• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Couple stress fluid flow in a rotating channel with peristalsis *

    2018-05-14 01:43:10AbdelmaboudSaraAbdelsalamKhMekheimer
    水動力學研究與進展 B輯 2018年2期

    Y. Abd elmaboud , Sara I. Abdelsalam , Kh. S. Mekheimer

    1. Mathematics Department, Faculty of Science and Arts, Khulais, University Of Jeddah, Jeddah, Saudi Arabia.

    2. Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt

    3. Department of Mechanical Engineering, University of California, Riverside, USA

    4. Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt

    5. Basic Science Department, Faculty of Engineering, The British University in Egypt, Cairo, Egypt

    Introduction

    The theory of the couple stress (CS) fluid was first proposed by Stokes[1]in 1966. In this theory Stokes introduced the rotational field in terms of the velocity field for setting up the constitutive relationship between the stress and strain rates. Stokes microcontinuum theory allows for polar effects such as the presence of couple stresses, body couples and a nonsymmetric stress tensor.

    Peristaltic transport is one of the important topics that attracts scientific researchers in bio fluid mechanics branch. Peristaltic transport is a physical mechanism for the flow induced by the traveling wave. This mechanism is found in the body of living creatures,and it frequently occurs in organs such as ureter,intestines and arterioles (small arteries). The mechanism of peristaltic transport has also been found in the industry. There are many industrial applications that involve peristaltic transport, some of which, sanitary fluid transport, blood pumps in heart lung machine,and transport of corrosive fluids where the contact of the fluid with the machinery parts is prohibited. The first investigation of peristaltic transport was done by Latham[2]. Recently, considerable attention has been devoted to the problem of peristaltic transport with Newtonian or non-Newtonian fluid in channel or a tube[3-16].

    In most mathematical models there are some difficulties to achieve the exact solution. Homotopy analysis method (HAM) ( homotopy perturbation method (HPM) is a special case) is a new analytical technique that employs a transformation procedure which reduces the involved partial differential equations into ordinary differential equations. Series solutions of the resulting systems are constructed. The convergence of the obtained series solutions is seen through graphical results and tabular values. The method gives flexibility in the choice of basic functions for the solution and for the linear inversion operators (when compared with the Adomian decomposition method), while still retaining a simplicity that makes the method easily understandable from the standpoint of general perturbation methods. This method has been first introduced by Liao[17,18].Recently, many authors[19-22]have used HPM in a wide variety of scientific and engineering applications.

    Motivated by these ideas, the goal of this investigation is to study the couple stress fluid flow in a rotating channel with peristalsis. The governing equations are modeled and reduced to a simple form using the long wavelength approximation then solved using the HPM. The analyses for the velocity, pressure gradient, flow rate due to secondary velocity, and the pressure rise have been discussed for various values of the problem parameters.

    1. Formulation of the problem and mathematical model

    Consider a two-dimensional infinite channel filled with homogeneous incompressible couple stress fluid. We assume that the channel rotates with a constant angular speed Ω, about theZ′-axis. The flow is induced by sinusoidal wave trains propagating with constant speedc, along the channel walls (see Fig.1). The geometry of the wall surface is defined as

    whereais the half-width of the channel,bis the wave amplitude, λ is the wavelength andt′ is the time. With regard to the rotating frame the fluid velocity vector is given byV′= (U′(X′,Z′,t′),V′(X′,Z′,t′),W′(X′,Z′,t′)), whereU′,V′ andW′ are the velocity components inX′,Y′ andZ′, respectively. Introducing the wave frame (x′,y′,z′) that moves with velocitycaway from the fixed frame(X′,Y′,Z′). We employ the transformation:

    where (u′,v′,w′) are the velocity components in the wave frame, alsop′ andP′ are the pressures in the wave and fixed frames respectively.

    The governing equations for the couple stress fluid, taking into account the rotating frame, will be in the form:

    where ρ is the density, μ is the fluid viscosity, η is the couple stress fluid parameter,p′ =p′*-ρΩ2(x′2+y′2) /2 is the modified pressure andp′*is hydrostatic pressure.

    Fig.1 Geometry of the problem

    Assuming the components of the couple stress tensor are all zero at the wall[1,23], the corresponding non-slip boundary conditions will be:

    Consider the following non-dimensional variables and parameters:

    whereReis the Reynolds number, δ is the dimensionless wave number, γ (γ>0) is the couple stress fluid parameter indicating the ratio of the channel width (which is constant) to the material characteristic length (since1/2(η/ )μ, has the dimension of length), φ is the amplitude ratio andTrepresents Taylor’s number.

