楊楓,陳傳武,范七君,石春梅,謝宗周,郭大勇,劉繼紅
?
溫度和多胺對(duì)柑橘潰瘍病發(fā)生的影響及作用機(jī)制
楊楓1,陳傳武2,范七君2,石春梅1,謝宗周1,郭大勇1,劉繼紅1
(1華中農(nóng)業(yè)大學(xué)園藝林學(xué)學(xué)院/園藝植物生物學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,武漢 430070;2廣西特色作物研究院/廣西柑橘生物學(xué)重點(diǎn)實(shí)驗(yàn)室,廣西桂林 541004)
【目的】潰瘍病是嚴(yán)重危害柑橘的一種細(xì)菌性病害,通常在高溫下容易發(fā)生。論文旨在闡明高溫下柑橘易發(fā)生潰瘍病的機(jī)制,揭示其代謝變化,為利用藥劑防治潰瘍病提供重要的理論指導(dǎo)?!痉椒ā恳愿胁〉奶鸪龋ǎ檠芯繉?duì)象,在21℃和30℃下預(yù)培養(yǎng)3 d,然后均接種同樣濃度(108cfu/ml)的柑橘潰瘍病菌(subsp.,)10 μl,比較兩組植株的發(fā)病率,采用半定量RT-PCR分析兩種溫度下4個(gè)抗病基因、、和的表達(dá)量,利用HPLC測(cè)定預(yù)培養(yǎng)3 d后葉片內(nèi)源多胺(腐胺、亞精胺和精胺)的含量。在此基礎(chǔ)上,利用外源亞精胺(0.4 mmol·L-1)處理甜橙植株(以清水處理為對(duì)照),比較亞精胺和清水處理的植株接種潰瘍病菌后的發(fā)病率和病情指數(shù),分析亞精胺處理對(duì)內(nèi)源多胺含量和抗病基因、、和表達(dá)的影響?!窘Y(jié)果】潰瘍病菌接種后觀察發(fā)現(xiàn),21℃培養(yǎng)植株潰瘍病的發(fā)病率在前期低于30℃培養(yǎng)的植株,至第10天時(shí),兩個(gè)處理組植株的發(fā)病率接近;同時(shí)HPLC測(cè)定發(fā)現(xiàn),21℃培養(yǎng)植株葉片3種自由態(tài)多胺(腐胺、亞精胺和精胺)含量高于30℃培養(yǎng)植株;RT-PCR分析表明,、和這3個(gè)抗病基因的表達(dá)量在21℃培養(yǎng)植株中高于30℃培養(yǎng)植株,而表達(dá)水平在兩組材料中差異不明顯。外源亞精胺處理顯著增加了內(nèi)源腐胺和亞精胺的含量,降低了所處理植株接種潰瘍病菌后的發(fā)病率和病情指數(shù),接種后14 d發(fā)病率比對(duì)照降低45%,病情指數(shù)比對(duì)照降低4.8,而由表型可見(jiàn)對(duì)照發(fā)病程度重于亞精胺處理材料。此外,亞精胺處理能夠增強(qiáng)、、和4個(gè)抗病基因的表達(dá)量?!窘Y(jié)論】高溫下甜橙更易發(fā)生潰瘍病的可能機(jī)制是高溫抑制抗病基因的表達(dá)和多胺合成。外源多胺處理能夠降低甜橙發(fā)生潰瘍病,可能機(jī)制是多胺處理后增強(qiáng)了抗病基因的表達(dá),誘發(fā)植株的抗病反應(yīng)最終表現(xiàn)出抗病。因此,高溫是影響潰瘍病發(fā)生的一個(gè)關(guān)鍵環(huán)境因子,多胺有助于提高對(duì)柑橘潰瘍病的抗性。
柑橘;潰瘍病;高溫;多胺;抗病基因;抗病性
【研究意義】細(xì)菌性潰瘍?。╞acterial canker disease,BCD)是嚴(yán)重危害柑橘的一種病害,在世界范圍內(nèi)對(duì)柑橘產(chǎn)業(yè)造成了大的損失,被列入檢疫性病害,其病原為柑橘黃單胞菌柑橘亞種(subsp.,)[1]??汕秩靖涕偃~片、皮刺、枝條及果實(shí),造成落葉、梢枯、削弱樹(shù)勢(shì)等危害,嚴(yán)重時(shí)還引起落果。由于細(xì)菌性潰瘍病對(duì)于柑橘樹(shù)體正常生長(zhǎng)和果實(shí)產(chǎn)量及品質(zhì)均有重要的影響,培育抗?jié)儾〉母涕倨贩N或采取有效的防病措施對(duì)于柑橘產(chǎn)業(yè)持續(xù)、健康發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】目前,從寄主角度針對(duì)柑橘潰瘍病開(kāi)展的工作主要包括以下幾個(gè)方面:分析不同柑橘品種或資源對(duì)的抗性差異[2]、克隆和鑒定抗病基因[3-5]、解析柑橘對(duì)應(yīng)答的生理或分子機(jī)制[6]、柑橘遺傳轉(zhuǎn)化和轉(zhuǎn)基因植株抗性評(píng)價(jià)[7-9]、外源藥劑(如水楊酸)防控強(qiáng)潰瘍病等[10],對(duì)揭示柑橘抗病性差異的生理和分子機(jī)制、發(fā)掘和創(chuàng)制抗性資源等起到了重要的作用。