• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Interface on Mechanical Properties of Double-base Gun Propellant with RDX

    2018-05-17 02:49:08LIUJiaCHENGShanZHANGLihuaMAZhongliangXIAOZhongliang
    火炸藥學(xué)報(bào) 2018年2期

    LIU Jia, CHENG Shan,ZHANG Li-hua, MA Zhong-liang, XIAO Zhong-liang

    (1.Jianghe Chemical Technology Co., Ltd., Yichang Hubei 444200,China; 2.School of Chemical Engineering and Environment, North University of China, Taiyuan 030051,China;3.School of Chemical Engineering, Nanjing University of Science and Technology,Nanjing 210094,China)

    Introduction

    A heterogeneous gun propellant is formed as a heterogeneous mixture by adding energy-contained solid to improve its energy[1]. The solid filler makes it easier to peel or remove the binding agent attached to the gun propellant as it forms an interface between the gun propellant and the binding agent. This interface plays an important role in the properties of the gun propellants as it changes the elasticity modulus, compressive strength and impact strength to some extent.

    The degree of change is focused on the interface structure and interface interaction between binding agent and solid filler. The influence of interfacial binding strength on the properties of the gun propellant is hot-spot in composite material field[2-3].

    Studies on the mechanical properties of heterogeneous gun propellants are limited to objective evaluation or qualitative analysis, including macroscopic and microscopic methods[4-6]. Compared with the macroscopic method, the microscopic method is more direct, economic and time-saving. In order to improve the interactions of bonding agent and fillers, different bonding agents were used, and their efficiency was analyzed. The position of formed cracks in the specimen and their area have a great influence on the mechanical properties of composite propellants[7]. Besides, the interaction energy between some bonding agent and RDX was calculated by molecular dynamics method, but the difference with experimental results is unknown[8]. Applying interface principle to heterogeneous propellants to study the interface interaction and setting-up a quantitative relationship between micro parameters and macro mechanical properties is an effective way to represent the macroscopic mechanical properties of gun propellants. However, due to the complex interface structure, hardly any quantitative relationship is studied.

    Based on these, a new microscopic parameter-adhesive energy per mass RDX and bonding agent(Ed,mJ/g) was defined to represent the relationship of the bonding strength and the content of RDX. The microscopic interface between bonding agent and RDX was characterized by a three-dimensional stereo microscope. The function relationships ofσ-EdandD-Edwere established at 20 and 50℃ based on the compression test, shock test and contact angle measurement. Moreover, the results have certain guiding significance to formulation optimization, interfacial additive study, mechanical properties estimation of heterogeneous gun propellants.

    1 Theory Calculation

    1.1 Calculation of surface energy by contact angle method

    So far, there is not a direct method to measure the surface energy of solid, so some indirect methods were studied. The contact angle method was applied to this study to calculate the surface energy. Principle is as follows:

    Young′s equation[9]:

    γ2=γ12+γ1cosθ

    (1)

    Girifalco and good deduced the relationship ofγ1,γ2andγ12[10]:

    γ12=γ2+γ1-2φ(γ2γ1)1/2

    (2)

    In the equation: φ is the molar volume factor and approximate to 1, so the Equation (2) becomes:

    γ12=[(γ2)1/2-(γ1)1/2]2

    (3)

    For the adhesion work (Wa) is[11]:

    Wa=γ1+γ2-γ12

    (4)

    The following equation can be obtained by Equations (3) and (4) :

    Wa=2(γ1)1/2(γ2)1/2

    (5)

    By Equations (1) and (4) , the following equation can be obtained:

    Wa=γ1(1+cosθ)

    (6)

    The polar component and nonpolar component can be added[11], so:

    (7)

    For every component fits Equation (7) , Equations (3) and (5) respectively becomes:

    (8)

    (9)

    Equations (6) and (9) can deduce Equation (10) :

    (10)

    The surface energy can be obtained by the following equation:

    γ=γd+γp

    (11)

    So two liquids with known surface tension, polar component and nonpolar component can be dropped on the surface of a bonding agent to measure the contact angle, and using the Equation (10), two binary quadratic equation groups can be obtained. So the polar component and nonpolar component can be calculated, then the surface energy of bonding agent is acquired by Equation (11).