    Using the dimensionless variables and parameters given by Eq. (8), together with the stream function ψ(x,z) (such thatu= ψz,w=-δψx), the continuity Eq. (3) is identically satisfied and Eqs.(4)-(6) become:

    We define the instantaneous volume flow rate in the fixed frame as follows

    whereH′ is function ofX′,t′.

    The rate of volume flow in the wave frame is given by

    whereh′ is function ofx′ alone. Hence, the two rates of volume flow are related through

    The time mean flow over a period τ at a fixed positionxis defined as

    substituting (14) into (15), and integrating, we get

    We define the dimensionless time-mean flows θ andFin the fixed and wave frame as:

    one finds that (16) may be written as

    where

    Under lubrication approach (negligible inertiaRe→ 0 and long wavelength δ?1), the Eqs. (9)-(11) reduce to

    The corresponding boundary conditions will be

    2. Solution methodology

    Equation (22) shows that the pressurepis not a function ofz. Further,py=0 because the secondary flow is caused by the rotation only. Differentiating Eq. (20) with respect tozand taking into account the above note, one finds that

    and Eq. (21) will be in the form

    To solve Eqs. (24), (25) with the corresponding boundary conditions (23), we are going to use the powerful homotopy perturbation method. The homotopy equation for the given problem is defined as:

    whereq∈ [0,1] is the embedded parameter, and L1and L2are the linear operators that are assumed to be L1=?6/?z6and L2=?4/?z4. We define the initial guess as:

    where

    Now we describe Substituting the above equation into Eqs. (26),(27) and then taking the terms of order zero, one, and two, we obtain the following models along with the corresponding boundary conditions:

    Zeroth-order

    with the corresponding boundary conditions

    The solution of the zeroth order system can be obtained by using Eqs. (28), (29) and is directly written as

    First-order

    with the corresponding boundary conditions

    The solutions of the above linear ordinary differential equations are found as

    Second-order

    with the corresponding boundary conditions

    The solutions of this order is very large so we omit it from the text. We substitute the values of0ψ,1ψ and2ψ andv0,v1andv2in Eqs. (30), (31),respectively. Now forq→1, we approach the final solutions.

    The secondary flow is an indication for the rotating frame in most cases. The physical quantities of interest, such as the dimensionless flow rateF2,due to secondary velocity and the pressure rise Δpare defined, respectively, as:

    The shear stress at the wallwτ, after implementing the long wavelength approximation and taking into consideration that the couple stress value vanishes at the wall, will be in the form

    3. Quantitative investigation

    In this section, theoretical estimates of different physical quantities that are of relevance to the fluid problem have been obtained on the basis of the present study. We investigate novelties brought about by the introduction of Taylor’s numberT, which is due to rotation of channel about thez-axis, and couple stress parameter γ into the model. Particularly, we discuss their effects on the longitudinal velocity distributionu, pressure gradient dp/dx,pressure rise per wavelength Δp, and on the dimensionless flow rate due to secondary velocityF2. The formation of a bolus of fluid which is presented by a snapshot of flow field characteristic streamlines enclosing the pattern is also investigated. For this purpose, the following data that are valid in the physiological range[1,3,7,24]have been used: γ=0.01-3.00,T=0-7, θ= -1 .5-1.5 and φ=0.4-0.6.

    3.1 Distribution of velocity

    The variations ofTand γ on the longitudinal velocity distributionuhave been portrayed and investigated in this subsection. Figures 2, 3 are constructed to serve this purpose. As shown in Fig.2,the couple stress parameter γ enhances the longitudinal flow velocity and is almost constant within the range 0≤z≤0.2, after which it has a decreasing effect onu. It is obvious that forz≥0.2,udecreases with the variation ofzfor a fixed value of γ. For large values of γ (i.e., move to Newtonian fluid), the longitudinal velocityuincreases in the center region of the fluid layer and decreases near to the wavy walls. Figure 3 elucidates thatuincreases with an increase inTuntil it reaches the center of the channel where the trend is reversed. It is also concluded thatuhas smaller values in the absence of the inertial forces due to rotation till it reaches the center of the channel, where the trend is reversed.Generally, it is obvious thatuattains its maximum value and stays constant over a certain range ofz(0 ≤z≤ 0.2) after which it begins to decrease rapidly.Thus, this considerable increase inu, due to rotation,near the lower wall supports the motion at that zone.Finally, the longitudinal velocity for the rotating fluid is higher than that for non rotating one (T=0). The curves that describe the variation ofufor various values of γ are qualitatively similar to those of Fig.2.