柑橘基因型是影響潰瘍病發(fā)生程度的一個(gè)重要因素,大多數(shù)柑橘栽培品種均易發(fā)生潰瘍病,而金柑和枸櫞C-05()則較少發(fā)病,后者更是被認(rèn)為對(duì)柑橘潰瘍病具有免疫抗性[2,6]。對(duì)抗病和感病的柑橘資源進(jìn)行分析,發(fā)現(xiàn)葉片結(jié)構(gòu)、氣孔大小與密度、葉片分泌物質(zhì)、抗氧化酶活性及基因表達(dá)譜等與潰瘍病抗性強(qiáng)弱有關(guān)[2,6,10]。如有報(bào)道表明氣孔小可能是金柑抗病的一個(gè)的結(jié)構(gòu)機(jī)制,能夠限制進(jìn)入葉片的細(xì)菌數(shù)量[6];枸櫞C-05葉片分泌特殊的物質(zhì)抑制潰瘍病菌生長(zhǎng),使其表現(xiàn)出較好的抗性[2]。植物在遭受病原入侵時(shí),會(huì)主動(dòng)合成一些物質(zhì)去增強(qiáng)抗病性。研究表明,在抗病中起作用的次生代謝物較多,多胺是其中一種。多胺是廣泛存在于活體生物中的一類低分子量含氮脂肪堿,具有多聚陽(yáng)離子特性,在生理pH下帶正電荷,能夠共價(jià)結(jié)合帶負(fù)電荷的大分子物質(zhì)(如DNA、RNA、染色質(zhì)和蛋白質(zhì)等),因而參與了許多植物生理和生物學(xué)過(guò)程[11-12]。高等植物中常見(jiàn)的多胺為腐胺(putrescine,Put)、亞精胺(spermidine,Spd)和精胺(spermine,Spm)。此外,多胺還被認(rèn)為具有清除活性氧(reactive oxygen species,ROS)、調(diào)節(jié)滲透壓的作用[11]。基于多胺這些特性,大量研究認(rèn)為,多胺是植物應(yīng)答非生物脅迫的一類重要代謝物[12]。研究還表明,多胺在植物應(yīng)答生物脅迫中也發(fā)揮著重要的作用[13-14],這主要是基于以下研究結(jié)果:(1)植物在病原菌入侵時(shí),多胺合成酶活性上升,使體內(nèi)積累多胺[15]。如大麥在接種白粉病菌()后,鳥(niǎo)胺酸脫羧酶活性顯著增加,葉片中自由態(tài)Spd、共軛態(tài)Spd和Put含量升高[16]。對(duì)煙草接種活體營(yíng)養(yǎng)型細(xì)菌后發(fā)現(xiàn),植株體內(nèi)Spm顯著增加[17]。這些結(jié)果說(shuō)明多胺參與寄主植物的病原應(yīng)答過(guò)程;(2)外源施用多胺能增強(qiáng)植物的抗病能力,如外源添加Spm增強(qiáng)了煙草對(duì)煙草花葉病毒(,TMV)的抗性[18];(3)超表達(dá)多胺合成基因,使轉(zhuǎn)基因植株中的多胺含量增加,其抗病性也得以增強(qiáng)[9]?!颈狙芯壳腥朦c(diǎn)】無(wú)論是開(kāi)展抗病育種還是研發(fā)潰瘍病防控技術(shù),理論上均需要對(duì)柑橘應(yīng)答的侵染進(jìn)行深入地研究。柑橘潰瘍病在高溫環(huán)境下容易發(fā)生,但這一現(xiàn)象的機(jī)制卻知之甚少。此外,利用外源多胺防控潰瘍病發(fā)生的研究尚未見(jiàn)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】以冰糖橙()為供試材料,比較不同溫度下植株接種潰瘍病菌后的發(fā)病情況、多胺含量及抗病基因的表達(dá),同時(shí)分析外源多胺處理能否增強(qiáng)抗病能力。闡明高溫下柑橘易發(fā)潰瘍病的可能機(jī)制,同時(shí)為研發(fā)和應(yīng)用基于外源物質(zhì)處理增強(qiáng)抗病性的技術(shù)提供理論指導(dǎo)。
試驗(yàn)于2014年在華中農(nóng)業(yè)大學(xué)園藝林學(xué)學(xué)院和廣西特色作物研究院完成。
植物材料為三年生冰糖橙植株,接種用的柑橘潰瘍病菌株由華中農(nóng)業(yè)大學(xué)植物病理實(shí)驗(yàn)室洪霓教授提供。病菌在SPA培養(yǎng)基(蔗糖20 g,蛋白胨5 g,K2HPO40.5 g,MgSO4·7H2O 0.25 g,pH 7.2—7.4)中懸浮培養(yǎng),接種試驗(yàn)在廣西特色作物研究院進(jìn)行。