    1.2 Calculation of Ed

    R. J. Wu[10]using semi-continuous model of energy adduct concept, assuming the force between molecules consist nonpolar parts and polar components, gets an interface energy equation suitable for low surface energy system:

    (12)

    (13)

    2 Experiment

    2.1 Materials and devices

    RDX (the average diameter of RDX is about 0.0577mm and it is bought from Luzhou Chemical Plant) , double-base tablet (it is produced by Luzhou Chemical Plant) , anhydrous ethanol, ether, diphenylamine, and diiodomethane are all analytically pure, and they are bought from Tianjin Tianda Chemical Reagent Factory; distilled water (it is produced by ourselves)

    WSM-10KN electronic universal testing machine (the manufacturer of it is Changchun Intelligent Equipment Co., Ltd.) , drop weight machine (the manufacturer of it is Jiangsu Tianyuan Test Equipment Co.), high-low temperature test chamber (the manufacturer of it is Shanghai Linpin Instrument Co., Ltd.), digital caliper, three-dimensional stereo microscope (the manufacturer of it is Keyence Co., Japan) , contact angle measuring device (the manufacturer of it is Shanghai Zhongchen instrument Co., Ltd.)

    2.2 Preparation for double-base gun propellant

    Based on the synthetic process of gun propellant[12], the samples with different mass fraction of RDX (0,5%,10%,15%) were obtained to meet the experimental needs.

    2.3 Tests and methods

    First, the compressive property and shock resistance of these double-base gun propellants with different amounts of RDX were tested at different temperatures (20℃,50℃) . The experimental principle of compressive property testing is referred to reference[12]. The double-base gun propellants were planted on a flat and hard iron. A hammer fell from a certain height onto the samples, but the samples only deformed and must not be broken. The volume deformation impact energy was adopted to estimate the shock resistance[13], and then the contact angles of bonding agent/distilled water and bonding agent/diiodomethane were measured at different temperatures (20℃,50℃) , finally the surface images of these gun propellants were observed by three-dimensional stereo microscope under normal temperature after being impacted. Five samples are tested at every amount of RDX.

    3 Results and Discussion

    3.1 Surface characterization

    Double-base gun propellants were impacted by the same impact energy, that means the hammer fell from the same height to make the samples broken. The fractured face was observed by three-dimensional stereo microscope, as shown in Figure 1. Double-base gun propellants have good toughness, thus the ones with none or low content of RDX deformed only but cannot be broken. So cracks just in samples with 10% and 15% RDX were observed.

    Fig.1 Surface of double-base gun propellants with different contents of RDX after it is impacted

    Based on observation from the Figure 1, we can see that the bonding agent peels off the RDX crystals (the crysals ringed in the two pictures) when the samples were impacted. With the same impact energy samples with 15% RDX is damaged more seriously. As in the Figure 1 (b), not only the RDX crystals fall off and exposed completely, but the whole bonding agent produces faults (as the part pointed out by arrow 1) and cracks (the section showed by arrows 2 and 3). Also, in the Figure 1 (a), for RDX crystals only semi-nudity exposed.

    This is the case that NC and RDX are two-phase components and incompatible substances, making an interface between the two phases. As the content of RDX increases, the interface between the two phases also increases, and interface failure increases, thus leads stress to focus, and the gun propellants are broken from the interface. As RDX is more, RDX/RDX and RDX/NC strands cannot intertwine as NC/NC strands, so the interaction of interface decreases, resulting in that gun propellants are damaged easily when impacted. In a word, the reason is the interface in the heterogeneous gun-propellants.

    3.2 Mechanical property testing results of double-base gun propellants

    The results of compression tests are shown in Table 1, and the results of impact experiments are summarized in Table 2. The average value of the five groups is calculated to be the final result. And the standard deviation is listed following it.

    Table 1 Yield stress (σ) and elasticity modulus (E) of double-base gun propellants with different RDX at different temperatures

    Table 2 Volume deformation impact energy (D) of double-base gun propellants with different content of RDX at different temperatures

    From the results we can see that at 20 or 50℃ compressive strength increases, impact resistance decreases with increasing RDX content. Because the RDX added can share the load with the bonding agent, limit bonding agent to deform by mechanical constraints, enhance the polymer binder system, and improve the compressive strength. But the added RDX makes the gun propellants produce more interfaces, and lead stress to focus. Also RDX can peel from the bonding agent, resulting in the decrease of impact resistance.

