biased low due to the smaller size of the hindcast ensemble compared to the forecast ensemble—a larger hindcast ensemble would not necessarily alter the gradient of the linear regression,but would reduce its uncertainty.Our forecast probabilities are therefore conservative(likely to be too small).

    The forecast information provided was designed to show very clearly and explicitly the uncertainties in the forecast system,to prevent overconfidence on the part of potential decision-makers.In addition to the scatterplot showing the forecast and the historical relationship(Fig.1),we also provided the probability of above-average precipitation as a“headline message”.This was accompanied by a contingency table showing the hit rate and false alarm rate for above-average forecasts over the hindcast period.For the MJJ and JJA forecasts,these are shown in Tables 1 and 2.

    Table 1.Contingency table for forecasts of above-average precipitation for the Yangtze region in MJJ,produced on 25 April 2016.The event counts are based on the GPCP observations and ensemble mean hindcasts shown in Fig.1.The hit rate is the ratio of the number of hits to the number of times above-average conditions were observed.The false alarm rate is the ratio of the number of false alarms to the total number of observed below-average years.

    Table 2.Contingency table for forecasts of above-average precipitation in JJA,produced on 23 May 2016,similar to Table 1.

    To assess the sensitivity of our results to individual years,we have performed leave-one-out cross-validation for the MJJ and JJA forecasts.We find that the correlation between hindcasts and observations in the case of each left-out year does not vary much:75%of the cases have correlations between 0.41 and 0.47.However,leaving out 1998 does reduce the performance,as expected:the correlation over the remaining 22 years in that case reduces tor=0.37(MJJ)andr=0.24(JJA),and the observed value falls outside the 95%prediction range of the forecasts;our procedure does require similar signals to be present in the hindcast period in order to calibrate the forecasts.Note that this cross-validation procedure is not directly analogous to our actual forecasts:with only 12 members per year,the hindcast ensemble means are much more uncertain than ouractual42-member forecasts for 2016,and our cross-validation does not account for this.

    4.Results

    The observed precipitation in May,June,July and August 2016 is shown in Fig.2.We use standardized units here to show the precipitation anomaly relative to the historical variability over the hindcast period(1993–2015).It is clear that the most anomalously high rainfall was in May and June,and largely in the eastern half of the basin.July was close to normal overall when considering the box we were forecasting for,although there were disastrous floods further north.August had anomalously low rainfall across most of the region.Yuan et al.(2017)examined the observed summer 2016 rainfall in China and the Yangtze River basin in detail,including its relationship to larger-scale drivers:the anomalously low rainfall in August 2016 is in marked contrast to the situation in 1998,and is related to the behavior of Indian Ocean temperatures and the Madden–Julian Oscillation(MJO)during the summer.

    Figures 3 and 4 show the three-month mean precipitation anomalies for MJJ and JJA respectively,for both GPCP and the forecast averages from the GloSea5 model output.While we do not expect the spatial patterns to match in detail[considering the skill maps of Li et al.(2016)],the overall signal is similar to the observations,with stronger anomalous precipitation in the eastern region in MJJ,and closer-to-average precipitation in JJA.

    We examine our forecasts for the Yangtze basin box more quantitatively in Figs.5 and 6,where we show the variation with lead time of the hindcast–observation correlation,the 2016 forecast signal,and the probability of above-average precipitation,for MJJ and JJA respectively.Neither the hindcast–observation correlation nor the forecast signal vary significantly with lead time;indeed,they are remarkably consistent back to three months before the forecast season,and when the 23-year hindcast is introduced at the end of April.

    The forecasts did a good job of giving an indication of precipitation in the coming season.For MJJ,the forecast gave a high probability of above-average precipitation(80%),and it was observed to be above average.In JJA,the mean precipitation was observed to be slightly below average,due to the strong drier-than-average signal in August,although it was within a standard deviation of the interannual variability.While our forecast marginally favored wetter than average conditions(65%probability of above-average rainfall),it was correctly near to the long-term mean,and the observed value was well within the forecast uncertainties.

    5.Discussion and conclusions

    The heavy rainfall in the Yangtze River region in early summer 2016 was at a similar level to that of 1998,and caused heavy flooding(WMO,2017;Yuan et al.,2017).While deaths due to the flooding were roughly an order of magnitude fewer than those caused by the 1998 floods(i.e.,hundreds rather than thousands of lives),the economic losses nevertheless ran into tens of billions of CNY.Furthermore,it was reported that insurance claims,mostly from agricultural losses,amounted to less than 2%of the total economic loss,suggesting significant levels of underinsurance(Podlaha et al.,2016).The prior experience of the 1998 El Ni?o-enhanced flooding,and the high levels of awareness of the strong El Ni?o in winter 2015/16,meant that dams along the Yangtze were prepared in anticipation of high levels of rain-fall.Our forecasts from GloSea5,produced using the simple methodology described here,contributed to the confidence of users adapting to the impending rainfallaGolding,N.,C.Hewitt,P.Bett,M.Liu,and P.Zhang:Co-Development of a Seasonal Forecast Climate Service:Supporting flood risk management for the Yangtze River Basin.(in preparation).