    Fig.2 The longitudinal velocity distribution u,across the channel with different values of T at x=0.2, θ=1.5, γ=3.0 and φ=0.4

    3.2 Pumping behaviour

    Fig.3 The longitudinal velocity distribution u,across the channel with different values of γ at x=0.2,θ=1.5, T=4 and φ=0.4

    Fig.4 Variation of pressure gradient versus x with different values of T for fixed φ=0.4, θ=-1.5 and γ=2.0

    The pumping characteristics can be determined through the variation of time averaged flux with difference in pressure across one wave length. It is known that if the flow is steady in the wave frame, the instantaneous pressure difference between two stations one wave length apart is a constant. Since the pressure gradient is a periodic function of (Z-t), pressure rise per wave length Δpis equal to λ times the time-averaged pressure gradient. The graph is sectored so that the region in which the pressure difference vanishes, Δp=0, is regarded to as the free pumping zone, while the region where Δp>0 (adverse pressure gradient) and θ>0 (positive pumping) is said to be the peristaltic pumping zone where the peristalsis of the walls overcomes the resistance of the pressure and assists the fluid of flow. When Δp>0 and θ<0, the region is known as retrograde or backward pumping where the flux of fluid is opposite to the wave propagation. The situation when Δp<0(favorable pressure gradient) and θ>0 (positive pumping) corresponds to the so-called co-pumping or augmented zone where the pressure difference amplifies the flow. Figures 4, 5 present the variations of dp/dxfor different values ofTand γ where it is noticed that the pressure gradient has a periodic nature. One may observe from Fig.4 that in the range of values of Taylor’s number examined in the present study, the pressure gradient is weakly affected byTin the narrow region of the channel, nevertheless, it has a decreasing effect on the wider region where, it over the ranges of 0 ≤x≤ 0.35 and 0.6≤x≤1,approximately. Generally, the pressure gradient attains its maximum value at the narrow region of the channel from where it decreases rapidly as we go to the wider parts. Figure 5 elucidates that dp/dxis strongly affected by γ which has a decreasing effect on it. It is noticed that the maxima of pressure gradient curve decreases rapidly with an increase in γ. The variations of Δpwith θ for various values ofTand γ are presented in Fig.6. It is seen from the graph that Δpand θ are inversely proportional to each other. Further, Fig.6 shows that upon increasingTand γ, Δpdecreases in the retrograde pumping till a certain value in the peristaltic pumping region after which the pumping rate will increase by increasingTand γ in both, the peristaltic and co-pumping regions. It is observed that the pumping region (Δp>0) decreases with an increase inTfor fixed values of γ. It is also observed that the maximum pressure against which peristalsis works as a positive displacement pump (that is, Δpfor θ=0) decreases for large value ofT(=5). It appears that for the case γ =2, free pumping is independent ofT, but this is not true as seen from the enlargement ofTshown in figure. In contrast, if one keeps increasingT, Δpbecomes negative for most of the positive values of θ. Thus, forT=5, the free pumping is not independent ofT. Hence, for a fluid in a frame rotating with large angular speed, pressure does not rise against the direction of the peristaltic wave. It implies that the pressure assists the flow in such a case.In fact, the rotation of the channel produces a negative secondary component of the velocity which, in turn, is responsible for Coriolis force acting on the fluid in the positivey-direction. This force pulls the fluid outwards and thus, reduces the pressure rise. It is interesting to note that the lines for different values ofTintersect in the region Δp>0. On the other hands,it is noticed from Fig.6 that the pumping region decreases with increasing the values of γ for fixed values ofT. It is also observed that the maximum pressure against which peristalsis works as a positive displacement pump decreases with increasing γ. It appears that free pumping is not independent of γ.Also, if one keeps increasing γ , Δpbecome negative for most of the positive values of θ and the pressure assists the flow. It is interesting to note that the lines for different values of γ intersect in the region Δp<0.