    3.3 Surface energy results of bonding agent

    According to the contact angle on the bonding agent with water and diiodomethane,γ,γp,γdof bonding agent can be obtained by Equations. (10) and (11) .γ,γp,γdof water and diiodomethane at 20℃ are referred to reference[11], also the surface tension temperature coefficient of water is -0.16mN/(m·℃) , and of diiodomethane is about -0.1mN/(m·℃) . The obtained results are listed in Table 3. Also the average value of the five group data for the contact angle is calculated here. And the standard deviation is listed following it.

    Table 3 Contact angle (θ) , surface energy (γ) , polar component (γp) and nonpolar component (γd) of bonding agent at different temperatures

    3.4 Results of Ed

    The interface energy of RDX/bonding agent and the adhesive work are calculated by Equations (12) and (4) respectively. The results are presented in Table 4. Due to the average diameter of RDX is about 0.0577mm[14].γ,γp,γdof RDX are referred to reference[14]. The surface tension temperature coefficient is 0.5mN/(m·℃)[10]. Because the shape of RDX is irregular, its surface area is approximately 0.239m2/g. FinallyEdis calculated as Table 4.

    Table 4 Adhesive work of binding agent ( , adhesive work of interface (Wa) and adhesive energy per mass of RDX and binding agent (Ed) of gun propellants with different content of RDX at different temperatures

    3.5 Relationship between Ed and mechanical properties

    For studying the relationship betweenEdand mechanical properties, discussing whetherEdcan represent mechanical properties, theσ-EdandD-Edcurves are drew as Figure 3 and Figure 4, and the relationship is listed in Table 5.

    Table 5 Relationship between σ and Ed or D and Ed at different temperatures

    Fig.3 σ vs. Ed curves of double-base gun propellants at different temperatures

    Fig.4 D vs. Ed curves of double-base gun propellants at different temperatures

    Based on the results, we can see thatσ-EdorD-Edat different temperatures present exponential decay function relationship. With increasing the content of RDX,Eddecreases, butσandDincrease, that is to say, compressive strength increases and impact resistance decreases, which agrees with the macroscopic mechanical properties testing results. So the relationship between macroscopic mechanical parameters and microscopic interface parameter can be quantified. But the meaning and universality of the parameters in the equations should be studied further.

    4 Conclusion

    (1)With increasing the content of RDX, the compressive strength of double-base gun propellants increases, but the impact resistance decreases and the impacted damage is more serious.

    (2)Edis defined to represent the influence of RDX′s content on macroscopic mechanical properties. Exponential decay function relationship (y=a+be-x/t) ofσ-EdorD-Edis obtained at different temperatures(when the RDX is five kind). So it is easier and more convenient to represent macroscopic mechanical properties by usingEdbefore the gun propellants produced. The mechanical properties can be estimated before the gun propellants shaped up.

    (3)Edcan represent macroscopic mechanical properties. But the relationship under low temperature and the influence of RDX′s size to mechanical properties is still need to be further studied.

    References:

    [1] Naya T I, Kohga M. Influences of particle size and content of RDX on burning characteristics of RDX-based propellant[J]. Aerospace Science and Technology, 2014,32(1):26-34.

    [2] Iqbal M M, Ch S R, Wang L, et al. Investigation the effect of solid fillers on mechanical and rheological properties of composite propellants[J]. International Journal of Energetic Materials and Chemical Propulsion, 2010,33(4):40-46.

    [3] Lan Y H, Zhai J X, Li D H. Multiscale simulation on the influence of dimethyl hydantoin on mechanical properties of GAP/RDX propellants[J]. Propellants, Explosives, Pyrotechnics,2014,39(1):18-32.

    [4] Takahashi S J, Koyama M F, Maria T J. Solid polyurethane-based composite propellant: I- influence of the bonding agent[J]. Química Nova,2002,25(1):107-110.

    [5] Zhang J B, Ju Y T, Zhou C S. A study of experimental method for mechanical properties of solid propellant under hydrostatic compressive loading[J]. Applied Mechanics and Materials,2013,300:789-793.

    [6] Zhang X J, Chang X L, Zhang S Y. Experimental study on low temperature mechanical properties of HTPB propellant[J]. Applied Mechanics and Materials, 2013,310(3):124-128.

    [7] Dostanic J, Uscumlic G.The use of image analysis for the study of interfacial bonding in solid composite propellant[J]. Journal of the Serbian Chemical Society,2007,72(10):1023-1030.

    [8] Liu Y F, Chen Y, Shi L. Synthesis of three novel laurylamine-derived long-chain alkyl bonding agents and their interactions with RDX[J]. Propellants, Explosives, Pyrotechnics,2012,32(1):69-76.