    Fig.2.Observed precipita Golding,N.,C.Hewitt,P.Bett,M.Liu,and P.Zhang:Co-Development of a Seasonal Forecast Climate Service:Supporting flood risk management for the Yangtze River Basin.(in preparation)tion from GPCP(version 2.3)for May,June,July and August(as labeled),in standardized units with respect to the 1993–2015 period.The Yangtze box used for the forecasts is marked as a red rectangle,with a pink polygon showing the physical Yangtze River catchment.Major rivers are marked in blue.

    Fig.3.Mean precipitation for 2016-MJJ in the GPCP observations and GloSea5 forecast signal,(as labeled),in standardized units.The GloSea5 data have been regridded to match the lower-resolution observations.

    Fig.4.Mean precipitation for 2016-JJA in the GPCP observations and GloSea5 forecast signal,(as labeled),in standardized units.The GloSea5 data have been regridded to match the lower-resolution observations.

    Fig.5.Time series showing the behavior of the MJJ forecasts and hindcasts with lead time:(a)Correlation between observations and the operational hindcasts available each week.The final point was produced using 23 years,whereas only 14 were available before that.The shading indicates 95%confidence intervals using the Fisher Z-transformation.(b)The forecast signal shown as 95%and 75%prediction intervals(boxes)and the ensemble mean(blue line).The observed precipitation is marked as an orange horizontal line from May.The observed historical mean and standard deviation over the hindcast period are marked as a dashed line and orange shading respectively.(c)The forecast probability of above-average precipitation.The final forecast issued for MJJ,produced 25 April,is highlighted with a gray vertical bar.

    Fig.6.Time series showing the behavior of the JJA forecasts and hindcasts with lead time,following the same format as Fig.5.In(a)(hindcast–observations correlation),the line becomes thicker when 23 years of hindcasts are available.We mark with a blue cross and error bar the correlation skill derived from the assessment hindcast(see text for details).The final forecast issued for JJA,on 23 May,is highlighted across all panels.

    Our verification has shown that our forecasts gave a good indication of the observed levels of precipitation for both MJJ and JJA averages over the large Yangtze Basin region.A greater degree of both spatial and temporal resolution—splitting the basin into upper and lower sections,and producing additional forecasts at a monthly timescale—would of course be preferable to users.However,smaller regions and shorter time periods may well be less skillful,so further work is needed to assess how best to achieve skillful forecasts in these cases.

    One significant improvement would be to increase the ensemble size of the hindcast.During 2017 the GloSea5 system was changed from three hindcast members per start date to seven.This could result in noticeable improvements in forecasts like those described here,as the hindcast–observations relationship will be less uncertain,especially when a predictable signal is present,such as from El Ni?o.Improvements in the underlying climate model,such as to parametrized convective precipitation,and the simulation of the monsoon and features like the MJO,could also improve the forecast skill.

    We will be issuing forecasts again in 2017.However,unlike 2016,in 2017 there are no strong drivers,such as El Ni?o.Nevertheless,understanding the behavior of the forecast system under such conditions will be informative,for both the users and the producers of the forecasts.Ultimately,trial climate services such as this help to drive forecast development,improve understanding of forecast uncertainties,and promote careful use by stakeholders in affected areas.

    Acknowledgements.This work and its contributors(PB,AS,ND,DS,CH,NG)were supported by the UK–China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership China as part of the Newton Fund.CL and RL were supported by the National Natural Science Foundation of China(Grant No.41320104007).HR was supported by the Project for Development of Key Techniques in Meteorological Operation Forecasting(Grant No.YBGJXM201705).The trial forecast service was first suggested by AS in 2015.The GPCP precipitation data were provided by the NOAA/OAR/ESRL PSD,Boulder,Colorado,USA,via their website at http://www.esrl.noaa.gov/psd/.The Yangtze River basin shape file used in the maps was obtained from http://worldmap.harvard.edu/data/geonode:ch_wtrshed 30mar11 and is based on the watersheds shown in the China Environmental Atlas(2000),?Chinese Academy of Sciences,Environmental Data Center.

    REFERENCES

    Adler,R.,and Coauthors,2016:The new version 2.3 of the Global Precipitation Climatology Project(GPCP)monthly analysis product.University of Maryland.[Available online from http://eagle1.umd.edu/GPCP_ICDR/GPCP_Monthly.html]

    Adler,R.F.,and Coauthors,2003:The version-2 Global Precipitation Climatology Project(GPCP)monthly precipitation analysis(1979–Present).Journal of Hydrometeorology,4,1147–1167,https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    Best,M.J.,and Coauthors,2011:The Joint UK Land Environment Simulator(JULES),model description—Part 1:Energy and water fluxes.Geoscientific Model Development,4,677–699,https://doi.org/10.5194/gmd-4-677-2011.

    Bett,P.E.,and Coauthors,2017:Skill and reliability of seasonal forecasts for the Chinese energy sector.Journal of Applied Meteorology and Climatology,56,3099–3114,https://doi.org/10.1175/jamc-d-17-0070.1.

    Clark,R.T.,P.E.Bett,H.E.Thornton,and A.A.Scaife,2017:Skillful seasonal predictions for the European energy industry.Environmental Research Letters,12,024002,https://doi.org/10.1088/1748-9326/aa57ab.