選取葉齡為30—45 d、部位相同且長(zhǎng)勢(shì)良好的夏稍枝條,田間取回后迅速將枝條下端插入清水中,分為兩組,分別放置于21℃和30℃光照培養(yǎng)箱中,72 h后用于接種,在溫度處理結(jié)束后取葉片用于多胺含量測(cè)定和抗病基因表達(dá)分析。此外,為研究多胺是否有利于增強(qiáng)潰瘍病抗性,將冰糖橙植株分別用清水或0.4 mmol·L-1亞精胺(Spd)溶液每24 h噴施葉面一次,連續(xù)處理72 h。Spd處理結(jié)束后取葉片測(cè)定內(nèi)源多胺含量(所取葉片先經(jīng)清水洗凈擦干),同時(shí)將處理的葉片接種。為分析抗病基因表達(dá),將Spd噴施葉片3 d和7 d,取處理前和處理后的葉片用于抗病基因表達(dá)分析。
參考Wang等[6]針刺接種法,將需要接種的葉片用清水洗凈擦干,在葉脈兩側(cè)相同部位用接種針各刺5個(gè)傷口,在每個(gè)傷口周圍分別再刺5個(gè)小傷口。隨后用移液槍吸取配置好的菌液10 μl(濃度約為108cfu/ml)打在傷口上。將接種后的葉片套上塑料袋,放置于28℃條件下培養(yǎng),在接種后不同時(shí)間(溫度處理材料在接種后第3、7、10天;多胺處理材料在接種后第7、10、14天)統(tǒng)計(jì)發(fā)病率與病情指數(shù)。每個(gè)處理組各統(tǒng)計(jì)50個(gè)病斑,分析軟件為ImageJ(NIH)。
參考Zhang等[19]方法,將葉片在液氮中研磨成粉末,取0.1 g加入1 ml濃度為5%的高氯酸(perchloric acid,PCA),渦旋混勻后冰上放置30 min,4℃、12 000 r/min離心15 min,將上清液轉(zhuǎn)入一個(gè)新的離心管。沉淀中加入1 ml PCA,重復(fù)前面的步驟,離心后將兩次上清液合并(即為多胺粗提液)。取1 ml粗提液至10 ml離心管,加入50ml己二胺(1 mmol·L-1),加入1 ml的2 mol·L-1NaOH,渦旋混勻;加入10ml苯甲酰氯,渦旋20 s,37℃水浴20 min;加入2 ml飽和NaCl和2 ml乙醚,混勻后于8 000 r/min離心5 min;取1 ml乙醚相,真空濃縮干燥25 min;加200—500ml色譜級(jí)甲醇(Fisher,美國(guó))溶解,0.22 μm有機(jī)濾膜過(guò)濾后取20ml在安裝紫外檢測(cè)器高效液相色譜系統(tǒng)(HPLC,Agilent 1200)中上樣。多胺檢測(cè)波長(zhǎng)為230 nm,采用安捷倫C18反向色譜柱(4.6 mm×150 mm,孔徑5 μm)。洗脫液為色譜級(jí)甲醇∕水(A相/B相),采用梯度洗脫,流速0.7 ml·min-1,柱溫25℃。梯度洗脫程序見(jiàn)表1[20]。
利用RNAiso Plus RNA試劑盒(TaKaRa公司)提取總RNA,總RNA使用DnaseI(TaKaRa)在37℃下去除DNA污染,然后采用ReverTra Ace-a-TM試劑盒(Toyobo,Japan)合成cDNA。使用Nanodrop 1000紫外分光光度計(jì)(Thermo Scientific)測(cè)定cDNA濃度,稀釋到200 ng·μl-1后用于RT-PCR。RT-PCR反應(yīng)體系(25 μl)包括5×緩沖液2.5 μL,dNTP(2.5 mmol·L-1each)0.5 μL,MgCl2(1.5 mmol·L-1)1.5 μL,聚合酶1 μL,正向和反向引物各1 μL(終濃度為0.25 μmol·L-1,引物見(jiàn)表2),cDNA模板1 μL,加去離子水至25 μL。反應(yīng)程序:94℃預(yù)變性5 min;94℃變性40 s,58℃退火40 s,72℃延伸40 s,共28個(gè)循環(huán),72℃保溫10 min。用于表達(dá)分析的抗病相關(guān)基因有(chitinase)、(allene oxide synthase)、(glutathione peroxidase)和(pathogenesis-related protein 4A),以作為內(nèi)參基因。
表1 自由態(tài)多胺分離所用HPLC洗脫程序
每個(gè)處理設(shè)置3個(gè)重復(fù),數(shù)據(jù)采用Excel 2010作圖,通過(guò)Excel自帶軟件ANOVA(Analysis of Variance)進(jìn)行差異顯著性分析(<0.05)。
表2 本研究中RT-PCR分析所用引物序列
冰糖橙植株在21℃和30℃培養(yǎng)3 d后用于潰瘍病菌接種,在接種后第3、7和10天觀察兩個(gè)處理組植株的發(fā)病率。兩個(gè)處理組植株葉片在第3天均出現(xiàn)病斑,但二者的發(fā)病率卻存在差異。21℃條件下培養(yǎng)植株葉片在第3天的發(fā)病率為10%,而30℃條件下培養(yǎng)植株葉片的發(fā)病率接近40%。在第7天時(shí)兩組材料的發(fā)病率均有所增加,但30℃條件下培養(yǎng)植株的發(fā)病率更高。然而,在第10天時(shí),兩個(gè)處理組植株的發(fā)病率接近(圖1)。