    Fig.5 Variation of pressure gradients versus x with different values of γ for fixed φ=0.4, θ=-1.5 and T=0

    Fig.6 Variation of pressure rises over the length versus θ with different values of couples tress parameter γ and Taylor’s number T at φ=0.4

    Fig.7 The dimensionless flow rates due to secondary velocity F2 for different values of T with φ=0.6, γ=1.0 and θ=-0.2

    3.3 Dimensionless flow rate due to secondary velocity

    Figures 7, 8 are plotted so as to study the behavior of dimensionless flow rate due to secondary velocity withxfor various values of the concerned parameters. The caseT=0 corresponds to flow rate in the absence of centrifugal forces i.e., the inertial forces due to rotation of channel about thez-axis. It is evident thatF2vanishes when the rotation of channel disappears. For θ=-0.2, it is noticed thatF2is positive in the narrow part of the channel,otherwise, it is negative. It is observed thatThas an increasing effect onF2except over the ranges 0.2≤x≤0.8 and 1.2≤x≤1.8 where the behavior is reversed. Moreover, as the value ofTincreases,F2becomes positive over the whole wavelength of the channel. Figure 8 depicts the influence of couple stress parameter γ onF2for θ=-0.2. It is revealed thatF2is positive over the whole wavelength of the channel for all values of γ. Yet, γ has an increasing effect onF2except for the ranges ofxthat are between 0.2 to 0.8 and 1.2 to 1.8 where the trend reverses.

    Fig.8 The dimensionless flow rates due to secondary velocity F2 for different values of γ with φ=0.6, T=2 and θ=-0.2

    3.4 Streamlines and trapping

    Trapping is an important aspect of peristaltic motion. It occurs when streamlines on the central line are split to enclose a bolus of fluid particles circulating along closed streamlines in the wave frame of reference. Then the fluid particles contained in the bolus move at a mean speed of advance equal to the wave propagation speed, whereas the remaining fluid has a smaller mean speed of advance. Under the purview of the present study, Figs. 9, 10 give an insight into the changes in the patterns of streamlines and trapping that occur due to changes in the values of different parameters governing the flow in the wave frame of reference. Figure 9 illustrates the influence of the rotation of channel on the trapping phenomenon.The caseT=0 corresponds to trapping in the absence of rotation. Here, we observe that the trapped bolus exists about the center streamline. However, the number of closed streamlines circulating the bolus gets raised as we move towards higher values of flow field rotation parameter (increase the values ofT=0,2,5). It is also noticed that the effect ofTis to enhance the area (size) of the trapped bolus with a tendency to move towards the boundary asTincreases. Yet, for small values ofT(=2), there is not much difference in the area trapped bolus compared with that of the absence of rotation case. This phenomenon is useful in understanding the movement of the food bolus in the gastrointestinal tract and the formation of thrombus in blood. Streamlines for various values of the of couple stress parameter γ are depicted in Fig.10. This figure indicates that the occurrence of trapping is strongly influenced by the value of γ. With an increase in γ (move to Newtonian fluid), the bolus is found to appear in a distinct manner and it is observed that the number of closed streamlines circulating the bolus increases.

    Fig.9 Streamlines for different values of Taylor’s number T,with fixed values of θ=-1.0, φ=0.4 and γ=2.0

    3.5 Distribution of wall shear stress

    Fig.10 Streamlines for different values of couple stress parameter γ, respectively, with fixed values of θ=1.0,φ= 0.4 and T=0

    It is very interesting to note that for fluids in microcontinuum (couple stress fluids, micropolar fluids,dipolar fluids, etc.), stress tensor is not symmetric. It is known that the stress tensor for a couple stress fluid contains a symmetric and asymmetric parts. And since there are vanishing components of the couple stress tensor at the channel walls, the stress tensor at the wall will have the symmetric part only. Figures 11, 12 display the variation of the symmetric part of the wall shear stress with thex-axis for different values of the couple stress parameter γ and the rotation parameterT. The figures show that the wall shear stress behave just as the wall sinusoidal wave. Further,there exists two peaks in the shear stress distribution,over the rangex=0-2, with a gradual ramp in between. However, the negative peak of the wall shear stress τminis not as large as the maximum wall shear stress, τmax. The transition from τminto τmaxof the wall shear stress takes place in some zone between the minimum and maximum width of the channel.Moreover, an increase in the couple stress parameter γ (i.e., moves towards a Newtonian fluid) and in the rotation parameterTleads to a slight variation in the wall shear stress and this variation is obvious in the bottom area of the wall shear stress wave. However,this variation increases as the rotation parameter increases and is reduced by moving towards a Newtonian fluid (γ take large values ).

    Fig.12 Wall shear stress wτ versus x with different values of γ at T=0, φ=0.4 and θ=0.5

    4. Concluding remarks

    In this study, we investigate the peristaltic flow of a non-Newtonian couple stress fluid in a rotating frame of reference under the long wavelength assumption. The resulting equations are solved, using the powerful HPM, for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The main findings can be summarized as follows:

    (1) Taylor’s number and the couple stress parameter have an increasing effect onutill half of the channel from where the behavior is reversed.