    Eade,R.,D.Smith,A.Scaife,E.Wallace,N.Dunstone,L.Hermanson,and N.Robinson,2014:Do seasonal-to-decadal climate predictions underestimate the predictability of the real world?Geophys.Res.Lett.,41,5620–5628,https://doi.org/10.1002/2014gl061146.

    Golding,N.,C.Hewitt,P.Q.Zhang,P.Bett,X.Y.Fang,H.Z.Hu,and S.Nobert,2017:Improving user engagement and uptake of climate services in China.Climate Services,5,39–45,https://doi.org/10.1016/j.cliser.2017.03.004.

    Hardiman,S.,and Coauthors,2017:The asymmetric response of Yangtze River basin summer rainfall to El Ni?o/La Ni?a.Environmental Research Letters,https://doi.org/10.1088/1748-9326/aaa172.(in press)

    He,J.H.,and B.Q.Liu,2016:The East Asian subtropical summer monsoon:Recent progress.Journal of Meteorological Research,30,135–155,https://doi.org/10.1007/s13351-016-5222-z.

    Hunke,E.C.,and W.H.Lipscomb,2010:CICE:The Los Alamos Sea Ice model documentation and software user’s manual,version 4.1.Report LA-CC-06-012,Los Alamos National Laboratory.[Available online from http://oceans11.lanl.gov/trac/CICE]

    Jiao,M.Y.,and Coauthors,2013:Addressing the potential climate effects of China’s Three Gorges Project.WMO Bulletin,62(Special Issue),49–53.[Available online from http://library.wmo.int/opac/index.php?lvl=bulletin_display&id=2738]

    Ke,Z.J.,P.Q.Zhang,L.J.Chen,and L.M.Du,2011:An experiment of a statistical downscaling forecast model for summer precipitation over China.Atmospheric and Oceanic Science Letters,4,270–275,https://doi.org/10.1080/16742834.2011.11446941.

    Kwon,H.H.,C.Brown,K.Q.Xu,and U.Lall,2009:Seasonal and annual maximum stream flow forecasting using climate information:Application to the Three Gorges Dam in the Yangtze River basin,China.Hydrological Sciences Journal,54,582–595,https://doi.org/10.1623/hysj.54.3.582.

    Li,C.F.,and Coauthors,2016:Skillful seasonal prediction of Yangtze river valley summer rainfall.Environmental Research Letters,11,094002,https://doi.org/10.1088/1748-9326/11/9/094002.

    Li,F.,and Z.D.Lin,2015:Improving multi-model ensemble probabilistic prediction of Yangtze River valley summer rainfall.Adv.Atmos.Sci.,32,497–504,https://doi.org/10.1007/s00376-014-4073-8.

    Liu,Y.,and K.Fan,2012:Improve the prediction of summer precipitation in the Southeastern China by a hybrid statistical downscaling model.Meteor.Atmos.Phys.,117,121–134,https://doi.org/10.1007/s00703-012-0201-0.

    Lu,B.,A.A.Scaife,N.Dunstone,D.Smith,H.L.Ren,Y.Liu,and R.Eade,2017:Skillful seasonal predictions of winter precipitation over southern China.Environmental Research Letters,12,074021,https://doi.org/10.1088/1748-9326/aa739a.

    MacLachlan,C.,and Coauthors,2015:Global Seasonal forecast system version 5(GloSea5):A high-resolution seasonal forecast system.Quart.J.Roy.Meteor.Soc.,141,1072–1084,https://doi.org/10.1002/qj.2396.

    Madec,G.,2008:NEMO ocean engine.Note du P?ole de mod′elisation,Institut Pierre-Simon Laplace(IPSL).France,No.27.[Available online from http://www.nemo-ocean.eu/About-NEMO/Reference-manuals]

    Megann,A.,and Coauthors,2014:GO5.0:The joint NERCMet Office NEMO global ocean model for use in coupled and forced applications.Geoscientific Model Development,7,1069–1092,https://doi.org/10.5194/gmd-7-1069-2014.

    Palin,E.J.,A.A.Scaife,E.Wallace,E.C.D.Pope,A.Arribas,and A.Brookshaw,2016:Skillful seasonal forecasts of winter disruption to the U.K.transport system.Journal of Applied Meteorology and Climatology,55,325–344,https://doi.org/10.1175/jamc-d-15-0102.1.

    Peng,Z.L.,Q.J.Wang,J.C.Bennett,P.Pokhrel,and Z.R.Wang,2014:Seasonal precipitation forecasts over China using monthly large-scale oceanic-atmospheric indices.J.Hydrol.,519,792–802,https://doi.org/10.1016/j.jhydrol.2014.08.012.

    Plate,E.J.,2002:Flood risk and flood management.J.Hydrol.,267,2–11,https://doi.org/10.1016/s0022-1694(02)00135-x.

    Podlaha,A.,S.Bowen,and C.Darbinyan,2016:July 2016 Global Catastrophe Recap.Aon Ben field Impact Forecasting,[Available online from http://thoughtleadership.aonbenfield.com/sitepages/display.aspx?tl=601]

    Rae,J.G.L.,H.T.Hewitt,A.B.Keen,J.K.Ridley,A.E.West,C.M.Harris,E.C.Hunke,and D.N.Walters,2015:Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model.Geoscientific Model Development,8,2221–2230,https://doi.org/10.5194/gmd-8-2221-2015.