    [9] Giessen A E van, Bukman D J, Widom B. Contact angles of liquid drops on low-energy solid surfaces[J]. Journal of Colloid and Interface Science,1997,192:257-265.

    [10] Wu R J. Surface and interface of high polymer[M].Beijing: Science Press,1998:7-45.

    [11] Luo Y J, Du M N. The use of inverse gas chromatography (IGC) to determine the surface energy of RDX[J]. Propellants, Explosives, Pyrotechnics,2007,32(6):496-501.

    [12] Wang Z S, Han P M, Zhang X Z. Power Experiment[M]. Beijing: Science and Technology of China Press,1992:87-91.

    [13] Liu J, Zhang L H, Ma Z L, et al. Study on the mechanical properties of mutiphase gun propellant with RDX[J]. Chemical Propellants & Polymeric Materials, 2013,11(4):87-89.

    [14] Du M N, Luo Y J. Effect of particle size and surface free energy of RDX on the mechanical properties of the high-energy nitramine gun propellant[J].Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2005,28(3):1-3.

    欧美成人午夜精品| 日本vs欧美在线观看视频| 亚洲国产欧美在线一区| 免费在线观看黄色视频的| 日韩一卡2卡3卡4卡2021年| 国产一区亚洲一区在线观看| 有码 亚洲区| 亚洲成人手机| 日韩制服丝袜自拍偷拍| 精品少妇黑人巨大在线播放| 亚洲av国产av综合av卡| 熟女少妇亚洲综合色aaa.| 美女福利国产在线| 亚洲国产成人一精品久久久| 捣出白浆h1v1| 嫩草影院入口| 女的被弄到高潮叫床怎么办| 捣出白浆h1v1| 亚洲国产av新网站| 天天躁日日躁夜夜躁夜夜| 丰满饥渴人妻一区二区三| 精品一品国产午夜福利视频| 精品国产乱码久久久久久男人| 日本免费在线观看一区| 色婷婷av一区二区三区视频| 国产免费一区二区三区四区乱码| 久久精品夜色国产| 久久久精品免费免费高清| 成年美女黄网站色视频大全免费| 亚洲欧洲国产日韩| 国产免费一区二区三区四区乱码| 欧美 日韩 精品 国产| 欧美激情 高清一区二区三区| 国产精品av久久久久免费| 男人操女人黄网站| 我的亚洲天堂| 韩国高清视频一区二区三区| 亚洲成av片中文字幕在线观看 | 国产精品免费大片| 日韩 亚洲 欧美在线| videos熟女内射| 夫妻性生交免费视频一级片| 成人国产麻豆网| 在线观看美女被高潮喷水网站| a级毛片黄视频| av在线老鸭窝| 叶爱在线成人免费视频播放| 亚洲欧美成人综合另类久久久| 国产精品欧美亚洲77777| 又黄又粗又硬又大视频| 女人高潮潮喷娇喘18禁视频| 免费观看在线日韩| 日本av免费视频播放| 国产日韩一区二区三区精品不卡| 国产精品久久久久成人av| 亚洲少妇的诱惑av| 亚洲欧美精品自产自拍| 国产激情久久老熟女| 老司机影院成人| 欧美av亚洲av综合av国产av | 如日韩欧美国产精品一区二区三区| 亚洲国产欧美在线一区| 国产精品熟女久久久久浪| 