多胺與植物的抗病能力有關(guān)[13-14],因此,分析了21℃和30℃下培養(yǎng)3 d的冰糖橙植株自由態(tài)多胺含量。由圖2-A可見(jiàn),兩組處理材料中均能成功地檢測(cè)到常見(jiàn)的3種自由態(tài)多胺,即腐胺(Put)、亞精胺(Spd)和精胺(Spm)。但21℃條件下預(yù)培養(yǎng)植株葉片自由態(tài)Put、Spd和Spm含量均高于30℃下培養(yǎng)植株,表明高溫條件下植株多胺合成減少。
圖1 21℃和30℃條件下預(yù)培養(yǎng)3 d的植株接種Xcc后的發(fā)病率
植物抗病性差異很大程度上與抗病基因表達(dá)有關(guān)[21-22],因此,對(duì)21℃和30℃培養(yǎng)植株4個(gè)抗病基因、、和的表達(dá)進(jìn)行分析。由圖2-B可以看出,除表達(dá)水平在兩組材料中差異不明顯外,其余3個(gè)基因的表達(dá)水平在30℃培養(yǎng)植株中均要低于21℃培養(yǎng)植株,表明高溫可能抑制了抗病基因的表達(dá)。
由圖2中可以看出,冰糖橙中Spd含量高于Put和Spm。因此,對(duì)冰糖橙植株外源施用Spd,以分析是否有利于增強(qiáng)抗病性。外源Spd處理3 d后,采集葉片分析游離態(tài)多胺含量(圖3-A)??梢钥闯觯c對(duì)照(清水)處理相比,Spd處理材料中Put和Spd含量均明顯增加,但Spm含量差異不大。
Spd處理3 d后,、、和4個(gè)抗病基因的表達(dá)上調(diào),其中和誘導(dǎo)最為強(qiáng)烈;在處理7 d后和表達(dá)水平達(dá)到最大值,而和的表達(dá)水平維持穩(wěn)定(圖3-B)。
*表示兩種溫度下含量差異顯著(P<0.05) * indicates siginificantly different of content between the two temperautres (P<0.05)
圖3 外源亞精胺和清水處理后葉片自由態(tài)多胺含量(A)和抗病基因表達(dá)量(B)
將清水或Spd處理葉片針刺接種,接種后觀察發(fā)病情況。由表型可見(jiàn),接種后第7天時(shí)兩個(gè)處理組的葉片可以看到白色病斑,但Spd處理材料出現(xiàn)病斑的傷口明顯比對(duì)照組少或??;在第14天時(shí)對(duì)照發(fā)病程度重于Spd處理材料(圖4-A)。通過(guò)發(fā)病率比較也可以看出,在接種后14 d時(shí)Spd處理材料的發(fā)病率約為40%,而對(duì)照組在接種后14 d時(shí)的發(fā)病率為85%(圖4-B)。Spd處理組14 d時(shí)病情指數(shù)為4.2,但清水對(duì)照組在接種后第14天病情指數(shù)為9.0(圖4-C)。結(jié)果表明,外源Spd處理能夠增強(qiáng)冰糖橙葉片對(duì)柑橘潰瘍病的抗性。
圖4 外源Spd處理對(duì)潰瘍病抗性的影響
植物對(duì)病原入侵的應(yīng)答受多個(gè)因素影響,其中一個(gè)重要因素是溫度[23]。通常認(rèn)為,適合生長(zhǎng)的最佳溫度范圍為20—30℃,在此范圍里溫度增加則會(huì)加重潰瘍病發(fā)生[24]。本研究發(fā)現(xiàn),在較高溫度下培養(yǎng)一段時(shí)間的植株對(duì)更敏感,表明高溫能促進(jìn)寄主的發(fā)病或降低其抗病性,研究結(jié)果在一定程度上解釋了柑橘在高溫季節(jié)更容易感染潰瘍病的原因;另一方面也暗示,在高溫季節(jié)做好柑橘潰瘍病防治可能對(duì)于控制該病的發(fā)生和蔓延具有關(guān)鍵作用。
當(dāng)病原入侵時(shí),植物會(huì)啟動(dòng)非病原特異性抗病反應(yīng),這是一種先天免疫特征,在感病或抗病植株、合適或不合適生長(zhǎng)條件下均存在[25]。此過(guò)程中,植物在生理、代謝、細(xì)胞和分子水平上發(fā)生一系列的改變,包括代謝物的積累和基因表達(dá)的變化[21,26]。本研究發(fā)現(xiàn),30℃條件下植株體內(nèi)積累的多胺含量低于21℃條件下生長(zhǎng)的植株;此外,還發(fā)現(xiàn)3個(gè)抗病基因表達(dá)水平在高溫下受到抑制。高溫下生長(zhǎng)的植株易感染潰瘍病可能與其體內(nèi)積累的代謝物(如本研究中的多胺)減少或抗病基因(如、和等)表達(dá)受抑制有關(guān)。高溫下多胺含量減少可能由于合成受阻所致,前期有研究表明,多胺合成關(guān)鍵基因(精氨酸脫羧酶)在高溫下表達(dá)下調(diào),而多胺含量一定程度上取決于其合成基因在轉(zhuǎn)錄水平上的表達(dá)[11,27]。因此,高溫下多胺合成可能受到抑制,從而減少體內(nèi)多胺含量。高溫下、和表達(dá)受抑制的原因尚不清楚,一個(gè)可能的機(jī)制是高溫抑制了調(diào)控上述3個(gè)抗病基因的轉(zhuǎn)錄激活因子或激活了某些轉(zhuǎn)錄抑制因子,使抗病基因的表達(dá)受到抑制,這一推論是否正確需要進(jìn)一步證實(shí)。
