• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電解液成分、厚度及表面改性對(duì)旋涂法制備的BiVO4膜層光電化學(xué)性能的影響

    2018-06-06 05:50:36隋美蓉顧修全時(shí)梅林劉琳琳倪中海
    關(guān)鍵詞:中國(guó)礦業(yè)大學(xué)化工學(xué)院醫(yī)學(xué)影像

    隋美蓉 顧修全 時(shí)梅林 劉琳琳 倪中海

    (1中國(guó)礦業(yè)大學(xué)化工學(xué)院,徐州 221116)(2徐州醫(yī)科大學(xué)醫(yī)學(xué)影像學(xué)院,徐州 221004)(3中國(guó)礦業(yè)大學(xué)材料科學(xué)與工程學(xué)院,徐州 221116)

    0 Introduction

    During the last few years,much attention has been paid to solar-driven water splitting,which is a low-cost technique for the utilization of solar energy to produce chemical fuels (such as H2)[1-2].There are three main ways for solar water splitting:photocatalysis,photoelectrochemical(PEC)cells,and the photovoltaic(PV)driven PEC cells[3].Of them,the PEC method(i.e.,the PEC cell)owns the most ideal cost performance,thus it might be one of the most promising techniques for a large-scale application in near future.It is known that the photoanode is a key component of the PEC cell,which is always a semiconductor and can realize a conversion of solar energy to electricity.

    As early as in 1967,Fujishima and Honda discovered that H2can be generated from a PEC cell which is consisted of a TiO2photoanode under an ultraviolet(UV)illumination[4].Nevertheless,TiO2is a wide bandgap semiconductor(Eg=3.2~3.4 eV),which can only respond to UV light that accounts for 4%of incoming solar energy.Thus,it is necessary to either reduce the bandgap of TiO2,modify with narrow-gap semiconductors or look for a new alternative photoanode[5-6].Up to now,a number of semiconductor photoanodes have been developed to replace TiO2for operating under a visible light irradiation,including α-Fe2O3,WO3,BiOBr,Ag3PO4,BiVO4,NiNb2O6,and so on[7-12].Of them,BiVO4represents one of the most promising photoanode candidates due to a plenty of advantages like non-toxicity,stability,low cost,narrow band gap of~2.4 eV,as well as the suitable levels of the conduction band (CB)and valence band (VB)[13].Fortunately,in a latest report,it has been demonstrated that a PEC device made of modified BiVO4and α-Fe2O3as dual photoanodes shows an unbiased water splitting efficiency (or said,solar to hydrogen efficiency)of 7.7%[14].Moreover,it is relatively easy to obtain a BiVO4porous thin film with controllable thicknessdue tothe accessibility ofa Bi-V-O precursor with good fluidity and dispersity[15].Based on the above merits,similar with TiO2,it has been demonstrated feasible to fabricate a BiVO4photoanode with both an inverse opal network structure and a considerable average pore size by using a dilute Bi-VO precursor[16-17].

    Theoretically,the maximum water oxidation photocurrent density(Jmax)for BiVO4photoanodes under Air-mass 1.5 Global(AM 1.5G)solar illumination is 7.5 mA·cm-2[18].Nevertheless,to the best of our knowledge,the reported photocurrent density(J)are much lower than the theoretical value(7.5 mA·cm-2),owing to a serous carrier recombination occurred at the electrolyte/electrolyte interface[19].In other words,only a small part of photoexcited holes take part in the water oxidation reaction and make a contribution to the photocurrent output.So far,much effort has been devoted to improve the performance of BiVO4photoanodes,including the doping of hetero-ions (such as Mo6+,W6+,P5+),surface modification and forma-tion of a heterostructure with other semiconductors[20-22],but few work is focused on the effect of layer thickness or electrolyte component on the PEC performance of BiVO4.Surely,fewer attention is paid towards the mechanism why the performance of BiVO4porous thin film is improved.

    In the present work,we will investigate the effect of preparation and characterization conditions on the PEC properties of porous BiVO4thin films which were synthesized on the fluorine doped tin oxide(FTO,also named as SnO2∶F)substrates through a facile spincoating deposition method.After optimizing the preparation procedure,a photocurrent density of~4.3 mA·cm-2was achieved in the cobalt phosphate(Co-Pi)modified BiVO4layers undera visible-light irradiation intensity of 100 mW·cm-2.The mechanism for the performance improvement was analyzed by combining LSV plots with electrochemical impedance spectra(EIS).

    1 Experimental

    All the chemical reagents including bismuth nitrate pentahydrate(Bi(NO3)3·5H2O,≥98%),vanadyl acetylacetonate(VO(acac)2,≥98%), cobaltnitrate hexahydrate(Co(NO3)2·6H2O,≥98%),glacial acetic acid(CH3CO2H,≥99.7%)and acetylacetone(≥99%)were analytically pure (AR)and purchased from ShanghaiCiviCo.,Ltd.Conductive FTO glass substrates (2.2 mm thick,15 Ω·□-1)were obtained from Yinkou OPV Tech Co.,Ltd.

    1.1 Preparation of porous BiVO4thin films

    The actual concentration of precursor solution was determined by adding the Bi and V based salts(solute).For example,in order to prepare a 45 mmol·L-1precursor solution for synthesizing BiVO4porous thin films,two different solutions were prepared by dissolving 0.131 g(0.27 mmol)of Bi(NO3)3·5H2O in 1 mL of acetic acid and 0.072 g(0.27 mmol)of VO(acac)2in 5 mL methanol.After pouring the solution containing Bi into that containing V slowly (or said,drop by drop),the mixture (nBi/nV=1)was subjected to ultrasonicate robustly for 30 min,after which a stable,clear and straw-yellow precursor solution was obtained.This precursor was then employed in the following spincoating procedure.Different concentrations (nBi/nV=1)of precursor solution were obtained with the same methods.