    Fig.11 Wall shear stress wτ versus x with different values of T at γ=2.0 , φ=0.4 and θ=0.2

    (2) The pressure gradient, dp/dx, has a periodic nature under the influence of both,Tand γ.

    (3) The couple stress parameter strongly affects dp/dxcausing it to decrease, unlikeTwhich weakly affects it.

    (4) The pressure rise, Δp, decreases in the retrograde pumping till a certain value in the peristaltic pumping region after which the pumping rate will increase by increasingTand γ in the peristaltic and co-pumping regions.

    (5) Free pumping is dependent on high values ofTand on γ in which the pressure does not rise against the direction of the peristaltic wave and hence,assists the flow.

    (6) BothTand γ have an increasing effect on the flow rate due to secondary velocity,F2, over certain range ofx.

    (7) AsTand γ increase, number of closed streamlines circulating the bolus increases.

    (8) The results for the Newtonian incompressible fluid in a rotating frame can be recovered for large values of γ[24].

    (9) The shear stress profiles is not significantly disturbed by the numerical value of γ orTin the narrow parts in the channel.

    (10) In the absence ofT, our results perfectly match with the results computed on the basis of our study of peristaltic flow of couple stress fluid in the absence of heat transfer in a fixed frame[23].

    [1] Stokes V. K. Couple stress fluid [J].Physics of Fluids,1966, 9(9): 1709-1715.

    [2] Latham T. W. Fluid motion in a peristaltic pump [D].Master Thesis, Massachusetts, USA: Massachusetts Institute of Technology, 1966.

    [3] Noreen S. A., Wahid B. A. Physiological transportation of casson fluid in a plumb duct [J].Communications in Theoretical Physics, 2015, 63(3): 347-352.

    [4] Abd elmaboud Y. Thermomicropolar fluid flow in a porous channel with peristalsis [J].Journal of Porous Media, 2011, 14(11): 1033-1045.

    [5] Abd elmaboud Y., Mekheimer Kh. S. Non-linear peristaltic transport of a second-order fluid through a porous medium [J].Applied Mathematical Modelling, 2011, 35(6):2695-2710.

    [6] Noreen S. A., Wahid B. A. Heat transfer analysis for the peristaltic flow of herschel-bulkley fluid in a nonuniform inclined channel [J].Zeitschrift Für Naturforschung A,2015, 70(1): 23-32.

    [7] Noreen S. A. Application of Eyring-Powell fluid model in peristalsis with nano particles [J].Journal of Computational and Theoretical Nanosciences, 2015, 12(1): 94-100.

    [8] Ellahi R., Bhatti M. M., Riaz A. et al. The effects of magnetohydrodynamics on peristaltic flow of Jeffrey fluid in a rectangular duct through a porous medium [J].Journal of Porous Media, 2014, 17(2): 143-157.

    [9] Hayat T., Asfar A., Khana M. et al. Peristaltic transport of a third order fluid under the effect of a magnetic field [J].Computers and Mathematics with Applications, 2007,53(7): 1074-1087.

    [10] Mekheimer Kh. S., Husseny S. Z. A., Abd elmaboud Y.Effects of heat transfer and space porosity on peristaltic flow in a vertical asymmetric channel [J].Numerical Methods for Partial Differential Equations, 2010, 26(4):747-770.

    [11] Ellahi R., Bhatti M. M., Vafai K. Effects of heat and mass transfer on peristaltic flow in a non-uniform rectan- gular duct [J].International Journal of Heat and Mass Transfer,2014, 71(4): 706-719.

    [12] Mekheimer Kh. S., Abdel maboud Y. Peristaltic flow of a couple stress fluid in an annulus: Application of an endoscope [J].Physica A, 2008, 387(11): 2403-2415.

    [13] Hayat T., Wang Y., Siddiqui A. M. et al. Peristaltic transport of a third order fluid in a circular cylindrical tube [J].MathematicalModels and Methods in Applied Sciences,2002, 12(12): 1691-1706.

    [14] Hayat T., Wang Y., Siddiqui A. M. et al. Peristaltic transport of an Oldroyd-B fluid in a planar channel [J].Mathematical Problems in Engineering, 2004, 2004(4):347-376.

