龐艷華,吳東方,馬亞會,解有福,郝建宇,劉 振,李 寧,劉心娟
1.首都醫(yī)科大學附屬北京朝陽醫(yī)院消化內(nèi)科,北京 100020;2.北京市海淀區(qū)婦幼保健院內(nèi)科
潰瘍性結(jié)腸炎(ulcerative colitis, UC)的發(fā)病率呈逐年上升趨勢,發(fā)病機制尚不明確,目前認為,具有遺傳傾向的個體發(fā)生了不適當?shù)酿つっ庖叻磻瞧渲饕l(fā)病機制[1]。最近研究[2]發(fā)現(xiàn),Th17和CD4+T細胞亞群形成一個新的免疫軸,與UC的發(fā)生、發(fā)展密切相關。Th17是炎癥性腸病的重要細胞因子,能產(chǎn)生IL-17A等前炎癥因子,促進局部組織損傷。調(diào)節(jié)性T細胞(Treg)是CD4+T細胞的一個亞群,屬于免疫抑制細胞,在UC的發(fā)病中起重要作用。Th17和Treg無論是在分化上還是功能上都是此消彼長的關系。研究[3]發(fā)現(xiàn),UC中存在著Th17與Treg細胞的失衡,我們的研究[4]進一步證實,UC時Treg細胞分化及功能的異常突出表現(xiàn)在結(jié)腸固有層局部。IL-6在Th17細胞的分化中發(fā)揮著至關重要的作用,IL-6和TGFβ可共同誘導原始T細胞分化為Th17細胞[5]。因此,我們進一步關注IL-6在UC小鼠結(jié)腸固有層局部Treg/Th17失衡中的作用。本研究以DSS誘導的UC模型小鼠作為研究對象,檢測結(jié)腸固有層Treg細胞和Th17細胞及其相關細胞因子的水平,及IL-6在外周血及不同組織中的表達,探討IL-6在UC小鼠結(jié)腸固有層Th17/Treg失衡中的作用。
1.1動物模型的建立6~8周齡實驗動物選用SPF級雄性C57BL/6小鼠10只,購自北京維通利華實驗動物技術(shù)有限公司,體質(zhì)量18~20 g,每日給予標準飼養(yǎng)、自由飲水及日常光照。將C57BL/6雄性小鼠完全隨機分成實驗組(UC組,5只)和對照組(NC組,5只)。UC組應用質(zhì)量濃度為25 g/L的DSS溶液作為飲用水7 d,繼之飲用蒸餾水7 d;對照組飲用蒸餾水14 d,造模為期14 d,14 d后脫頸處死小鼠。按照Murthy評分系統(tǒng),評估UC組小鼠活動度指數(shù)(disease activity index, DAI),結(jié)腸組織病理學表現(xiàn)證實并評估UC,證實造模成功。
1.2主要試劑葡聚糖硫酸鈉 (DSS) (MP Biomedical),流式抗體及相關試劑CD4-PerCP (BD PharmingenTM)、CD25-APC(BD PharmingenTM)、CD45RA-PE(BD PharmingenTM)、IL-17-Alexa Fluor?488(BD PharmingenTM)、FoxP3-PE-Cyanine7(eBioscience)、CD3e-PE-CF594(BD HorizonTM)、CD8a-BV510(BD HorizonTM),fixation and permeabilization (eBioscience),Human Th1/Th2/Th9/Th17/Th22 13plex Kit (BD PharmingenTM)。
1.3Treg及Th17細胞的檢測提取小鼠結(jié)腸固有層黏膜單個核細胞在24孔培養(yǎng)皿中加入2 μl白細胞混合刺激劑/106個細胞,放置體積分數(shù)為5%的CO2,37 ℃恒溫箱培養(yǎng)5 h,室溫避光孵育CD4、CD25、CD45RA抗體15 min;按照操作手冊細胞破膜后避光孵育FoxP3、IL-17抗體20 min,應用Beckman流式細胞儀分析Treg細胞及Th17細胞水平。
1.4細胞因子的檢測按照操作說明,應用小鼠Th1/Th2/Th9/Th17/Th22細胞因子試劑盒,分別用熒光抗體標記外周血、腸系膜淋巴結(jié)、回腸固有層黏膜、結(jié)腸固有層黏膜、脾臟單個核細胞培養(yǎng)上清液,利用FACSCanto Ⅱ流式細胞儀(美國BD公司)檢測細胞因子的水平。
2.1結(jié)腸固有層黏膜Treg細胞及其細胞因子的表達UC組結(jié)腸固有層黏膜Treg細胞水平高于NC組[(14.240±1.693)%vs(4.786±0.4709)%,P=0.0007];但UC組結(jié)腸固有層黏膜單核細胞培養(yǎng)上清中IL-10的水平低于NC組[(2.758±0.5339)pg/mlvs(4.383±0.07667)pg/ml,P=0.049]。
2.2結(jié)腸固有層黏膜Th17細胞及其相關細胞因子的表達UC組結(jié)腸固有層黏膜中Th17細胞的水平高于NC組[(4.700±0.2477)%vs(2.806±0.2150)%,P=0.0004];同時,UC組結(jié)腸固有層單核細胞培養(yǎng)液中IL-17A的水平也高于NC組[(3.032±0.3099)pg/mlvs(2.150±0.2161)pg/ml,P=0.047]。