本研究中,高溫下植株多胺含量減少,其潰瘍病抗性降低;相反,外源Spd處理提高了內(nèi)源Spd含量,并增強(qiáng)了所處理植株的潰瘍病抗性,表明柑橘植株積累較高水平的多胺有利于提高其潰瘍病抗性。事實(shí)上,前期已有研究發(fā)現(xiàn),超表達(dá)多胺合成基因提高了甜橙轉(zhuǎn)基因植株內(nèi)源多胺含量,顯著增強(qiáng)了轉(zhuǎn)基因植株對(duì)潰瘍病的抗性[8]。多胺在抗病中的作用機(jī)制可能體現(xiàn)在如下兩個(gè)方面:(1)多胺作為信號(hào)分子參與抗病信號(hào)的傳遞[28-29],但這一機(jī)制是否在潰瘍病抗性中發(fā)揮作用尚待證實(shí);(2)多胺降解產(chǎn)生H2O2誘發(fā)抗病反應(yīng)。研究表明,多胺合成后被轉(zhuǎn)運(yùn)到質(zhì)外體,進(jìn)而由多胺氧化酶分解產(chǎn)生H2O2[30-31],而H2O2是調(diào)節(jié)氣孔運(yùn)動(dòng)和引起過(guò)敏性反應(yīng)(HR)的重要信號(hào)分子[32]。氣孔是潰瘍病菌進(jìn)入植株體內(nèi)的主要通道,當(dāng)H2O2產(chǎn)生后能夠促進(jìn)氣孔關(guān)閉,阻止?jié)儾【ㄟ^(guò)氣孔進(jìn)入體內(nèi)[7];此外,H2O2可以促進(jìn)HR引起的細(xì)胞死亡從而將病原菌局限在接種部位。已有較多研究表明多胺分解形成的H2O2在植物防御病原入侵方面發(fā)揮著重要的作用[14,16,32-36]。因此,多胺更可能是通過(guò)產(chǎn)生H2O2來(lái)促進(jìn)氣孔關(guān)閉或觸發(fā)局部HR來(lái)增強(qiáng)潰瘍病抗性。
病原入侵會(huì)產(chǎn)生相應(yīng)的脅迫信號(hào),植物感知和傳遞該信號(hào)并啟動(dòng)相應(yīng)的防御網(wǎng)絡(luò),最終通過(guò)改變大量抗病基因的表達(dá)水平來(lái)應(yīng)答病原入侵,暗示抗病基因的表達(dá)變化是植物-病原互作過(guò)程中一個(gè)極為重要的防御反應(yīng)[22,26,37]。研究表明,PR蛋白是植物防御病原侵染最為重要的一類基因,通常被用作植物抗病反應(yīng)的標(biāo)記基因。CHI與PR4A分別是PR3和PR4類PR蛋白,在植物系統(tǒng)獲得性抗性中發(fā)揮著重要作用[38]。GPX參與細(xì)胞生化反應(yīng)的多個(gè)過(guò)程,在保護(hù)寄主植物被病原入侵中也發(fā)揮關(guān)鍵作用[39],AOS是茉莉酸合成的一種重要酶,而茉莉酸在植物防御反應(yīng)中具有重要作用[40]。本研究中,發(fā)現(xiàn)兩種溫度下培養(yǎng)的植株雖然表達(dá)水平變化不大,但30℃下生長(zhǎng)的植株、和表達(dá)水平明顯低于21℃下生長(zhǎng)的植株。此外,外源Spd增強(qiáng)了潰瘍病抗性,與之一致的是4個(gè)基因的表達(dá)水平得以升高??梢郧宄乜闯?,上述基因的表達(dá)水平與潰瘍病抗性呈正相關(guān),表明它們?cè)诟涕倏共》磻?yīng)中可能有重要的作用,是今后開(kāi)展分子育種增強(qiáng)潰瘍病抗性的重要候選基因。
高溫下甜橙更容易受柑橘潰瘍病菌危害,其可能的機(jī)制是高溫抑制抗病基因的表達(dá)和降低多胺的合成。外源多胺處理能夠增強(qiáng)甜橙潰瘍病抗性,可能原因是多胺處理后增強(qiáng)了抗病基因的表達(dá),從而誘發(fā)植株的抗病反應(yīng)最終表現(xiàn)出抗病。高溫是影響潰瘍病發(fā)生的一個(gè)關(guān)鍵環(huán)境因素,多胺有助于提高對(duì)柑橘潰瘍病的抗性。
[1] Das A K. Citrus canker-A review., 2003, 5(1): 52-60.