    Scaife,A.A.,and Coauthors,2014:Skillful long-range prediction of European and North American winters.Geophys.Res.Lett.,41,2514–2519,https://doi.org/10.1002/2014gl059637.

    Stuecker,M.F.,F.F.Jin,A.Timmermann,and S.McGregor,2015:Combination mode dynamics of the Anomalous Northwest Pacific Anticyclone.J.Climate,28,1093–1111,https://doi.org/10.1175/jcli-d-14-00225.1.

    Svensson,C.,and Coauthors,2015:Long-range forecasts of UK winter hydrology.Environmental Research Letters,10,064006,https://doi.org/10.1088/1748-9326/10/6/064006.

    Tung,Y.L.,C.Y.Tam,S.J.Sohn,and J.L.Chu,2013:Improv-ing the seasonal forecast for summertime South China rainfall using statistical downscaling.J.Geophys.Res.Atmos.,118,5147–5159,https://doi.org/10.1002/jgrd.50367.

    Walters,D.,and Coauthors,2017:The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations.Geoscientific Model Development,10,1487–1520,https://doi.org/10.5194/gmd-10-1487-2017.

    Wang,B.,B.Q.Xiang,and J.Y.Lee,2013:Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions.Proceedings of the National Academy of Sciences of the United States of America,110,2718–2722,https://doi.org/10.1073/pnas.1214626110.

    Wilks,D.S.,2011:Statistical forecasting.International Geophysics,100,215–300,https://doi.org/10.1016/b978-0-12-385022-5.00007-5.

    Williams,K.D.,and Coauthors,2015:The Met Office Global Coupled model 2.0(GC2)configuration.Geoscientific Model Development,8,1509–1524,https://doi.org/10.5194/gmd-8-1509-2015.

    WMO,2017:WMO statement on the state of the global climate in 2016.WMO-No.1189.Geneva:World Meteorological Organization.[Available online from http://library.wmo.int/opac/doc_num.php?explnum_id=3414]

    Wu,Z.W.,and L.L.Yu,2016:Seasonal prediction of the East Asian summer monsoon with a partial-least square model.ClimateDyn.,46,3067–3078,https://doi.org/10.1007/s00382-015-2753-4.

    Xie,S.P.,Y.Kosaka,Y.Du,K.M.Hu,J.S.Chowdary,and G.Huang,2016:Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer:A review.Adv.Atmos.Sci.,33,411–432,https://doi.org/10.1007/s00376-015-5192-6.

    Xing,W.,B.Wang,and S.Y.Yim,2016:Long-lead seasonal prediction of China summer rainfall using an EOF-PLS regression-based methodology.J.Climate,29,1783–1796,https://doi.org/10.1175/jcli-d-15-0016.1.

    Ye,Q.,and M.H.Glantz,2005:The 1998 Yangtze floods:The use of short-term forecasts in the context of seasonal to interannual water resource management.Mitigation and Adaptation Strategies for Global Change,10,159–182,https://doi.org/10.1007/s11027-005-7838-7.

    Yu,F.L.,Z.Y.Chen,X.Y.Ren,and G.F.Yang,2009:Analysis of historical floods on the Yangtze River,China:Characteristics and explanations.Geomorphology,113,210–216,https://doi.org/10.1016/j.geomorph.2009.03.008.

    Yuan,Y.,H.Gao,W.J.Li,Y.J.Liu,L.J.Chen,B.Zhou,and Y.H.Ding,2017:The 2016 summer floods in China and associated physical mechanisms:A comparison with 1998.Journal of Meteorological Research,31,261–277,https://doi.org/10.1007/s13351-017-6192-5.

    Zhai,P.M.,and Coauthors,2016:The strong El Ni?o of 2015/16 and its dominant impacts on global and China’s climate.Journal of Meteorological Research,30,283–297,https://doi.org/10.1007/s13351-016-6101-3.

    Zhang,W.J.,H.Y.Li,M.F.Stuecker,F.F.Jin,and A.G.Turner,2016a:A new understanding of El Ni?o’s impact over East Asia:Dominance of the ENSO combination mode.J.Climate,29,4347–4359,https://doi.org/10.1175/jcli-d-15-0104.1.

    Zhang,W.J.,and Coauthors,2016b:Unraveling El Ni?o’s impact on the East Asian Monsoon and Yangtze River summer flooding.Geophys.Res.Lett.,43,11 375–11 382,https://doi.org/10.1002/2016gl071190.

    Zhu,C.,C.K.Park,W.S.Lee,and W.T.Yun,2008:Statistical downscaling for multi-model ensemble prediction of summer monsoon rainfall in the Asia-Pacific region using geopotential height field.Adv.Atmos.Sci.,25,867–884,https://doi.org/10.1007/s00376-008-0867-x.

    Zong,Y.Q.,and X.Q.Chen,2000:The 1998 flood on the Yangtze,China.Natural Hazards,22,165–184,https://doi.org/10.1023/a:1008119805106.