    The film deposition process involved a small amount(~125 μL)of precursor solution being spread over the whole FTO substrate (2 cm×2 cm)and the substrate was then spin-coated at 1 500 r·min for 20 s,as displayed in Fig.1.Afterwards,the film samples were transferred into an oven and dried at 150℃for 5 min,followed by a further 400℃annealing treatment for 2 h.The processes of spin-coating deposition and air-annealing were repeated several times to obtain a target thickness of the BiVO4porous thin film.

    Fig.1 Schematic procedure for preparing BiVO4porous thin films

    1.2 Photo-assisted Co-Pi electrodeposition

    This technique was chosen for the deposition of Co-Pi because it provides a more efficient route of coupling Co-Pi to the BiVO4electrode than the common electrodeposition[20].This technique involved a porous BiVO4thin film(working electrode,WE),an saturated calomel(reference electrode,RE)and a Pt foil(counter electrode,CE)being immersed in a 0.1 mol·L-1sodium phosphate buffer(pH=7.0)containing 0.5 mmol·L-1of Co2+ions (from cobalt nitrate).A constant potential of 1.32 V versus saturated calomel electrode(SCE)was then applied for a certain period of time using an electrochemical workstation(CHI660D).In addition,the visible light(100 mW·cm-2)from a 500 W Xe lamp was used to irradiate the BiVO4electrodes during the whole deposition process(lasting for 15 min).

    1.3 Material characterization

    The cross-sectional morphology and phase structure were characterized by a field emission scanning electron microscopy (FESEM,Sirion 200)operating at 5 kV and an X-ray diffraction(XRD,Haoyuan DX-2700)with a Cu Kα source(λ=0.154 06 nm).X-ray tube voltage,current and scanning range were set at 45 kV,40 mA and 2θ=10°~80°,respectively.In addition,the diffuse absorption spectra of BiVO4porous thin films were measured on a Cary 300 UV-Visspectrophotometerwith integrating sphere(Varian,USA).The composition of a Co-Pi modified BiVO4film was characterized by an electron probe micro-analyzer(EPMA-8050G,Shimadzu,Japan).

    1.4 PEC measurements

    The PEC performance was measured by an electrochemical workstation(CHI660D)under irradiation.The visible-light irradiation was provided by a 500 W Xe lamp (Beijing Trusttech Technology Co.,Ltd.)with using a UV cut-off filter.The BiVO4porous thin films were employed as the working electrode(WE),and they were coated with a non-conductive epoxy,leaving an active area of 1 cm×1 cm.Additionally,a Pt foil and a SCE were used as the counter electrode (CE)and reference electrode (RE),respectively.The electrolyte is a mixed aqueous solution of Na2SO4and Na2SO3.

    Linear sweep voltammogram (LSV)plots were gained under visible light irradiation,while the Mott-Schotty plots were measured in dark at a constant frequency of 1 kHz.The Nyquist plots were obtained at a potential of 0 V (vs SCE)by a choice of alternating current impedance technology at a frequency range from 10-2to 105Hz.For all the PEC measurements,a front-side illumination of the BiVO4working electrodes was employed.On the basis of this,the fabricated BiVO4electrode was further adopted as a PEC bio-sensing platform (also said,the bio-sensor)for detecting the glutathione(GSH).The bioanalysis of the GSH concentration was examined by performing the transient photocurrent(J-t)plots at a bias of 0 V(vs SCE)and under irradiation.

    2 Results and discussion

    Fig.2 shows the typical XRD pattern,crosssectional SEM image and UV-Vis spectrum.It is clearly seen that the BiVO4film exhibits a monoclinic structure,since that all the peaks can be assigned to PDF No.14-688 and except those from a FTO layer(Fig.2a).It is also found that the BiVO4porous thin film displays a good visible light response,while the film thickness is around 120 nm (Fig.2b).An abrupt absorption edge appears around 500 nm,which is consistent with the bandgap of BiVO4(~2.4 eV).

    Fig.2 Typical XRD pattern(a)and optical absorption spectra(b)of BiVO4porous thin films which were deposited on FTO substrates(5 cycles)directly

    2.1 Effect of electrolyte composition

    Fig.3 shows the influence of electrolyte component on the actual PEC performance of the BiVO4films.It is found that the photocurrent density is independent on the electrolyte concentration while strongly dependent on the electrolyte composition.In details,no obvious changes are observed in the LSV or J-t plots with only increasing the concentration of Na2SO4from 0.1 to 1.0 mol·L-1,while the photocurrent is enhanced significantly after adding 0.1 molinto the 0.1 molsolution.It suggests that the performance of a photoanode is very sensitive to the hole scavenger Na2SO3in the electrolyte.Namely,the anion SO32-could react with the photoexcited holes more easily than OH-in the water,leading to a large enhancementofthe photocurrent density.

    Fig.3 LSV plots(a)and J-t plots under a chopped irradiation(b)of BiVO4thin porous films laid in different electrolytes containing of Na2SO3and Na2SO4

    2.2 Effect of precursor concentrations

    Fig.4 Cross-sectional FESEM images of BiVO4porous thin films fabricated in different precursor concentrations of(a)15,(b)30,(c)45 and(d)60 mmol·L-1with a constant cycle number of 5

    Fig.4 displays the cross-sectional SEM images of BiVO4synthesized byusing the precursorswith various concentrations.Apparently,the thicker the precursor solution,the larger thickness is the BiVO4layer.It is reasonable that the films are thickened from ~30 to ~210 nm with increasing the precursor concentration from 15 to 60 mmol·L-1,while they display a porous structure due to the evaporation of organic components.Of these samples,the one deposited at a precursor concentration of 45 mmol·L-1displays a film thickness of~120 nm.