[2] 葛紅娟, 龍桂友, 戴素明, 李大志, 李娜, 鄧子牛. 冰糖橙與枸櫞C-05對(duì)潰瘍病菌生長(zhǎng)特性的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(7): 1383-1391.
GE H J, LONG G Y, DAI S M, LI D Z, LI N, DENG Z N. The influence of ‘Bingtang’ sweet orange or citron C-05 on the growth characteristics ofpv.., 2015, 48(7): 1383-1391. (in Chinese)
[3] 周鵬飛, 賈瑞瑞, 陳善春, 許蘭珍, 彭愛(ài)紅, 雷天剛, 李強(qiáng), 陳敏, 白曉晶, 鄒修平, 何永睿. 柑橘4個(gè)WRKY轉(zhuǎn)錄因子基因的克隆及其響應(yīng)柑橘潰瘍病菌侵染的表達(dá)分析. 園藝學(xué)報(bào), 2017, 44(3): 452-462.
ZHOU P F, JIA R R, CHEN S C, XU L Z, PENG A H, LEI T G, LI Q, CHEN M, BAI X J, ZOU X P, HE Y R. Cloning and expression analysis of four citrus WRKY genes responding topv.., 2017, 44(3): 452-462. (in Chinese)
[4] 賈瑞瑞,周鵬飛, 白曉晶, 陳善春, 許蘭珍, 彭愛(ài)紅, 雷天剛, 姚利曉, 陳敏, 何永睿, 李強(qiáng). 柑橘響應(yīng)潰瘍病菌轉(zhuǎn)錄因子CsBZIP40的克隆及功能分析. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(13): 2488-2497.
JIA R R, ZHOU P F, BAI X J, CHEN S C, XU L Z, PENG A H, LEI T G, YAO L X, CHEN M, HE Y R, LI Q. Gene cloning and expression analysis of canker-related transcription factor CsBZIP40 in citrus., 2017, 50(13): 2488-2497. (in Chinese)
[5] Zhang J L, Huguet-Tapia J C, Hu Y, Jones J, Wang N, Liu S Z, White F F. Homologues of CsLOB1 in citrus function as disease susceptibility genes in citrus canker., 2017, 18(6): 798-810.
[6] Wang Y, Fu X Z, Liu J H, Hong N. Differential structure and physiological response to canker challenge between ‘Meiwa’ kumquat and ‘Newhall’ navel orange with contrasting resistance., 2011, 128(2): 115-123.
[7] Jia H G, Zhang Y Z, Orbovic V, Xu J, White F F, Jones J B, Wang N. Genome editing of the disease susceptibility gene, 2017, 15(7): 817-823.
[8] Fu X Z, Chen C W, Wang Y, Liu J H, Moriguchi T. Ectopic expression of MdSPDS1 in sweet orange (Osbeck) reduces canker susceptibility: involvement of H2O2production and transcriptional alteration., 2011, 11: 55.
[9] Shimada T, Endo T, Rodriguez A, Fujii H, Goto S, Matsuura T, Hojo Y, Ikeda Y, Mori I C, Fujikawa T, Pena L, Omura M. Ectopic accumulation of linalool confers resistance tosubsp.in transgenic sweet orange plants., 2017, 37(5): 654-664.