    两个人的视频大全免费| 国产老妇伦熟女老妇高清| 禁无遮挡网站| 久久久a久久爽久久v久久| 精品人妻一区二区三区麻豆| 国产探花在线观看一区二区| 国产在线男女| 久久精品人妻少妇| 亚洲怡红院男人天堂| 免费av毛片视频| 亚洲aⅴ乱码一区二区在线播放| 色视频www国产| 国产乱人偷精品视频| 久久久久久久久中文| 高清视频免费观看一区二区 | 人妻夜夜爽99麻豆av| 亚洲伊人久久精品综合 | 国产亚洲av片在线观看秒播厂 | 国产一级毛片七仙女欲春2| 亚洲美女视频黄频| 六月丁香七月| 人妻系列 视频| 免费黄色在线免费观看| 久久精品国产自在天天线| 国产三级中文精品| 欧美日本亚洲视频在线播放| 最近中文字幕2019免费版| 中文天堂在线官网| 亚洲av.av天堂| 免费观看性生交大片5| 亚洲人与动物交配视频| 又黄又爽又刺激的免费视频.| 欧美激情久久久久久爽电影| 汤姆久久久久久久影院中文字幕 | 亚洲精品日韩在线中文字幕| 岛国毛片在线播放| 免费观看在线日韩| 国产av码专区亚洲av| 最近中文字幕2019免费版| 嘟嘟电影网在线观看| 最近视频中文字幕2019在线8| 青春草亚洲视频在线观看| 青青草视频在线视频观看| 18禁在线播放成人免费| 我要看日韩黄色一级片| 中文字幕av成人在线电影| 亚洲精品日韩在线中文字幕| av免费观看日本| 99久久精品热视频| 免费电影在线观看免费观看| 亚洲国产欧美在线一区| 国产精品日韩av在线免费观看| 69av精品久久久久久| 国产麻豆成人av免费视频| 久久精品国产鲁丝片午夜精品| 黄色欧美视频在线观看| 18+在线观看网站| 国产精品麻豆人妻色哟哟久久 | 亚洲四区av| 中文乱码字字幕精品一区二区三区 | 免费播放大片免费观看视频在线观看 | 国产精品国产三级国产av玫瑰| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 特大巨黑吊av在线直播| 国产av一区在线观看免费| 亚洲精华国产精华液的使用体验| 淫秽高清视频在线观看| 久久精品综合一区二区三区| 少妇高潮的动态图| 国产精品久久久久久精品电影小说 | 三级国产精品欧美在线观看| 日本免费a在线| 精品熟女少妇av免费看| 99热这里只有是精品在线观看| 在现免费观看毛片| 搡老妇女老女人老熟妇| 日本一二三区视频观看| 亚洲精品一区蜜桃| 色5月婷婷丁香| 男人舔奶头视频| 国产精品三级大全| 狂野欧美激情性xxxx在线观看| 国产精品国产三级专区第一集| 精品人妻熟女av久视频| 欧美成人一区二区免费高清观看| 国产视频首页在线观看| 综合色av麻豆| 嫩草影院精品99| 观看美女的网站| 久久韩国三级中文字幕| videossex国产| 一个人观看的视频www高清免费观看| 欧美性猛交╳xxx乱大交人| 欧美一区二区亚洲| 美女xxoo啪啪120秒动态图| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品久久男人天堂| 中文亚洲av片在线观看爽| 高清日韩中文字幕在线| 国产精品久久久久久精品电影小说 | 国产精品国产高清国产av| 国产一区二区在线观看日韩| 久久午夜福利片| 国产久久久一区二区三区| 最近中文字幕2019免费版| 免费av毛片视频| 一区二区三区乱码不卡18| 国产乱人偷精品视频| 黄色一级大片看看| 亚洲av男天堂| 村上凉子中文字幕在线| 少妇的逼好多水| 亚洲国产精品成人久久小说| 久久久欧美国产精品| 国产av在哪里看| 综合色丁香网| 国产久久久一区二区三区| 色网站视频免费| 美女黄网站色视频| 国产美女午夜福利| 日本熟妇午夜| 国产私拍福利视频在线观看| 成人性生交大片免费视频hd| 国产伦一二天堂av在线观看| 草草在线视频免费看| 国产精品久久视频播放| 午夜精品一区二区三区免费看| 三级国产精品欧美在线观看| 欧美一区二区亚洲| 级片在线观看| 久久久亚洲精品成人影院| 久久久精品欧美日韩精品| 久久久国产成人精品二区| 少妇熟女aⅴ在线视频| 久久亚洲精品不卡| 1024手机看黄色片| 色5月婷婷丁香| 男人舔女人下体高潮全视频| 在现免费观看毛片| 国产伦一二天堂av在线观看| 国产成人免费观看mmmm| av视频在线观看入口| 日韩成人av中文字幕在线观看| 日本免费在线观看一区| 久久久久久久久久成人| 亚洲精华国产精华液的使用体验| 亚洲无线观看免费| 久久亚洲国产成人精品v| 