亚洲国产精品国产精品| 天堂中文最新版在线下载| 99热网站在线观看| 热99国产精品久久久久久7| 国产野战对白在线观看| 在线天堂最新版资源| 亚洲欧洲国产日韩| 日韩免费高清中文字幕av| 亚洲少妇的诱惑av| 久久精品国产亚洲av高清一级| 99香蕉大伊视频| 久久99热这里只频精品6学生| 侵犯人妻中文字幕一二三四区| 国产又爽黄色视频| 国产免费福利视频在线观看| 国产成人精品婷婷| 一级a爱视频在线免费观看| 久热这里只有精品99| 中文天堂在线官网| 国产一区二区 视频在线| 侵犯人妻中文字幕一二三四区| 青春草视频在线免费观看| 大话2 男鬼变身卡| 国产精品三级大全| 在线免费观看不下载黄p国产| 精品国产一区二区三区四区第35| 免费女性裸体啪啪无遮挡网站| 日本wwww免费看| 精品少妇内射三级| 国产免费又黄又爽又色| 亚洲精品日韩在线中文字幕| 天美传媒精品一区二区| 国产深夜福利视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 熟女少妇亚洲综合色aaa.| 亚洲欧美一区二区三区国产| 亚洲,欧美,日韩| 日本av免费视频播放| 高清不卡的av网站| 天天影视国产精品| 国产极品天堂在线| 日韩成人av中文字幕在线观看| 久久久久久免费高清国产稀缺| 国产精品国产av在线观看| 日产精品乱码卡一卡2卡三| 久久久精品国产亚洲av高清涩受| 啦啦啦在线观看免费高清www| 欧美日韩视频高清一区二区三区二| 精品少妇一区二区三区视频日本电影 | av网站在线播放免费| 久久久久网色| a级片在线免费高清观看视频| 亚洲激情五月婷婷啪啪| 亚洲色图综合在线观看| tube8黄色片| 欧美精品一区二区大全| 亚洲 欧美一区二区三区| 天天躁夜夜躁狠狠躁躁| 免费观看av网站的网址| 成人影院久久| 丝瓜视频免费看黄片| 国产精品av久久久久免费| 欧美精品国产亚洲| 欧美 日韩 精品 国产| 夫妻性生交免费视频一级片| 男女高潮啪啪啪动态图| 国产精品蜜桃在线观看| 久久精品国产亚洲av高清一级| 一本色道久久久久久精品综合| 精品国产国语对白av| 免费黄频网站在线观看国产| 亚洲人成电影观看| 99久久综合免费| 国产亚洲精品第一综合不卡| 视频在线观看一区二区三区| 色视频在线一区二区三区| 亚洲av在线观看美女高潮| 丝袜美腿诱惑在线| av天堂久久9| 丝袜在线中文字幕| 亚洲第一区二区三区不卡| 一本—道久久a久久精品蜜桃钙片| 成年人午夜在线观看视频| 一区福利在线观看| 久久99精品国语久久久| 国产综合精华液| 久久久精品区二区三区| 狠狠婷婷综合久久久久久88av| 精品午夜福利在线看| 久久久久精品性色| 蜜桃在线观看..| 欧美人与性动交α欧美精品济南到 | 欧美日韩av久久| 久久毛片免费看一区二区三区| 母亲3免费完整高清在线观看 | 久热久热在线精品观看| av.在线天堂| √禁漫天堂资源中文www| 久久精品久久久久久久性| 90打野战视频偷拍视频| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久成人av| 精品一品国产午夜福利视频| 国产麻豆69| 曰老女人黄片| 制服诱惑二区| 日本wwww免费看| 成年人午夜在线观看视频| 久久亚洲国产成人精品v| 男人操女人黄网站| 免费日韩欧美在线观看| 日本黄色日本黄色录像| 日韩中文字幕视频在线看片| 婷婷色av中文字幕| 国产成人精品久久久久久| 国产片内射在线| 欧美 日韩 精品 国产| 日本免费在线观看一区| 亚洲色图综合在线观看| 久热这里只有精品99| 欧美日韩精品成人综合77777| 午夜91福利影院| 国产淫语在线视频| 视频区图区小说| 欧美 亚洲 国产 日韩一| av视频免费观看在线观看| 亚洲天堂av无毛| 美国免费a级毛片| 日韩欧美一区视频在线观看| 99香蕉大伊视频| 在现免费观看毛片| 九草在线视频观看| 欧美国产精品一级二级三级| 亚洲精品一区蜜桃| 在线观看免费日韩欧美大片| 在线 av 中文字幕| 国产一区二区激情短视频 | 蜜桃国产av成人99| 国产在线视频一区二区| 欧美日韩精品成人综合77777| 亚洲婷婷狠狠爱综合网| 国产精品国产av在线观看| 久久久精品国产亚洲av高清涩受| 一二三四在线观看免费中文在| 高清在线视频一区二区三区| 只有这里有精品99| 丰满少妇做爰视频| 黄片小视频在线播放| 精品一区二区免费观看| 韩国高清视频一区二区三区| 国产成人精品无人区| 人人妻人人添人人爽欧美一区卜| 啦啦啦啦在线视频资源| 中文天堂在线官网| 亚洲精品国产av成人精品| 免费看不卡的av| 久久久精品国产亚洲av高清涩受| 曰老女人黄片| 欧美日韩一区二区视频在线观看视频在线| 免费久久久久久久精品成人欧美视频| 香蕉精品网在线| 国产熟女欧美一区二区| 91久久精品国产一区二区三区| 久久久久久人人人人人| 久久99一区二区三区| 国产亚洲最大av| 亚洲美女搞黄在线观看| 大香蕉久久成人网| 热99国产精品久久久久久7| 精品国产一区二区三区四区第35| 最近中文字幕2019免费版| 久久这里只有精品19| 亚洲,一卡二卡三卡| 人妻系列 视频| 久久久欧美国产精品| 高清黄色对白视频在线免费看| 搡女人真爽免费视频火全软件| 青青草视频在线视频观看| 久久精品久久久久久久性| 不卡视频在线观看欧美| 亚洲色图 男人天堂 中文字幕| 国产人伦9x9x在线观看 | 18禁国产床啪视频网站| 母亲3免费完整高清在线观看 | 下体分泌物呈黄色| 涩涩av久久男人的天堂| 国产高清不卡午夜福利| 亚洲欧洲国产日韩| 精品卡一卡二卡四卡免费| 国产精品麻豆人妻色哟哟久久| 午夜福利网站1000一区二区三区| 中文字幕最新亚洲高清| 日本欧美视频一区| 美女国产视频在线观看| 如何舔出高潮| 只有这里有精品99| 亚洲国产色片| 国产精品av久久久久免费| xxxhd国产人妻xxx| 18禁国产床啪视频网站| 国产精品 欧美亚洲| 免费黄网站久久成人精品| 欧美亚洲 丝袜 人妻 在线| 久久精品国产综合久久久| 赤兔流量卡办理| 女人精品久久久久毛片| 国产在线一区二区三区精| 国产极品天堂在线| 亚洲精品第二区| 欧美激情高清一区二区三区 | 超碰成人久久| 国产男女超爽视频在线观看| 亚洲 欧美一区二区三区| 免费看不卡的av| 大码成人一级视频| 亚洲少妇的诱惑av| 菩萨蛮人人尽说江南好唐韦庄| 日本欧美国产在线视频| 90打野战视频偷拍视频| 久久综合国产亚洲精品| 久久久欧美国产精品| 精品一区二区三区四区五区乱码 | 久久久国产一区二区| 女性被躁到高潮视频| 女性生殖器流出的白浆| 久久午夜综合久久蜜桃| 免费看不卡的av| 大片电影免费在线观看免费| 久久久a久久爽久久v久久| 欧美人与性动交α欧美精品济南到 | 久久精品国产亚洲av天美| 一级,二级,三级黄色视频| 亚洲四区av| 十八禁网站网址无遮挡| 亚洲情色 制服丝袜| 亚洲三级黄色毛片| 女人精品久久久久毛片| 亚洲精品国产av蜜桃| 国产精品国产三级专区第一集| 男男h啪啪无遮挡| 欧美变态另类bdsm刘玥| 成年女人毛片免费观看观看9 | 久久人人爽av亚洲精品天堂| 久久婷婷青草| 啦啦啦在线观看免费高清www| 建设人人有责人人尽责人人享有的| 亚洲男人天堂网一区| 一本色道久久久久久精品综合| 在线观看www视频免费| 成人毛片a级毛片在线播放| 国产在视频线精品| 高清视频免费观看一区二区| 青青草视频在线视频观看| 蜜桃在线观看..| 国产亚洲午夜精品一区二区久久| 纯流量卡能插随身wifi吗| 婷婷色麻豆天堂久久| 在线 av 中文字幕| 国产成人精品久久二区二区91 | 日韩免费高清中文字幕av| 国产免费现黄频在线看| 亚洲婷婷狠狠爱综合网| 欧美最新免费一区二区三区| 99九九在线精品视频| 成年人免费黄色播放视频| 亚洲情色 制服丝袜| 另类亚洲欧美激情| 亚洲精品国产一区二区精华液| 久久久久久人人人人人| 久久99蜜桃精品久久| av卡一久久| 日韩一区二区视频免费看| 亚洲欧美成人综合另类久久久| 午夜福利影视在线免费观看| 90打野战视频偷拍视频| 久久午夜福利片| 日本黄色日本黄色录像| av在线播放精品| 人妻一区二区av| 伦理电影免费视频| 午夜免费男女啪啪视频观看| 日韩av免费高清视频| 欧美97在线视频| 日韩精品有码人妻一区| 三上悠亚av全集在线观看| 日本av免费视频播放| 亚洲三区欧美一区| 男女边摸边吃奶| 五月天丁香电影| 亚洲av日韩在线播放| 热99国产精品久久久久久7| av.