[10] Wang Y, Liu J H. Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Osbeck)., 2012, 169(12): 1143-1149.
[11] Liu J H, Wang W, Wu H, Gong X Q, Moriguchi T. Polyamines function in stress tolerance: from synthesis to regulation., 2015, 6: 827.
[12] Liu J H, Kitashiba H, Wang J, Ban Y, Moriguchi T. Polyamines and their ability to provide environmental stress tolerance to plants., 2007, 24(1): 117-126.
[13] Walters D R. Polyamines and plant disease., 2003, 64(1): 97-107.
[14] Walters D R. Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism., 2003, 159(1): 109-115.
[15] Marini F, Betti L, Scaramagli S, Biondi S, Torrigiani P. Polyamine metabolism is upregulated in response to tobacco mosaic virus in hypersensitive, but not in susceptible, tobacco., 2001, 149(2): 301-309.
[16] Cowley T, Walters D R. Polyamine metabolism in barley reacting hypersensitively to the powdery mildew fungusf. sp.., 2002, 25: 461-468.
[17] Marina M, Maiale S J, Rossi F R, Romero M F, Rivas E I, Garriz A, Ruiz O A, Pieckenstain F L. Apoplastic polyamine oxidation plays different roles in local responses of tobacco to infection by the necrotrophic fungusand the biotrophic bacterium., 2008, 147(4): 2164-2178.
[18] Yamakawa H, Kamada H, Satoh M, Ohashi Y. Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection., 1998, 118(4): 1213-1222.
[19] Zhang Q H, Wang M, Hu J B, Wang W, Fu X Z, Liu J H.offunctions in dehydration tolerance by reducing stomatal density and maintaining reactive oxygen species homeostasis., 2015, 66(19): 5911-5927.
[20] Wang W, Liu J H.offunctions in polyamine terminal catabolism and inhibits plant growth under salt stress., 2016, 6: 31384.
[21] Bruce T J, Pickett J A. Plant defence signalling induced by biotic attacks., 2007, 10(4): 387-392.
[22] Du M, Zhao J, Tzeng D T W, Liu Y Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li C B, Li C. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato., 2017, 29(8): 1883-1906.
[23] Hua J. Modulation of plant immunity by light, circadian rhythm, and temperature., 2013, 16(4): 406-413.
[24] 傅志華, 徐展華, 許渭根. 柑橘潰瘍病田間消長(zhǎng)規(guī)律及藥劑防治技術(shù). 植保技術(shù)與推廣, 2000, 20(6): 34-35.
FU Z H, XU Z H, XU W G. Dynamic regulation in field and the chemical control techniques of citrus canker., 2000, 20(6): 34-35. (in Chinese)
[25] Hadwiger L A, Tanaka K. Non-host resistance: DNA damage is associated with SA signaling for induction of PR genes and contributes to the growth suppression of a pea pathogen on pea endocarp tissue., 2017, 8: Article 446.
[26] Singh K B, Foley R C, O?ate-Sánchez L. Transcription factors in plant defense and stress responses., 2002, 5(5): 430-436.
[27] Liu J H, Ban Y, Wen X P, Nakajima I, Moriguchi T. Molecular cloning and expression analysis of an arginine decarboxylase gene from peach ()., 2009, 429(1/2): 10-17.
[28] Kasukabe Y, He L X, Nada K, Misawa S, Ihara I, Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenic., 2004, 45(6): 712-722.
[29] Mitsuya Y, Takahashi Y, Berberich T, Miyazaki A, Matsumura H, Takahashi H, Terauchi R, Kusano T. Spermine signaling plays a significant role in the defense response ofto cucumber mosaic virus., 2009, 166(6): 626-643.
[30] Moschou P N, Paschalidis K A, Roubelakis-Angelakis K A. Plant polyamine catabolism., 2008, 3(12): 1061-1066.
[31] Moschou P N, Sanmartin M, Andriopoulou A H, Rojo E, Sanchez-Serrano J J, Roubelakis-Angelakis K A. Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in., 2008, 147(4): 1845-1857.
[32] Yoda H, Hiroi Y, Sano H. Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells., 2006, 142(1): 193-206.
[33] Cowley T, Walters D R. Polyamine metabolism in an incompatible interaction between barley and the powdery mildew fungus,f. sp.., 2002, 150(11/12): 581-586.
[34] Rea G, Metoui O, Infantino A, Federico R, Angelini R. Copper amine oxidase expression in defense responses to wounding andinvasion., 2002, 128(3): 865-875.
[35] Yoda H, Yamaguchi Y, Sano H. Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants., 2003, 132(4): 1973-1981.
[36] Yoda H, Fujimura K, Takahashi H, Munemura I, Uchimiya H, Sano H. Polyamines as a common source of hydrogen peroxide in host- and nonhost hypersensitive response during pathogen infection., 2009, 70(1/2): 103-112.