人妻制服诱惑在线中文字幕| 日本黄色视频三级网站网址| 夜夜看夜夜爽夜夜摸| 天天躁夜夜躁狠狠久久av| 亚洲乱码一区二区免费版| 国产精品,欧美在线| 一级毛片电影观看 | 婷婷色av中文字幕| 高清午夜精品一区二区三区| 中文字幕熟女人妻在线| 久久精品国产亚洲av天美| 国产精品久久久久久久电影| 中文字幕熟女人妻在线| 国产在视频线在精品| 午夜福利网站1000一区二区三区| 欧美性感艳星| 国产又黄又爽又无遮挡在线| 2021天堂中文幕一二区在线观| 一二三四中文在线观看免费高清| 亚洲三级黄色毛片| 91av网一区二区| 成人无遮挡网站| 国产日韩欧美在线精品| 97人妻精品一区二区三区麻豆| 六月丁香七月| 赤兔流量卡办理| 五月伊人婷婷丁香| 午夜爱爱视频在线播放| 看免费成人av毛片| 一边亲一边摸免费视频| 如何舔出高潮| 边亲边吃奶的免费视频| 成人午夜高清在线视频| 国产精品野战在线观看| 久久精品夜夜夜夜夜久久蜜豆| 精品欧美国产一区二区三| 免费av观看视频| eeuss影院久久| 午夜免费激情av| 看黄色毛片网站| 亚洲精品日韩av片在线观看| 好男人在线观看高清免费视频| 中文资源天堂在线| 免费电影在线观看免费观看| 人妻系列 视频| 99久久九九国产精品国产免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品色激情综合| 三级毛片av免费| 伦理电影大哥的女人| 国产一区亚洲一区在线观看| 99久国产av精品| av.在线天堂| 亚洲av电影在线观看一区二区三区 | 舔av片在线| 九九爱精品视频在线观看| 中文天堂在线官网| 卡戴珊不雅视频在线播放| 亚洲在线自拍视频| 色噜噜av男人的天堂激情| 2021少妇久久久久久久久久久| 免费av观看视频| 久久婷婷人人爽人人干人人爱| 亚洲欧美中文字幕日韩二区| 三级经典国产精品| 狂野欧美激情性xxxx在线观看| 亚洲图色成人| 日本五十路高清| 久久午夜福利片| 看黄色毛片网站| 久久婷婷人人爽人人干人人爱| 国产美女午夜福利| 插逼视频在线观看| 我要看日韩黄色一级片| 欧美一级a爱片免费观看看| 久久99蜜桃精品久久| 日韩欧美精品免费久久| 欧美+日韩+精品| 亚洲一级一片aⅴ在线观看| 麻豆乱淫一区二区| 日本-黄色视频高清免费观看| av在线天堂中文字幕| 乱码一卡2卡4卡精品| 汤姆久久久久久久影院中文字幕 | 三级毛片av免费| 国产精品一区二区在线观看99 | 丝袜美腿在线中文| 18+在线观看网站| 精品一区二区免费观看| 美女高潮的动态| 日本免费在线观看一区| 91久久精品国产一区二区成人| 99久久精品一区二区三区| 国产精品av视频在线免费观看| 国产精品一区www在线观看| 欧美激情久久久久久爽电影| 久久久久久大精品| 天堂网av新在线| 91av网一区二区| 麻豆成人午夜福利视频| 国产美女午夜福利| 欧美最新免费一区二区三区| 成人特级av手机在线观看| 国产在线一区二区三区精 | 一本一本综合久久| 国产探花极品一区二区| 久久精品综合一区二区三区| 久久久a久久爽久久v久久| 亚洲自拍偷在线| 国产精品嫩草影院av在线观看| 搞女人的毛片| 成人特级av手机在线观看| 老师上课跳d突然被开到最大视频| 黄片无遮挡物在线观看| 亚洲国产精品成人久久小说| 亚洲国产高清在线一区二区三| 一夜夜www| 亚洲三级黄色毛片| av免费在线看不卡| 免费黄色在线免费观看| 精品一区二区三区人妻视频| 日韩欧美精品免费久久| 伦理电影大哥的女人| 噜噜噜噜噜久久久久久91| 久久久a久久爽久久v久久| av免费观看日本| 久久精品夜色国产| 人妻夜夜爽99麻豆av| 一个人观看的视频www高清免费观看| 少妇的逼水好多| 亚洲av.av天堂| 免费看av在线观看网站| 波多野结衣高清无吗| 国产在视频线精品| 在线观看66精品国产| 在线观看美女被高潮喷水网站| 国产免费又黄又爽又色| 高清日韩中文字幕在线| 久久久久久久久久久丰满| av在线观看视频网站免费| 在现免费观看毛片| av.