2.3UC小鼠不同組織中IL-6的表達水平UC小鼠血清和結(jié)腸固有層單個核細胞培養(yǎng)上清液中IL-6水平分別高于回腸、外周血、脾臟、腸系膜淋巴結(jié)(與血清比較:P=0.0071、0.0003,P=0.0003、0.0003;與結(jié)腸比較:P=0.0014、<0.0001,P<0.0001、<0.0001);血清培養(yǎng)上清液中IL-6水平高于結(jié)腸(P=0.0145);回腸單個核細胞培養(yǎng)上清液中IL-6水平高于外周血、脾臟、腸系膜淋巴結(jié)(P=0.0435、0.0331、0.0223),外周血、脾臟、腸系膜淋巴結(jié)單個核細胞培養(yǎng)上清液中IL-6水平比較,差異無統(tǒng)計學意義(P>0.05)(見表1)。
表1 兩組小鼠不同組織單個核細胞上清培養(yǎng)液中IL-6水平的比較Tab 1 The expression of IL-6 in different tissues of each group pg/ml
注:與NC組比較,aP<0.05。
UC是免疫介導的腸道炎癥性疾病,存在多種發(fā)病機制[6],免疫學因素與UC的發(fā)生最為密切,而CD4+T細胞亞群在免疫調(diào)節(jié)方面尤為重要[7]。祝斌等[8]研究發(fā)現(xiàn),UC模型小鼠中結(jié)腸黏膜和外周血Treg細胞升高。公認地,無論是Treg細胞還是Th17細胞的分化,TGFβ都是必需的細胞因子。Na?ve T細胞在TGFβ和IL-2的作用下可以分化為Treg細胞[9-10],在TGFβ和IL-6的作用下可以分化為Th17細胞[11]。我們前期研究[4]發(fā)現(xiàn),UC模型小鼠結(jié)腸固有層單核細胞中Treg水平高于其他組織,但FoxP3 mRNA表達下降,IL-10水平降低,提示UC發(fā)病時雖然結(jié)腸局部Treg細胞的比例升高,但其免疫抑制功能存在缺陷。Th17細胞屬于炎癥反應性細胞,特征性分泌IL-17A、IL-17F等促炎癥細胞因子對抗外來病原菌或異物[12],此外,Th17細胞在IL-23促炎癥因子的協(xié)同下可以引起腸道黏膜和腸道益生菌群的破壞[13]。研究[14-15]發(fā)現(xiàn),在UC腸道黏膜中,Th17細胞數(shù)量明顯升高,且Th17細胞浸潤水平與腸道炎癥反應呈正相關。也有文獻[16]報道,UC外周血Th17細胞數(shù)量增多。由此可見,Th17細胞參與UC的發(fā)病。在本研究中,我們發(fā)現(xiàn),UC模型小鼠結(jié)腸固有層黏膜中Treg細胞及Th17細胞比例同時升高,同時伴有Treg細胞功能受限,提示UC模型鼠結(jié)腸中,不僅存在免疫抑制功能的不足,同時存在過度的炎癥反應,在UC中存在Th17和Treg細胞的免疫失衡。這與YANG等[17]研究一致。
UC主要累及腸道,而其他風濕免疫性疾病,如狼瘡、類風濕性關節(jié)炎等,往往累及多個系統(tǒng)共同發(fā)病[18]。我們通過UC模型小鼠實驗的研究,同時觀察外周淋巴器官和中樞淋巴器官,發(fā)現(xiàn)IL-6在UC組結(jié)腸固有層黏膜的表達高于NC組,而在外周血、腸系膜淋巴結(jié)、回腸固有層黏膜及脾臟表達與NC組差異無統(tǒng)計學意義。說明IL-6參與了UC的發(fā)病,且在結(jié)腸黏膜局部發(fā)揮免疫作用。這種免疫紊亂在腸黏膜最顯著,也與UC多累及局部腸管,很少累及其他系統(tǒng)的臨床特點相一致。
IL-6是一個在許多免疫系統(tǒng)反應中起重要作用的多效性細胞因子,包括活化B細胞的生長和最終分化、刺激T細胞增殖及細胞毒性T細胞的分化。炎癥性腸病患者IL-6主要來源于活化的單核和巨噬細胞,IL-6是UC中參與調(diào)節(jié)炎癥強有力的細胞因子[19-20]。IL-6在Th17的應答和抑制Treg功能兩方面都起關鍵作用。Treg能分泌IL-10、IL-35、TGFβ等細胞因子,通過細胞與細胞接觸的方式影響效應T細胞的增殖及炎性細胞因子的釋放,調(diào)節(jié)免疫系統(tǒng),維持對自身抗原的免疫耐受和防止自身免疫性疾病的發(fā)生[21]。Treg細胞的異常參與了多種自身免疫性疾病和炎癥性疾病的發(fā)病,如1型糖尿病、多發(fā)性硬化癥、系統(tǒng)性紅斑狼瘡、類風濕關節(jié)炎及炎癥性腸病等。UC患者腸上皮屏障破壞、持續(xù)性的腸腔抗原刺激使巨噬細胞和樹突狀細胞分泌大量促炎癥因子IL-6和IL-12等,促進Th1和Th17細胞系的分化,抑制Treg的功能。Treg細胞功能缺陷與UC發(fā)病有關,提示UC炎性反應亢進,而免疫抑制不足[22]。TGFβ可誘導初始T細胞產(chǎn)生Treg,Treg活化在IL-6存在時可導致TGFβ產(chǎn)生。之后,IL-6和TGFβ誘導Treg向Th17亞群分化,產(chǎn)生IL-17。而當IL-6過度表達時,在這個復雜的網(wǎng)絡關系作用下Treg細胞與Th17細胞間出現(xiàn)分化及功能的失衡。此外,已有研究[23]顯示,阻止IL-6可能控制Th17介導的免疫反應。