在线天堂| 我要看黄色一级片免费的| 亚洲成人av在线免费| 国产精品久久久久久av不卡| 亚洲成色77777| 制服人妻中文乱码| 丝袜喷水一区| av免费观看日本| 亚洲欧美一区二区三区国产| freevideosex欧美| 国产日韩欧美视频二区| 制服诱惑二区| 伊人久久大香线蕉亚洲五| 日本午夜av视频| 成人二区视频| 国产国语露脸激情在线看| 蜜桃国产av成人99| 美女主播在线视频| 久久精品久久久久久久性| 中文欧美无线码| 人妻系列 视频| av在线观看视频网站免费| 一区二区三区激情视频| 五月伊人婷婷丁香| 亚洲av在线观看美女高潮| 日韩一卡2卡3卡4卡2021年| 精品亚洲乱码少妇综合久久| 成年女人毛片免费观看观看9 | av国产久精品久网站免费入址| 国产一区二区三区综合在线观看| 天堂8中文在线网| 亚洲男人天堂网一区| 人人妻人人添人人爽欧美一区卜| 亚洲精品美女久久久久99蜜臀 | 在线观看三级黄色| 日本欧美视频一区| 97在线视频观看| h视频一区二区三区| 丰满乱子伦码专区| 欧美老熟妇乱子伦牲交| 观看美女的网站| 成年人免费黄色播放视频| 国产成人免费无遮挡视频| 90打野战视频偷拍视频| 国产精品久久久久成人av| 久久99一区二区三区| 午夜激情av网站| 母亲3免费完整高清在线观看 | 国产精品二区激情视频| 亚洲 欧美一区二区三区| 女性生殖器流出的白浆| 午夜福利影视在线免费观看| 亚洲av欧美aⅴ国产| 水蜜桃什么品种好| 超色免费av| 性色av一级| 亚洲熟女精品中文字幕| 亚洲av在线观看美女高潮| 18禁裸乳无遮挡动漫免费视频| 久久久久久人妻| 久久这里只有精品19| 在线观看人妻少妇| 日韩av免费高清视频| 18+在线观看网站| 久久午夜综合久久蜜桃| 岛国毛片在线播放| 国产在视频线精品| 国产精品 国内视频| 建设人人有责人人尽责人人享有的| 久久99精品国语久久久| 国产欧美日韩一区二区三区在线| 国产极品粉嫩免费观看在线| 极品少妇高潮喷水抽搐| 中文精品一卡2卡3卡4更新| 精品一区二区三卡| 国产视频首页在线观看| 九草在线视频观看| 日韩免费高清中文字幕av| 亚洲精品aⅴ在线观看| 精品少妇一区二区三区视频日本电影 | 国产高清不卡午夜福利| 色婷婷久久久亚洲欧美| av在线观看视频网站免费| 欧美 日韩 精品 国产| 菩萨蛮人人尽说江南好唐韦庄| 新久久久久国产一级毛片| 七月丁香在线播放| tube8黄色片| √禁漫天堂资源中文www| 亚洲,欧美精品.| 久久久久久久精品精品| 国产精品一区二区在线观看99| 国产成人免费无遮挡视频| 精品国产超薄肉色丝袜足j| 欧美bdsm另类| 丁香六月天网| www.熟女人妻精品国产| 在线精品无人区一区二区三| 丰满少妇做爰视频| 久久免费观看电影| 麻豆乱淫一区二区| 成人国产麻豆网| 久久久久久久亚洲中文字幕| 国产高清国产精品国产三级| 女人久久www免费人成看片| 咕卡用的链子| 久久久久久久久久久久大奶| 香蕉精品网在线| 日日撸夜夜添| 久久精品aⅴ一区二区三区四区 | 日韩电影二区| 黄色怎么调成土黄色| 成人亚洲欧美一区二区av| 亚洲四区av| 2022亚洲国产成人精品| 在线亚洲精品国产二区图片欧美| 久久久久精品久久久久真实原创| 丝瓜视频免费看黄片| 777米奇影视久久| 赤兔流量卡办理| 青青草视频在线视频观看| 九草在线视频观看| 国产精品嫩草影院av在线观看| 精品人妻偷拍中文字幕| 国产一级毛片在线| 成人国语在线视频| 久久毛片免费看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产成人一区二区在线| 