在线天堂| 一二三四中文在线观看免费高清| 伊人久久精品亚洲午夜| 欧美性感艳星| 在线播放无遮挡| 黑人高潮一二区| 亚洲国产精品久久男人天堂| 久久亚洲精品不卡| 男人狂女人下面高潮的视频| 久久99蜜桃精品久久| 国产精品美女特级片免费视频播放器| 我的老师免费观看完整版| 国模一区二区三区四区视频| 欧美最新免费一区二区三区| 精品久久久久久久末码| 成人高潮视频无遮挡免费网站| 亚洲精品国产成人久久av| 国产免费又黄又爽又色| 丰满人妻一区二区三区视频av| 亚洲国产成人一精品久久久| 国产精品福利在线免费观看| 麻豆av噜噜一区二区三区| ponron亚洲| 一本一本综合久久| 大话2 男鬼变身卡| 午夜精品在线福利| 日本黄大片高清| 国模一区二区三区四区视频| 小说图片视频综合网站| 18禁在线无遮挡免费观看视频| 搞女人的毛片| 免费观看性生交大片5| 免费av观看视频| 男女边吃奶边做爰视频| 国产大屁股一区二区在线视频| 亚洲精品日韩在线中文字幕| 亚洲av一区综合| 免费观看a级毛片全部| 国产精品女同一区二区软件| 成人鲁丝片一二三区免费| 亚洲经典国产精华液单| 少妇猛男粗大的猛烈进出视频 | 国产精品蜜桃在线观看| 久久国产乱子免费精品| 99久国产av精品| 国产精品无大码| 建设人人有责人人尽责人人享有的 | 久久人人爽人人爽人人片va| 国产一区有黄有色的免费视频 | 亚洲精品国产成人久久av| 成人一区二区视频在线观看| 亚洲国产欧美人成| 亚洲av中文字字幕乱码综合| 色综合站精品国产| 啦啦啦韩国在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 99热这里只有是精品50| 亚洲18禁久久av| 男女那种视频在线观看| 七月丁香在线播放| 一级爰片在线观看| 长腿黑丝高跟| 欧美97在线视频| 国产亚洲91精品色在线| 日韩一区二区视频免费看| 爱豆传媒免费全集在线观看| 欧美一级a爱片免费观看看| 日韩三级伦理在线观看| 啦啦啦韩国在线观看视频| 亚洲国产欧洲综合997久久,| 欧美潮喷喷水| 国产男人的电影天堂91| 联通29元200g的流量卡| 成年女人永久免费观看视频| 中文字幕av在线有码专区| 国产国拍精品亚洲av在线观看| 久久人妻av系列| 日日撸夜夜添| 老女人水多毛片| 菩萨蛮人人尽说江南好唐韦庄 | 97人妻精品一区二区三区麻豆| 久久精品夜色国产| 国产成人freesex在线| 日本与韩国留学比较| 身体一侧抽搐| 欧美精品国产亚洲| 国产人妻一区二区三区在| 亚洲无线观看免费| 久久精品久久久久久噜噜老黄 | 日本-黄色视频高清免费观看| 国语对白做爰xxxⅹ性视频网站| 国产白丝娇喘喷水9色精品| 色播亚洲综合网| 国产黄片美女视频| 男人的好看免费观看在线视频| 亚洲国产高清在线一区二区三| 美女cb高潮喷水在线观看| 亚洲电影在线观看av| 亚洲四区av| 麻豆久久精品国产亚洲av| 国产精品久久久久久精品电影小说 | 国产高清有码在线观看视频| 亚洲av二区三区四区| 精品久久久久久久末码| 国产一级毛片七仙女欲春2| 99久国产av精品国产电影| 亚洲av日韩在线播放| 麻豆成人午夜福利视频| 2022亚洲国产成人精品| 嘟嘟电影网在线观看| 3wmmmm亚洲av在线观看| 亚洲精品乱码久久久v下载方式| 久久亚洲精品不卡| 国产精品麻豆人妻色哟哟久久 | 国产成人aa在线观看| 久久精品人妻少妇| 韩国高清视频一区二区三区| 国产不卡一卡二| 亚洲久久久久久中文字幕| 草草在线视频免费看| 老师上课跳d突然被开到最大视频| 爱豆传媒免费全集在线观看| av专区在线播放| a级毛片免费高清观看在线播放| 午夜视频国产福利| 我要搜黄色片| .国产精品久久| 午夜福利视频1000在线观看| 91久久精品电影网| 麻豆乱淫一区二区| 欧美三级亚洲精品| 麻豆成人午夜福利视频| 人人妻人人澡欧美一区二区| 国产精品蜜桃在线观看| 99久久精品热视频| 成人综合一区亚洲| 精品久久久久久久久av| 少妇的逼水好多| 18禁在线播放成人免费| 九草在线视频观看| 午夜免费激情av| 边亲边吃奶的免费视频| 色视频www国产| 国内精品美女久久久久久| 国产免费一级a男人的天堂| 欧美性感艳星| 欧美潮喷喷水| 亚洲国产精品专区欧美| 极品教师在线视频| 22中文网久久字幕| videossex国产| 国产色婷婷99| 国产 一区精品| 国产老妇伦熟女老妇高清| 伊人久久精品亚洲午夜| 亚洲av电影在线观看一区二区三区 | 看十八女毛片水多多多| 18禁在线播放成人免费| 级片在线观看| 中文欧美无线码| 久久久国产成人免费| 国产精品.