UC為炎癥性腸病的一種常見類型,主要病理表現(xiàn)為結(jié)腸黏膜炎癥。國內(nèi)學者在多發(fā)性硬化鼠模型中發(fā)現(xiàn)IL-6升高[24]。本研究也發(fā)現(xiàn),除了結(jié)腸固有層局部IL-6水平升高外,UC小鼠血清中IL-6水平也高于對照組。國外POWELL等[25]研究認為,在UC患者癥狀出現(xiàn)前可有IL-6等血清學異常。IL-6信號系統(tǒng)在腸黏膜免疫穩(wěn)態(tài)和IBD發(fā)病機制中起作用,但在IBD癥狀前監(jiān)測IL-6是否足夠特異還無定論。本研究發(fā)現(xiàn),UC模型小鼠存在IL-6升高,特別是在結(jié)腸固有層黏膜,這種UC結(jié)腸黏膜IL-6的表達異常可能是引起UC患者結(jié)腸黏膜病變的免疫基礎,其機制還需進一步研究。
[1] KHOR B, GARDET A, XAVIER R J. Genetics and pathogenesis of inflammatory bowel disease [J]. Nature, 2011, 474(7351): 307-317. DOI: 10.1038/nature10209.
[2] SUN J, ZHANG H, WANG C, et al. Regulating the balance of Th17/Treg via electroacupuncture and moxibustion: an ulcerative colitis mice model based study [J]. Evid Based Complement Alternative Med, 2017, 2017: 7296353. DOI: 10.1155/2017/7296353.
[3] FONSECA-CAMARLLO G, YAMAMOTO-FURUSHO J K. Immunoregulatory pathways involved in inflammatory bowel disease [J]. Inflamm Bowel Dis, 2015, 21(9): 2188-2193. DOI: 10.1097/MIB.0000000000000477.
[4] MA Y H, ZHANG J, CHEN X, et al. Increased CD4+ CD45RA- FoxP3low cells alter the balance between Treg and Th17 cells in colitis mice [J]. World J Gastroenterol, 2016, 22(42): 9356-9367. DOI: 10.3748/wjg.v22.i42.9356.
[5] WANG B, MA Z, WANG M, et al. IL-34 upregulated Th17 production through increased IL-6 expression by rheumatoid fibroblast-like synoviocytes [J]. Mediators Inflamm, 2017, 2017: 1567120. DOI: 10.1155/2017/1567120.
[6] MOLODECKY N A, SOON I S, RABI D M, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review [J]. Gastroenterology, 2012, 142(1): 46-54. DOI: 10.1053/j.gastro.2011.10.001.
[7] SHALE M, SCHIERING C, POWRIE F. CD4 (+) T-cell subsets in intestinal inflammation [J]. Immunol Rev, 2013, 252(1): 164-182. DOI: 10.1111/imr.12039.
[8] 祝斌, 張寒仙, 曾今誠, 等. 美沙拉嗪對DSS誘導小鼠潰瘍性結(jié)腸炎模型Th1、Th17及Treg細胞亞群的影響[J]. 中國病理生理雜志, 2014, 30(12): 2219-2225. DOI: 10.3969/j.issn.1000-4718.2014.12.018.