    Fig.5 displays the UV-Vis absorption spectra of the BiVO4films with different precursor concentrations.Apparently,the visible-light harvesting of the photoanode gets enhanced a lot with increasing the precursor concentration,which is a result of the improved film thickness.Besides,it is also found that the optical bandgap (Eg)is reduced slightly due to a larger influence of the BiVO4in the entire BiVO4/FTO bilayered films.It is known that BiVO4owns a narrower bandgap(Eg=2.4 eV)than FTO(Eg=3.6~4.0 eV),thus a larger content ratio of BiVO4/FTO would result in a narrower bandgap of the sample.

    Fig.5 UV-Vis diffusion absorption spectra of BiVO4 porous thin films fabricated in different concentrations of the precursor solution(from 15 to 60 mmol·L-1)using a constant cycle number of 5

    Fig.6 also displays the LSV plots of BiVO4films with differentconcentrations ofprecursor.Itis observed that the highest photocurrent density(1.49 mA·cm-2at 0.6 V(vs SCE))appears in the BiVO4film deposited using a 45 mmol·L-1precursor solution.It is easily understood that an increase of film thickness facilitates enhancing the lightharvesting ofa photoanode.However,the actual photocurrent is also limited by the poor carrier diffusion lengths of BiVO4polycrystalline films,which results in a decrease of the photocurrentas the precursorconcentration increases from 45 to 60 mmol·L-1.

    Fig.6 LSV plots under a continuous irradiation of BiVO4porous thin films which were prepared using different concentrations of precursor solution

    2.3 Effect of deposition cycles

    Fig.7 indicates the cross-sectional SEM images of BiVO4films deposited with various layer numbers.As expected,both the thickness and porosity are enhanced significantly afterincreasing the layer number from 2 to 10.Apparently,it can reach the identical effect with an increase of precursor concentration.Accordingly,the effect of deposition cycles(namely,layer numbers)on the PEC activity is also examined in Fig.8.It is clearly observed that the BiVO4sample with 5 deposition cycles displays the highest photocurrent value at 0.6 V(vs SCE)of all.In other words,when the layer number exceeds 5,the photocurrent is reduced accordingly due to a limitation of the charge carrier diffusion length.That is to say,the optimal PEC performance is achieved in the BiVO4films with a layer number of 5 or thickness of~120 nm.

    Fig.7 Cross-sectional FESEM images of BiVO4porous thin films fabricated using a precursor concentration of 45 mmol·L-1and different layer number of(a)2,(b)5,(c)7 and(d)10

    Fig.8 LSV plots under a continuous irradiation of BiVO4 porous thin films prepared using different layer numbers

    Fig.9 Amperometric J-t plots(a)and linear relationship between photocurrent density and GSH concentration(b)of a BiVO4PEC bio-sensor with an addition of GSH to reach the concentrations of 0~1 000 μmmol·L-1in the electrolyte;(c)Selectivity experiment by testing in the solutions containing different organic interferents including PBS,L-Cystenine,L-Tyrosine,Glucose,Cystine,L-Glutamic Acid,AA,where the concentrations of these interferents are 20 μmol·L-1while that of GSH is 100 μmol·L-1;(d)Possible mechanism for the PEC detection of GSH

    Further,we also assembled a PEC sensor by using a porous BiVO4film electrode,and the biosensing performance of this device was measured at zero bias(0 V vs SCE),as indicated in Fig.9.Herein,the BiVO4film was fabricated under the optimal condition(45 mmol·L-1and 5 layers).At first,a series of sharp peaks in the J-t plots(similar with the phenomenon appeared in references[23-24]),suggesting that there is an instability in the photocurrent(Fig.9a).Such a behavior may be due to the poor charge separation on BiVO4surfaces or interfaces under zero bias.Besides,with increasing the GSH concentration(from 0 to 1 000 μmol·L-1),the photo-response is enhanced significantly,which displays an acceptable sensitivity for detecting the GSH (Fig.9b).And also,this BiVO4biosensor also exhibits much higher photoresponse towards detection ofGSH than other additives(Fig.9c),which was attributed to the higher redox capability of GSH.Namely,it was easy to realize a conversion of GSH to the oxidized glutathione(GSSG)through the following reaction[25]:2GSH+2h++2OH-→GSSG+2H2O.The possible mechanism for the PEC detection of GSH is shown in Fig.9d.Apparently,under a visible light irradiation,a number of electron-hole pairs are produced inside a porous BiVO4film.The existence of the GSH species in an electrolyte acceleratesthe consumption ofholes,leading to a faster migration of the electron towards the opposite direction(i.e.,the photocurrent).In other words,the GSH plays a role of the hole sacrificial agent,leadingtoan acceleration ofthe carrier separation and an enhancement of the photocurrent output.

    2.4 Effect of Co-Pi modification

    In this section,the effect a Co-Pi modification was investigated on the PEC activity of a BiVO4electrode.Table 1 displays the actual composition of the Co-Pi/BiVO4film sample.The elements of Co and P are clearly identified with considerable contents,which demonstrates a success in the Co-Pi modification.Note that all the elements(Bi,V,Co,etc.)could be viewed as the oxides exist in the sample,where the elements Na,Si and Ca are from the glass substrate.