[37] Gururani M A, Venkatesh J, Upadhyaya C P, Nookaraju A, Pandey S K, Park S W. Plant disease resistance genes: Current status and future directions., 2002, 78: 51-65.
[38] Jwa N S, Agrawal G K, Tamogami S, Yonekura M, Han O, Iwahashi H, Rakwal R. Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms., 2006, 44(5/6): 261-273.
[39] Mullineaux P M, Rausch T. Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression., 2005, 86(3): 459-474.
[40] Agrawal G K, Rakwal R, Jwa N S, Han K S, Agrawal V P. Molecular cloning and mRNA expression analysis of the first rice jasmonate biosynthetic pathway gene allene oxide synthase., 2002, 40(9): 771-782.
(責(zé)任編輯 岳梅)
Influence of Temperature and Polyamines on Occurrence of Citrus Canker Disease and Underlying Mechanisms
YANG Feng1, CHEN ChuanWu2, FAN QiJun2, SHI ChunMei1, XIE ZongZhou1, GUO DaYong1, LIU JiHong1
(1College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070;2Guangxi Academy of Specialty Crops/Guangxi Key Laboratory of Citrus Biology, Guilin 541004, Guangxi)
【Objective】 Canker disease is one of the most devastating diseases that cause serious damages to citrus. It is more likely to occur under high temperature. The objective of this study is to elucidate the mechanism underlying the disease incidence at high temperatures, reveal its metabolic changes, and to provide important theoretical guidance for controlling the disease using certain chemicals.【Method】 Sweet orange (), which is sensitive to canker disease, was used as the experimental material. The sweet orange plants were pre-cultured for 3 d at either 21℃ or 30℃ prior to inoculation withsubsp.(), followed by evaluation of disease incidence. Expression of four defense-related genes, including(allene oxide synthase),(chitinase),(glutathione peroxidase) and(pathogenesis-related protein 4A), in the plants pre-cultured at the two temperatures was assessed by semi-quantitative RT-PCR. Meanwhile, endogenous polyamines (putrescine, spermidine and spermine) in the plants pre-cultured at the two temperatures were also analyzed by HPLC. In addition, sweet orange plants were treated with exogenous spermidine (0.4 mmol·L-1), using water treatment as a control, beforeinoculation. Disease incidence and index of plants treated with either spermidine or water were compared, while endogenous polyamine contents and expression levels of defense-related genes (,,and) in response to spermidine or water treatment were assessed. 【Result】 After inoculation with, it was found that plants pre-cultured at 21℃ exhibited a lower cankder disease incidence at the early stage when compared with the plants pre-cultured at 30℃. On the 10th day, the incidence of the two treatments was similar. HPLC analysis showed that content of the three free polyamines (putrescine, spermidine and spermine) in plants pre-cultured at 21℃was significantly higher than that in the plants pre-cultured at 30℃. In addition, RT-PCR analysis indicated that the transcript level of three defense-related genes,,and, in plants kept at 21℃ was higher than that from 30℃, while there was no significant difference inexpression between the two groups. Exogenous application of spermidine remarkably enhanced levels of endogenous putresicne and spermidine, reduced disease incidence and index in comparison with water treatment. Spermidine treatment reduced the disease incidence by 45% and in comparison with the control after 14 days of inoculation. In addition, the disease index of the spermidine-treated samples was 4.8 lower than that of the control.Meanwhile, the phenotype indicated that the control displayed more serious symptom than that of spermidine treatment. Moreover, spermidine treatment could up-regualte mRNA abundances of all four defense-realted genes, including,,and.【Conclusion】Sweet orange displayed susceptibility to citrus canker at high temperature, and the potential mechanisms underlying this phenomenon may be ascribed to inhibition of defense-related genes and suppression of polyamine biosynthesis. Exogenous polyamine treatment conferred enhanced tolerance to citrus canker by upregulating defense-related genes and triggering disease resistance response. Taken together, high temperature is one of the environmental factors accounting for outbreak of citrus canker disease, and polyamines are conducive for improving tolerance to citrus canker disease.
citrus; canker disease; high temperature; polyamines; defense-related genes; disease resistance
10.3864/j.issn.0578-1752.2018.10.009
2017-10-16;
2017-12-06
國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201003067)、萬(wàn)人計(jì)劃創(chuàng)新領(lǐng)軍人才、湖北省自然科學(xué)基金創(chuàng)新群體(2017CFA018)、廣西柑橘生物學(xué)重點(diǎn)實(shí)驗(yàn)室培育基地開(kāi)放課題(桂柑科201202k003,桂柑科201201z004)
楊楓,E-mail:124272531@qq.com。陳傳武,E-mail:jk_ccw@126.com。楊楓和陳傳武為同等貢獻(xiàn)作者。通信作者劉繼紅,Tel:027-87282399;E-mail:liujihong@mail.hzau.edu.cn