在线观看免费高清a一片| 中文字幕人妻丝袜制服| 少妇 在线观看| 免费观看a级毛片全部| 免费黄频网站在线观看国产| 久久ye,这里只有精品| 久久久久精品人妻al黑| 最近手机中文字幕大全| 国产黄色免费在线视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲成国产人片在线观看| 午夜免费观看性视频| 中国国产av一级| 色94色欧美一区二区| 2021少妇久久久久久久久久久| 国产成人精品无人区| 激情视频va一区二区三区| 久久久精品国产亚洲av高清涩受| 久久久久久久亚洲中文字幕| 精品第一国产精品| 人人妻人人澡人人爽人人夜夜| 精品久久久精品久久久| 日韩av在线免费看完整版不卡| 亚洲成人一二三区av| 国产97色在线日韩免费| 亚洲第一青青草原| 午夜日韩欧美国产| 伊人亚洲综合成人网| 久久久久久久大尺度免费视频| 七月丁香在线播放| 宅男免费午夜| 国语对白做爰xxxⅹ性视频网站| 亚洲国产精品一区二区三区在线| 国产乱来视频区| 亚洲综合色惰| 日韩在线高清观看一区二区三区| 精品少妇久久久久久888优播| 久久国产精品大桥未久av| 亚洲欧美精品综合一区二区三区 | 9热在线视频观看99| 日本av免费视频播放| 国产一区有黄有色的免费视频| 免费久久久久久久精品成人欧美视频| 人人妻人人爽人人添夜夜欢视频| 国产av国产精品国产| 大话2 男鬼变身卡| 欧美亚洲日本最大视频资源| 亚洲一级一片aⅴ在线观看| 亚洲第一青青草原| 又黄又粗又硬又大视频| 91aial.com中文字幕在线观看| 日日啪夜夜爽| 丰满迷人的少妇在线观看| 久久国产精品大桥未久av| 秋霞在线观看毛片| 国产成人免费观看mmmm| 宅男免费午夜| 丰满少妇做爰视频| 成人手机av| 午夜福利视频在线观看免费| 成人18禁高潮啪啪吃奶动态图| 80岁老熟妇乱子伦牲交| 国产精品女同一区二区软件| 最近中文字幕2019免费版| 青春草国产在线视频| 亚洲色图 男人天堂 中文字幕| 亚洲成人一二三区av| 精品国产一区二区久久| av视频免费观看在线观看| 9191精品国产免费久久| 这个男人来自地球电影免费观看 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一区二区日韩欧美中文字幕| 嫩草影院入口| 欧美亚洲 丝袜 人妻 在线| 免费黄频网站在线观看国产| 天美传媒精品一区二区| 人成视频在线观看免费观看| 欧美日韩亚洲高清精品| 国产一区亚洲一区在线观看| 午夜免费男女啪啪视频观看| 一本久久精品| av免费观看日本| 美女中出高潮动态图| 久久97久久精品| 久久免费观看电影| 国产亚洲精品第一综合不卡| 精品少妇久久久久久888优播| 国产免费福利视频在线观看| 久久久久久久国产电影| 伦理电影免费视频| 免费女性裸体啪啪无遮挡网站| 久久久精品区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 尾随美女入室| 国产精品熟女久久久久浪| 26uuu在线亚洲综合色| 久久精品aⅴ一区二区三区四区 | 午夜福利一区二区在线看| 美女福利国产在线| 欧美日韩成人在线一区二区| 国产又爽黄色视频| 国产精品久久久久久av不卡| 亚洲人成电影观看| 久久国产精品男人的天堂亚洲| 看免费av毛片| 亚洲精品aⅴ在线观看| 99久久人妻综合| 中文字幕最新亚洲高清| 叶爱在线成人免费视频播放| 久热久热在线精品观看| 久久久精品94久久精品| 亚洲成人av在线免费| 老汉色∧v一级毛片| 国产精品 欧美亚洲| 熟女电影av网| 18禁动态无遮挡网站| 免费av中文字幕在线| 国产高清不卡午夜福利| 婷婷成人精品国产| 久久久精品94久久精品| 中文字幕人妻丝袜制服| 久久久久久久国产电影| 成人漫画全彩无遮挡| 亚洲精品aⅴ在线观看| 精品人妻一区二区三区麻豆| 免费观看性生交大片5| 亚洲精品视频女| 巨乳人妻的诱惑在线观看| 大片免费播放器 马上看| 国产精品一国产av| 少妇的逼水好多|