    Table 1 Composition analysis of the Co-Pi modified BiVO4thin film via an electron microprobe

    Fig.10 displays a comparison of the LSV plots of BiVO4films before and after Co-Pi modification.Apparently,the photocurrent of a BiVO4electrode is enhanced a lot after coating with a co-catalyst Co-Pi,reaching to a value of 4.3 mA·cm-2at a bias of 0.6 V(vs SCE).Such a value is comparable to several previous reports.Further,the mechanism for the performance enhancement is also revealed through an EIS analysis,including the Nyquist and Mott-Schotty plots displayed in Fig.11a and 11b,respectively.Typically,during an equivalent circuit model displayed in the inset of Fig.11a,RSrepresents the series resistance from the solid electrode,electrolyte and wires,while RCTrepresents the charge transfer resistance occurred atthe electrode/electrolyte interface.As indicated in Table 2,the parameters Ndand Vfbrepresent the donor concentration and flat-band potential of a BiVO4film electrode, respectively. Both of them can be determined from a linear fitting of the Mott-Schotty plots in Fig.11b.Herein,Ndis inversely proportional to the slope of the fitted curve,while Vfbcorresponds to the intercept of the fitted plot on the X-axis.Notably,after a Co-Pi modification,RCTgets smaller while Vfbbecomes more positive,implying that the charge transfer resistance is reduced a lot.That is to say,the PEC performance enhancement is attributed to a more efficient interfacial charge transfer process.

    Fig.10 LSV plots under a continuous irradiation of BiVO4porous thin films with and without the Co-Pi modification

    Fig.11 Comparison on the Nyquist(a)and Mott-Schotty plots(b)of BiVO4porous thin films with and without the Co-Pi modification

    Table 2 Calculated electronic parameters from Nyquist plots under illumination and Mott-Schotty plots measured in dark of BiVO4electrodes by terms of the corresponding model or formula[24]

    3 Conclusions

    BiVO4porous thin films have been prepared through a facile spin-coating route,followed by an airannealing treatment process for PEC applications.The effects of electrolyte composition and preparation parameters(layer thickness)were investigated,too.The PEC activity of BiVO4could be enhanced efficiently by adding the hole scavenger SO32-into the electrolyte.Otherwise,it was also found that the BiVO4film exhibit the optimal PEC performance (~4.3 mA·cm-2)after using a 45 mmol·L-1precursor,depositing for 5 layers(with a thickness of~120 nm)and modifying with Co-Pi thin layer,and using a 0.1 mol·L-1Na2SO4+0.1 mol·L-1Na2SO3solution as the electrolyte.Finally,a PEC bio-sensor based on BiVO4has been fabricated for detecting the GSH,leading to an acceptable sensitivity.

    [1]Chen X B,Li C,Grtzel M,et al.Chem.Soc.Rev.,2012,41:7909-7937

    [2]Ma Y,Wang X L,Jia Y S,et al.Chem.Soc.Rev.,2014,114(19):9987-10043

    [3]Zhang X F,Zhang B Y,Cao K,et al.J.Mater.Chem.A,2015,3:21630-21636

    [4]Fujishima H,Honda K.Nature,1972,238:37-38

    [5]YUAN Su-Jun(袁素珺),ZHANG Qing-Hong(張青紅),LEI Fang(雷芳),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2015,31(6):1099-1104

    [6]XU Zhen(許貞),LI Juan(李娟),LI Xin-Jun(李新軍).Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2013,29(3):429-436

    [7]Mayer M T,Lin Y,Yuan G,et al.Acc.Chem.Res.,2013,46(7):1558-1566

    [8]Hong S J,Lee S,Jang J S,et al.Energy Environ.Sci.,2011,4:1781-1787

    [9]Li K,Zhang H B,Tang Y P,et al.Appl.Catal.B,2015,164:82-91

    [10]Sui M R,Han C P,Wang Y,et al.J.Mater.Sci.-Mater.Electron.,2016,27:4290-4296

    [11]Zhang S,Gu X Q,Zhao Y L,et al.Mater.Sci.Eng.B,2015,201:57-65

    [12]ZHANG Yan(張妍),YU Jian-Qiang(于建強(qiáng)),GAO Xing-Long(高行龍),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2011,27(1):141-144

    [13]Li J T,Wu N Q.Catal.Sci.Technol.,2015,5:1360-1384

    [14]Kim J H,Jang J W,Jo Y H,et al.Nat.Commun.,2016,7:13380(9 Pages)