久久久| 国产高清国产精品国产三级 | 夫妻性生交免费视频一级片| 天美传媒精品一区二区| 国产午夜精品一二区理论片| 日韩三级伦理在线观看| 中文字幕人妻熟人妻熟丝袜美| 99久久精品热视频| 18禁动态无遮挡网站| av国产免费在线观看| 免费看av在线观看网站| 日本与韩国留学比较| 国产黄色视频一区二区在线观看 | 禁无遮挡网站| h日本视频在线播放| 最近中文字幕高清免费大全6| 久久久久久久久久久免费av| 亚洲av免费高清在线观看| 波多野结衣高清无吗| 亚洲国产成人一精品久久久| 亚洲精品色激情综合| 国产成人午夜福利电影在线观看| 91在线精品国自产拍蜜月| av福利片在线观看| 日韩 亚洲 欧美在线| 国产 一区精品| 午夜久久久久精精品| 国国产精品蜜臀av免费| 欧美激情久久久久久爽电影| 久久久色成人| 国产 一区精品| 国产综合懂色| 精品久久久久久久久av| 日韩,欧美,国产一区二区三区 | 日韩一本色道免费dvd| 国产精品一二三区在线看| 精品国产三级普通话版| 99热精品在线国产| 狠狠狠狠99中文字幕| 在线天堂最新版资源| 狂野欧美白嫩少妇大欣赏| 国产一区二区在线观看日韩| 午夜精品一区二区三区免费看| av在线天堂中文字幕| av福利片在线观看| 三级毛片av免费| 久久久久精品久久久久真实原创| 亚洲在线观看片| 免费看美女性在线毛片视频| 成人亚洲欧美一区二区av| av女优亚洲男人天堂| 91av网一区二区| 99热这里只有是精品50| 亚洲av一区综合| 高清午夜精品一区二区三区| 国产视频内射| 亚洲av男天堂| 91精品一卡2卡3卡4卡| 精品久久久久久久末码| 亚洲av中文av极速乱| 亚洲图色成人| 国国产精品蜜臀av免费| 国语自产精品视频在线第100页| 成人av在线播放网站| 日韩中字成人| 成人美女网站在线观看视频| 日本免费a在线| 亚洲国产高清在线一区二区三| 人妻系列 视频| 美女国产视频在线观看| 国产午夜精品一二区理论片| 国产精品久久视频播放| 欧美又色又爽又黄视频| 99久久人妻综合| 有码 亚洲区| 亚洲最大成人中文| 国内精品宾馆在线| 哪个播放器可以免费观看大片| 成人美女网站在线观看视频| 69人妻影院| 国产极品精品免费视频能看的| 麻豆av噜噜一区二区三区| 美女黄网站色视频| 欧美人与善性xxx| 午夜免费激情av| 亚洲自拍偷在线| 国产成人精品一,二区| 日韩成人av中文字幕在线观看| 亚洲第一区二区三区不卡| 国产精品一二三区在线看| 最近最新中文字幕免费大全7| 中文字幕av在线有码专区| 久久午夜福利片| 日本五十路高清| 久久人妻av系列| 观看美女的网站| 亚洲av日韩在线播放| 特大巨黑吊av在线直播| 中文精品一卡2卡3卡4更新| 久久久久久久久久成人| 久久久久网色| 中文欧美无线码| 国产日韩欧美在线精品| 久久6这里有精品| 欧美精品一区二区大全| 中文字幕亚洲精品专区| 久久精品综合一区二区三区| 老司机影院毛片| 建设人人有责人人尽责人人享有的 | 亚洲精品国产av成人精品| 村上凉子中文字幕在线| 精品久久久噜噜| 欧美zozozo另类| 亚洲精品乱码久久久久久按摩| 尤物成人国产欧美一区二区三区| 美女xxoo啪啪120秒动态图| 天堂中文最新版在线下载 | 亚洲精品影视一区二区三区av| 波多野结衣高清无吗| 国产亚洲av片在线观看秒播厂 | 插阴视频在线观看视频| 精品人妻视频免费看| 欧美一级a爱片免费观看看| av视频在线观看入口| 久久精品人妻少妇| 观看免费一级毛片| 一区二区三区四区激情视频| 日韩人妻高清精品专区| 高清在线视频一区二区三区 | 少妇的逼水好多| 一本久久精品| 免费观看a级毛片全部| 日韩一区二区视频免费看| av国产久精品久网站免费入址| 日产精品乱码卡一卡2卡三| 国产精品麻豆人妻色哟哟久久 | 99久久人妻综合| 18禁在线播放成人免费| av在线蜜桃| 99久久人妻综合| 亚洲av一区综合| 久久久久久九九精品二区国产| 亚洲人成网站在线播| 舔av片在线| 我的老师免费观看完整版| 别揉我奶头 嗯啊视频| 亚洲av一区综合| 国产精品综合久久久久久久免费| 99久久成人亚洲精品观看| 国产黄色小视频在线观看| 在线观看av片永久免费下载| 久久精品国产鲁丝片午夜精品| 免费观看人在逋| 精品人妻偷拍中文字幕| 国产 一区 欧美 日韩| 亚洲欧美日韩卡通动漫| 久久久午夜欧美精品| 国产 一区 欧美 日韩| 亚洲欧美日韩卡通动漫| 蜜臀久久99精品久久宅男| 日本免费一区二区三区高清不卡| 国产精品永久免费网站| 一个人免费在线观看电影| 日本免费一区二区三区高清不卡| 国产综合懂色|