ZHU B, ZHANG H X, ZENG J C, et al. Effect of mesalazine on Th1, Th17 and Treg cells in mice with DSS-in-duced ulcerative colitis [J]. Chinese Journal of Pathophysiology, 2014, 30(12): 2219-2225. DOI: 10.3969/j.issn.1000-4718.2014.12.018.
[9] BUDHU S, SCHAER D A, LI Y, et al. Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment [J]. Sci Signal, 2017, 10(494). DOI: 10.1126/scisignal.aak9702.
[10] XU A, LIU Y, CHEN W, et al. TGF-β-induced regulatory T cells directly suppress B cell responses through a noncytotoxic mechanism [J]. J Immunol, 2016, 196(9): 3631-3641. DOI: 10.4049/jimmunol.1501740.
[11] ZHANG S, TAKAKU M, ZOU L, et al. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation [J]. Nature, 2017, 551(7678): 105-109. DOI: 10.1038/nature24283.
[13] XU X R, LIU C Q, FENG B S, et al. Dysregulation of mucosal immune response in pathogenesis of inflammatory bowel disease [J]. World J Gastroenterol, 2014, 20(12): 3255-3264. DOI: 10.3748/wjg.v20.i12.3255.
[14] IVANOV I I, ATARASHI K, MANEL N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria [J]. Cell, 2009, 139(3): 485-498. DOI: 10.1016/j.cell.2009.09.033.
[15] NIESS J H, LEITHUSER F, ADLER G, et al. Commensal gut flora drives the expansion of proinflammatory CD4 T Cells in the colonic lamina propria under normal and inflammatory conditions [J]. J Immunol, 2007, 180(1): 559-568.
[16] DONG Z, DU L, XU X, et al. Aberrant expression of circulating Th17, Th1 and Tc1 cells in patients with active and inactive ulcerative colitis [J]. Int J Mol Med, 2013, 31(4): 989-997. DOI: 10.3892/ijmm.2013.1287.
[17] YANG F, WANG D, LI Y, et al. Th1/Th2 balance and Th17/Treg-mediated immunity in relation to murine resistance to Dextran sulfate-induced colitis [J]. J Immunol Res, 2017, 2017: 7047201. DOI: 10.1155/2017/7047201.
[18] BALLOCCA F, D'ASCENZO F, MORRETTI C, et al. Predictors of cardiovascular events in patients with systemic lupus erythematosus (SLE): a systematic review and meta-analysis [J]. Eur J Prev Cardiol, 2015, 22(11): 1435-1441. DOI: 10.1177/2047487314546826.
[19] WINE E, MACK D R, HYAMS J, et al. Interleukin-6 is associated with steroid resistance and reflects disease activity in severe pediatric ulcerative colitis [J]. J Crohns Colitis, 2013, 7(11): 916-922. DOI: 10.1016/j.crohns.2012.12.012.
[20] MUDTER J, NEURATH M F. IL-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance [J]. Inflamm Bowel Dis, 2007, 13(8): 1016-1023. DOI: 10.1002/ibd.20148.
[21] OUYANG W, RUTZ S, CRELLIN N K, et al. Regulation and functions of the IL-10 family of cytokines in Inflammation and disease [J]. Annu Rev Immunol, 2011, 29: 71-109. DOI: 10.1146/annurev-immunol-031210-101312.
[22] 馬亞會, 張杰, 邵淑琳, 等. 潰瘍性結(jié)腸炎模型鼠中調(diào)節(jié)性T細胞亞群變化的研究[J]. 胃腸病學和肝病學雜志, 2016, 25(3): 294-298. DOI: 10.3969/j.issn.1006-5709.2016.03.016.
MA Y H, ZHANG J, SHAO S L, et al. The changes of regulatory T cell subsets in DSS-induced ulcerative colitis mice [J]. Chin J Gastroenterol Hepatol, 2016, 25(3): 294-298. DOI: 10.3969/j.issn.1006-5709.2016.03.016.
[23] NISHIHARA M, OGURA H, UEDA N, et al. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state [J]. Int Immunol, 2007, 19(6): 695-702. DOI: 10.1093/intimm/dxm045.
[24] ZHANG R, TIAN A, WANG J, et al. miR26a modulates Th17/T reg balance in the EAE model of multiple sclerosis by targeting IL6 [J]. Neuromolecular Med, 2015, 17(1): 24-34. DOI: 10.1007/s12017-014-8335-5.
[25] POWELL N, LO J W, BIANCHERI P, et al. Interleukin 6 increases production of cytokines by colonic innate lymphoid cells in mice and patients with chronic intestinal inflammation [J]. Gastroenterology, 2015, 149(2): 456-467. e15. DOI: 10.1053/j.gastro.2015.04.017.