    [15]Sayama K,Nomura A,Zou Z,et al.Chem.Commun.,2003(23):2908-2909

    [16]Ma M,Kim J K,Zhang K,et al.Chem.Mater.,2014,26:5592-5597

    [17]Zhang L W,Reisner E,Baumberg J J.Energy Environ.Sci.,2014,7:1402-1408

    [18]Park Y,McDonald K J,Choi K S.Chem.Soc.Rev.,2013,42:2321-2337

    [19]Zhong D K,Choi S,Gamelin D R.J.Am.Chem.Soc.,2011,133:18370-18377

    [20]Thalluri S M,Hernández S,Bensaid S,et al.Appl.Catal.,B,2016,180:630-636

    [21]Jo W J,Jang J W,Kong K,et al.Angew.Chem.Int.Ed.,2012,51(13):3147-3151

    [22]Rao P M,Cai L L,Liu C,et al.Nano Lett.,2014,14(2):1099-1105

    [23]Ng Y H,Iwase A,Kudo A,et al.J.Phys.Chem.Lett.,2010,1(17):2607-2612

    [24]Zhang S,Gu X Q,Zhao Y L,et al.J.Electron.Mater.,2016,45(1):648-653

    [25]Zhao K,Yan X Q,Gu Y S,et al.Small,2016,12(2):245-251

    猜你喜歡
    中國(guó)礦業(yè)大學(xué)化工學(xué)院醫(yī)學(xué)影像
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    醫(yī)學(xué)影像技術(shù)在醫(yī)學(xué)影像診斷中的合理運(yùn)用
    《當(dāng)代醫(yī)學(xué)影像誤診學(xué)》出版
    國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    《當(dāng)代醫(yī)學(xué)影像誤診學(xué)》正式出版
    【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    《化工學(xué)報(bào)》贊助單位
    高校學(xué)生評(píng)教的問(wèn)題與對(duì)策——以中國(guó)礦業(yè)大學(xué)為例
    中國(guó)礦業(yè)大學(xué)教育培訓(xùn)工作簡(jiǎn)介
    醫(yī)學(xué)影像專業(yè)放射物理教學(xué)改革與實(shí)踐
    波多野结衣av一区二区av| 在线 av 中文字幕| 婷婷成人精品国产| 熟女av电影| 国产亚洲精品久久久久5区| 后天国语完整版免费观看| 一边亲一边摸免费视频| 欧美日韩av久久| 国产日韩欧美在线精品| 国产有黄有色有爽视频| 少妇的丰满在线观看| 国产免费一区二区三区四区乱码| 日本五十路高清| 美女高潮到喷水免费观看| 亚洲精品久久久久久婷婷小说| 国产成人免费观看mmmm| 9191精品国产免费久久| 丁香六月天网| 国产精品av久久久久免费| 18禁黄网站禁片午夜丰满| 一级毛片电影观看| 精品少妇一区二区三区视频日本电影| 久久精品熟女亚洲av麻豆精品| 久久人妻熟女aⅴ| 老司机午夜十八禁免费视频| 午夜福利视频精品| av在线app专区| 亚洲av日韩精品久久久久久密 | 日日摸夜夜添夜夜爱| 亚洲精品国产区一区二| 91精品三级在线观看| 国产黄频视频在线观看| 黄片播放在线免费| 欧美 日韩 精品 国产| 欧美人与善性xxx| 嫁个100分男人电影在线观看 | 黄色一级大片看看| 成人黄色视频免费在线看| 日本午夜av视频| 国产一区二区在线观看av| 美女扒开内裤让男人捅视频| 色婷婷久久久亚洲欧美| avwww免费| 久久99一区二区三区| 爱豆传媒免费全集在线观看| 婷婷色综合www| 在线观看人妻少妇| 永久免费av网站大全| 91麻豆av在线| 又紧又爽又黄一区二区| 欧美变态另类bdsm刘玥| 91国产中文字幕| 久久国产精品人妻蜜桃| 在线亚洲精品国产二区图片欧美| 女性生殖器流出的白浆| 极品人妻少妇av视频| 精品卡一卡二卡四卡免费| 久久人人97超碰香蕉20202| 国产精品九九99| 欧美成狂野欧美在线观看| 黑人欧美特级aaaaaa片| 午夜精品国产一区二区电影| 国产精品av久久久久免费| 国产97色在线日韩免费| 国产精品久久久久久精品电影小说| 天天影视国产精品| 精品免费久久久久久久清纯 | 少妇被粗大的猛进出69影院| 香蕉国产在线看| 午夜免费鲁丝| 亚洲av在线观看美女高潮| 最近中文字幕2019免费版| 两人在一起打扑克的视频| 午夜91福利影院| 女人高潮潮喷娇喘18禁视频| cao死你这个sao货| 中文字幕最新亚洲高清| 免费看av在线观看网站| 国产精品一区二区在线观看99| 国产麻豆69| 精品久久久精品久久久| 日韩精品免费视频一区二区三区| 久久天躁狠狠躁夜夜2o2o | 大香蕉久久网| 18禁裸乳无遮挡动漫免费视频| 免费在线观看视频国产中文字幕亚洲 | 日韩制服丝袜自拍偷拍| 男女之事视频高清在线观看 | 韩国精品一区二区三区| 国产免费福利视频在线观看| 啦啦啦在线观看免费高清www| 欧美精品啪啪一区二区三区 | 日韩,欧美,国产一区二区三区| 99香蕉大伊视频| 啦啦啦视频在线资源免费观看| 久久久久久久国产电影| 丝袜美腿诱惑在线| www.熟女人妻精品国产| 久久久久久久大尺度免费视频| 久久精品人人爽人人爽视色| 日韩中文字幕视频在线看片| 丝袜脚勾引网站| 赤兔流量卡办理| 嫁个100分男人电影在线观看 | 中文字幕人妻丝袜制服| 国产成人啪精品午夜网站| 亚洲专区国产一区二区| 国产亚洲欧美在线一区二区| 一级毛片 在线播放| 国产精品久久久久成人av| 巨乳人妻的诱惑在线观看| 99国产精品一区二区蜜桃av | 在线观看www视频免费| h视频一区二区三区| 波野结衣二区三区在线| 中国美女看黄片| 可以免费在线观看a视频的电影网站| 黄色a级毛片大全视频| 免费黄频网站在线观看国产| 蜜桃在线观看..| 精品国产乱码久久久久久男人| av福利片在线| 国产成人av激情在线播放| 日韩中文字幕欧美一区二区 | 精品卡一卡二卡四卡免费| 免费黄频网站在线观看国产| 国产精品成人在线| 又黄又粗又硬又大视频| 欧美人与善性xxx| 国产精品秋霞免费鲁丝片| 国产在视频线精品| 人妻一区二区av| 欧美日韩福利视频一区二区| 国产精品久久久久成人av| 久久久精品免费免费高清| 亚洲人成电影观看| 免费一级毛片在线播放高清视频 | 成年av动漫网址| 黑丝袜美女国产一区| 精品久久蜜臀av无| 秋霞在线观看毛片| 香蕉丝袜av| 亚洲国产中文字幕在线视频| 18禁观看日本| 精品久久久久久久毛片微露脸 | 亚洲av电影在线观看一区二区三区| 美女视频免费永久观看网站| 高清黄色对白视频在线免费看| 国产精品一区二区在线不卡| videos熟女内射| av网站免费在线观看视频| 天堂8中文在线网| 三上悠亚av全集在线观看| 中文字幕另类日韩欧美亚洲嫩草| 成人18禁高潮啪啪吃奶动态图| 三上悠亚av全集在线观看| 欧美激情高清一区二区三区| 欧美国产精品一级二级三级| 丝瓜视频免费看黄片| 性色av乱码一区二区三区2| 婷婷丁香在线五月| 久久久久久免费高清国产稀缺| 国产成人精品在线电影| 国产高清国产精品国产三级| 免费黄频网站在线观看国产| 亚洲五月婷婷丁香| 夜夜骑夜夜射夜夜干| 国产欧美日韩一区二区三 | 又粗又硬又长又爽又黄的视频| 欧美成人午夜精品| 香蕉丝袜av| 男女国产视频网站| 亚洲少妇的诱惑av| 久久久亚洲精品成人影院| 精品少妇久久久久久888优播| 亚洲精品一区蜜桃| 欧美亚洲 丝袜 人妻 在线| 91精品国产国语对白视频| 国产精品久久久av美女十八| 婷婷色综合大香蕉| 亚洲自偷自拍图片 自拍| a级片在线免费高清观看视频| 99精品久久久久人妻精品| 婷婷色综合www| 18禁国产床啪视频网站| 色婷婷av一区二区三区视频| 久久久精品区二区三区| 国产成人精品无人区| 亚洲欧美日韩高清在线视频 | 国产爽快片一区二区三区| 51午夜福利影视在线观看| 青春草亚洲视频在线观看| 欧美+亚洲+日韩+国产| 纵有疾风起免费观看全集完整版| 中文字幕高清在线视频| 国产精品香港三级国产av潘金莲 | 丝袜喷水一区| 久久精品久久久久久噜噜老黄| 亚洲精品日本国产第一区| 亚洲av美国av| 欧美日韩亚洲国产一区二区在线观看 | 欧美人与善性xxx| 一本—道久久a久久精品蜜桃钙片| 97精品久久久久久久久久精品| av有码第一页| 国产男女内射视频| 精品亚洲成国产av| 午夜av观看不卡| 欧美性长视频在线观看| 亚洲av日韩精品久久久久久密 | 亚洲国产毛片av蜜桃av| 日韩伦理黄色片| 欧美国产精品va在线观看不卡| 午夜福利,免费看| 成人国语在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产成人影院久久av| 天天躁日日躁夜夜躁夜夜| 亚洲人成网站在线观看播放| 精品欧美一区二区三区在线| 少妇粗大呻吟视频| 大型av网站在线播放| 免费在线观看日本一区| 日韩 欧美 亚洲 中文字幕| 成人黄色视频免费在线看| 色婷婷久久久亚洲欧美| 精品国产一区二区三区久久久樱花| 久久国产精品人妻蜜桃| 精品人妻在线不人妻| 亚洲欧洲国产日韩| 亚洲av综合色区一区| 黄频高清免费视频| 久久久久久久精品精品| 天天影视国产精品| 久久精品久久久久久噜噜老黄| 国产精品一区二区精品视频观看| 肉色欧美久久久久久久蜜桃| 国产免费视频播放在线视频| 欧美黄色片欧美黄色片| 国产激情久久老熟女| 国产爽快片一区二区三区| 麻豆av在线久日| 99久久99久久久精品蜜桃| 免费看不卡的av| e午夜精品久久久久久久| 免费看av在线观看网站| 这个男人来自地球电影免费观看| 色婷婷久久久亚洲欧美| videosex国产| 青春草亚洲视频在线观看| 在线观看一区二区三区激情| av片东京热男人的天堂| 久久人人97超碰香蕉20202| 汤姆久久久久久久影院中文字幕| 啦啦啦视频在线资源免费观看| 亚洲av在线观看美女高潮| 欧美日韩综合久久久久久| 国产麻豆69| 欧美人与性动交α欧美精品济南到| 中国国产av一级| 999久久久国产精品视频| 一级片免费观看大全| 大片免费播放器 马上看| 热99久久久久精品小说推荐| 亚洲精品国产一区二区精华液| 男人舔女人的私密视频| 成年人黄色毛片网站| 亚洲欧美中文字幕日韩二区| 国产高清不卡午夜福利| 国产成人av激情在线播放| 一区福利在线观看| 女警被强在线播放| 9热在线视频观看99| 精品第一国产精品| 欧美成人精品欧美一级黄| 国产成人精品在线电影| 色婷婷av一区二区三区视频| 天天躁日日躁夜夜躁夜夜| 天天影视国产精品| 视频在线观看一区二区三区| 久久热在线av| 成人国产一区最新在线观看 | 国产精品一区二区在线不卡| 999精品在线视频| 波野结衣二区三区在线| 又粗又硬又长又爽又黄的视频| a 毛片基地| 宅男免费午夜| 日韩伦理黄色片| 亚洲精品国产av成人精品| 精品一品国产午夜福利视频| 日本av免费视频播放| 美国免费a级毛片| 成人午夜精彩视频在线观看| 男人操女人黄网站| 亚洲午夜精品一区,二区,三区| 久久久国产精品麻豆| 午夜免费鲁丝| 99国产精品免费福利视频| 黑人猛操日本美女一级片| 一个人免费看片子| 久久久精品国产亚洲av高清涩受| 自线自在国产av| 两性夫妻黄色片| 国产精品99久久99久久久不卡| 你懂的网址亚洲精品在线观看| 精品高清国产在线一区| 国产精品九九99| 精品一区二区三区av网在线观看 | 一级黄色大片毛片| 电影成人av| 老司机影院成人| 欧美日韩综合久久久久久| 国产免费视频播放在线视频| 性高湖久久久久久久久免费观看| 校园人妻丝袜中文字幕| 亚洲精品美女久久av网站| 成人18禁高潮啪啪吃奶动态图| 欧美黑人精品巨大| √禁漫天堂资源中文www| 欧美在线黄色| 亚洲国产欧美在线一区| 国产免费又黄又爽又色| 又粗又硬又长又爽又黄的视频| 丁香六月天网| 成年女人毛片免费观看观看9 | 在线观看免费午夜福利视频| 免费在线观看影片大全网站 | 777久久人妻少妇嫩草av网站| 免费观看人在逋| 91九色精品人成在线观看| 国产三级黄色录像| 夫妻午夜视频| 自线自在国产av| 亚洲精品一卡2卡三卡4卡5卡 | 久久久久久久精品精品| 免费在线观看影片大全网站 | 欧美日韩视频精品一区| 在线观看免费高清a一片| tube8黄色片| 日韩人妻精品一区2区三区| 91麻豆av在线| 日韩中文字幕欧美一区二区 | 啦啦啦在线观看免费高清www| 久久国产精品影院| 国产欧美日韩精品亚洲av| 精品久久久久久电影网| 欧美日韩精品网址| 大香蕉久久网| 熟女少妇亚洲综合色aaa.| 亚洲 国产 在线| 精品福利永久在线观看| 丝袜美足系列| 国产不卡av网站在线观看| 老司机午夜十八禁免费视频| 欧美精品亚洲一区二区| 久久精品人人爽人人爽视色| √禁漫天堂资源中文www| 成人国产一区最新在线观看 | 午夜激情av网站| 国产成人精品在线电影| 搡老乐熟女国产| 新久久久久国产一级毛片| 亚洲五月婷婷丁香| 少妇人妻久久综合中文| 大香蕉久久成人网| 热99国产精品久久久久久7| 国产欧美日韩精品亚洲av| 激情五月婷婷亚洲| 精品亚洲成a人片在线观看| 后天国语完整版免费观看| 午夜福利影视在线免费观看| 国产亚洲欧美在线一区二区| 欧美久久黑人一区二区| 国产免费又黄又爽又色| 精品国产乱码久久久久久小说| 777久久人妻少妇嫩草av网站| 人人妻人人澡人人爽人人夜夜| 国产成人啪精品午夜网站| 男女午夜视频在线观看| 国产成人精品久久二区二区91| 国语对白做爰xxxⅹ性视频网站| 在线天堂中文资源库| 成人三级做爰电影| 国产片特级美女逼逼视频| 90打野战视频偷拍视频| 欧美精品av麻豆av| 搡老岳熟女国产| 免费不卡黄色视频| 18禁观看日本| 两性夫妻黄色片| 一二三四在线观看免费中文在| 91精品三级在线观看| av又黄又爽大尺度在线免费看| 亚洲精品国产av蜜桃| 麻豆av在线久日| 国产免费一区二区三区四区乱码| 午夜福利一区二区在线看| 亚洲一区二区三区欧美精品| 视频在线观看一区二区三区| 久久久久久久精品精品| 日韩视频在线欧美| 最黄视频免费看| 人妻人人澡人人爽人人| 蜜桃在线观看..| 青草久久国产| 一本综合久久免费| 免费在线观看完整版高清| 黄色怎么调成土黄色| 悠悠久久av| 国产成人精品久久二区二区91| 好男人视频免费观看在线| 国产主播在线观看一区二区 | 精品少妇内射三级| 久久亚洲精品不卡| 精品一区二区三区四区五区乱码 | 99国产精品免费福利视频| 亚洲国产中文字幕在线视频| av在线app专区| 中文字幕人妻熟女乱码| 狂野欧美激情性bbbbbb| 国产免费福利视频在线观看| 精品高清国产在线一区| 在线精品无人区一区二区三| 黑人猛操日本美女一级片| 波多野结衣av一区二区av| 亚洲一卡2卡3卡4卡5卡精品中文| 美女国产高潮福利片在线看| 在线精品无人区一区二区三| 欧美黄色淫秽网站| 亚洲欧美中文字幕日韩二区| 五月开心婷婷网| 亚洲国产中文字幕在线视频| 黑人巨大精品欧美一区二区蜜桃| 汤姆久久久久久久影院中文字幕| 一区二区三区乱码不卡18| 91精品三级在线观看| 丰满人妻熟妇乱又伦精品不卡| av在线老鸭窝| 精品国产一区二区久久| 日本五十路高清| 色综合欧美亚洲国产小说| 久久久久精品人妻al黑| 久久久久视频综合| 黄色 视频免费看| 精品免费久久久久久久清纯 | 欧美精品一区二区免费开放| 欧美 亚洲 国产 日韩一| 1024香蕉在线观看| 成人三级做爰电影| 亚洲图色成人| 后天国语完整版免费观看| 777久久人妻少妇嫩草av网站| 精品免费久久久久久久清纯 | 韩国精品一区二区三区| 操出白浆在线播放| 黄色 视频免费看| 国产精品偷伦视频观看了| 中文乱码字字幕精品一区二区三区| 欧美黄色片欧美黄色片| 日韩av免费高清视频| 啦啦啦啦在线视频资源| 美女脱内裤让男人舔精品视频| 欧美中文综合在线视频| 亚洲 国产 在线| 国产黄频视频在线观看| 热99国产精品久久久久久7| 色94色欧美一区二区| 国产精品一区二区免费欧美 | 精品一区二区三卡| 可以免费在线观看a视频的电影网站| 亚洲伊人色综图| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av综合色区一区| 亚洲精品久久久久久婷婷小说| 97精品久久久久久久久久精品| 亚洲激情五月婷婷啪啪| 丝袜脚勾引网站| 精品福利永久在线观看| 少妇猛男粗大的猛烈进出视频| 欧美黑人精品巨大| 在线av久久热| 亚洲精品国产av蜜桃| 亚洲激情五月婷婷啪啪| 国产片特级美女逼逼视频| 女性生殖器流出的白浆| 激情五月婷婷亚洲| 亚洲国产毛片av蜜桃av| 国产国语露脸激情在线看| 婷婷色av中文字幕| 嫁个100分男人电影在线观看 | 亚洲七黄色美女视频| 无限看片的www在线观看| 亚洲人成77777在线视频| 国产1区2区3区精品| 成年人免费黄色播放视频| av国产精品久久久久影院| 亚洲成av片中文字幕在线观看| 亚洲欧洲精品一区二区精品久久久| 巨乳人妻的诱惑在线观看| 女人精品久久久久毛片| 每晚都被弄得嗷嗷叫到高潮| 一级片免费观看大全| 久久精品亚洲熟妇少妇任你| 九草在线视频观看| 男女国产视频网站| 精品一品国产午夜福利视频| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕人妻熟女乱码| 欧美亚洲日本最大视频资源| 青草久久国产| 性色av一级| 亚洲美女黄色视频免费看| 国产亚洲一区二区精品| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| 亚洲精品久久久久久婷婷小说| 97精品久久久久久久久久精品| 汤姆久久久久久久影院中文字幕| 欧美成人午夜精品| 亚洲国产欧美一区二区综合| 中文字幕精品免费在线观看视频| 19禁男女啪啪无遮挡网站| 男女边吃奶边做爰视频| tube8黄色片| 亚洲国产av影院在线观看| 女人被躁到高潮嗷嗷叫费观| 1024视频免费在线观看| 成年人午夜在线观看视频| 香蕉丝袜av| 午夜福利影视在线免费观看| 国产成人精品在线电影| 好男人视频免费观看在线| 黑丝袜美女国产一区| 国产在视频线精品| 亚洲欧美精品自产自拍| 2021少妇久久久久久久久久久| 亚洲国产精品一区二区三区在线| 国产老妇伦熟女老妇高清| 亚洲av日韩在线播放| 国产在视频线精品| 叶爱在线成人免费视频播放| av电影中文网址| 色网站视频免费| 亚洲成人手机| 国产免费现黄频在线看| 校园人妻丝袜中文字幕| 熟女av电影| 黄片播放在线免费| 黄色一级大片看看| 王馨瑶露胸无遮挡在线观看| 美女高潮到喷水免费观看| 热re99久久国产66热| 视频区欧美日本亚洲| 精品卡一卡二卡四卡免费| 黑丝袜美女国产一区| 夜夜骑夜夜射夜夜干| 欧美xxⅹ黑人| 女性被躁到高潮视频| 男女免费视频国产| 欧美精品亚洲一区二区| 国产高清国产精品国产三级| 夫妻性生交免费视频一级片| 黄网站色视频无遮挡免费观看| 国产成人欧美在线观看 | 免费人妻精品一区二区三区视频| 国产黄色视频一区二区在线观看| 大话2 男鬼变身卡| 手机成人av网站| 日韩av在线免费看完整版不卡| 久久久久国产精品人妻一区二区| 麻豆av在线久日| 亚洲精品在线美女| 欧美日韩一级在线毛片| 成人国产一区最新在线观看 | 久久久久久免费高清国产稀缺| 亚洲天堂av无毛| 亚洲精品国产区一区二| 又大又黄又爽视频免费| 乱人伦中国视频| 日本wwww免费看| 日本91视频免费播放| 大码成人一级视频| 成人午夜精彩视频在线观看| 亚洲国产精品一区三区| 大香蕉久久网| 国产精品久久久久成人av| 一级片免费观看大全| 性色av一级| 久久这里只有精品19| 男女无遮挡免费网站观看| 人人澡人人妻人| 国产av精品麻豆| 久热爱精品视频在线9| 日本色播在线视频| 老熟女久久久| 2018国产大陆天天弄谢| 99国产精品免费福利视频| 久久精品国产综合久久久| 99国产精品一区二区蜜桃av | 国产一区二区三区综合在线观看| 久久精品国产综合久久久| 男女免费视频国产| 亚洲三区欧美一区| 日韩制服骚丝袜av| 亚洲国产看品久久| 久久综合国产亚洲精品| 美女高潮到喷水免费观看| 久久精品亚洲熟妇少妇任你| 丝袜人妻中文字幕| 欧美精品啪啪一区二区三区 | 少妇裸体淫交视频免费看高清 | 男女下面插进去视频免费观看| 97精品久久久久久久久久精品| 波多野结衣一区麻豆|