    [15] Nadeem S., Riaz A., Ellahi R. et al. Heat and mass transfer analysis of peristaltic flow of nanofluid in a vertical rectangular duct by using the optimized series solution and genetic algorithm [J].Computational and Theoretical Nanoscience, 2014, 11(4): 1133-1149.

    [16] Nadeem S., Riaz A., Ellahi R. Peristaltic flow of viscous fluid in a rectangular duct with compliant walls [J].Computational Mathematics and Modeling, 2014, 25(3):404-415.

    [17] Liao S. General boundary element method for non-linear heat transfer problems governed by hyperbolic heat conduction equation [J].Computational Mechanics, 1997,20(5): 397-406.

    [18] Liao S. Numerically solving nonlinear problems by the homotopy analysis method [J].Computational Mechanics,1997, 20(6): 530-540.

    [19] Ellahi R., Riaz A., Nadeem S. et al. Peristaltic flow of Carreau fluid in a rectangular duct through a porous medium [J].Mathematical Problems in Engineering, 2012,Article ID 329639.

    [20] Abd Elmaboud Y., Mekheimer Kh. S., Mohamed M. S.Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis [J].Journal of Hydrodynamics, 2015, 27(6): 969-979.

    [21] Saadatmandi A., Dehghan M., Eftekhari A. Application of He’s homotopy perturbation method for non-linear system of second-order boundary value problems [J].Nonlinear Analysis: Real World Applications, 2009, 10(3):1912-1922.

    [22] Mekheimer Kh. S., Abdelmaboud Y., Abdellateef A. I.Particulate suspension flow induced by sinusoidal peristaltic waves through eccentric cylinders: Thread annular[J].International Journal of Biomathematics, 2013, 6(4):1350026.

    [23] Abd elmaboud Y., Mekheimer Kh. S., Abdellateef A. I.Thermal properties of couple-stress fluid flow in an asymmetric channel with peristalsis [J].Journal of Heat Transfer, 2013, 135(4): 044502-1.

    [24] Ali N., Sajid M., Javed T. et al. Peristalsis in a rotating fluid [J].Scientific Research and Essays, 2012, 7(32):2891-2897.

    欧美激情国产日韩精品一区| 亚洲精品中文字幕在线视频 | 中国美白少妇内射xxxbb| 美女被艹到高潮喷水动态| 亚洲天堂国产精品一区在线| 亚洲欧美成人精品一区二区| 国产黄片美女视频| 午夜福利网站1000一区二区三区| 看非洲黑人一级黄片| 婷婷六月久久综合丁香| 亚州av有码| 夫妻午夜视频| 两个人视频免费观看高清| 美女内射精品一级片tv| 水蜜桃什么品种好| 精品99又大又爽又粗少妇毛片| 成人综合一区亚洲| 国产成人freesex在线| 久久久久久久久久久免费av| 国产永久视频网站| 免费高清在线观看视频在线观看| 99久久精品热视频| 国产成人精品婷婷| 国产黄片视频在线免费观看| 夫妻午夜视频| 国产免费视频播放在线视频 | 寂寞人妻少妇视频99o| 国产成人精品久久久久久| 亚洲av中文av极速乱| av播播在线观看一区| 又大又黄又爽视频免费| 国内揄拍国产精品人妻在线| 国产视频首页在线观看| 精品久久久久久久末码| 非洲黑人性xxxx精品又粗又长| 亚洲一区高清亚洲精品| 国产免费又黄又爽又色| 国产 一区 欧美 日韩| 欧美丝袜亚洲另类| 成人鲁丝片一二三区免费| 美女高潮的动态| 亚洲国产精品国产精品| 日韩成人伦理影院| 免费观看在线日韩| 两个人的视频大全免费| 亚洲精品日韩在线中文字幕| av天堂中文字幕网| 婷婷色麻豆天堂久久| 久久这里只有精品中国| 一级二级三级毛片免费看| 亚洲高清免费不卡视频| 99热6这里只有精品| 熟妇人妻不卡中文字幕| 国产黄色小视频在线观看| 欧美日韩视频高清一区二区三区二| 国产精品久久视频播放| 韩国av在线不卡| 亚洲不卡免费看| 午夜免费观看性视频| 日韩,欧美,国产一区二区三区| 精品熟女少妇av免费看| 久久久久精品久久久久真实原创| 亚洲国产欧美人成| 久久久久九九精品影院| 成人鲁丝片一二三区免费| 天堂影院成人在线观看| 成人高潮视频无遮挡免费网站| 成年女人看的毛片在线观看| www.色视频.com| 成人特级av手机在线观看| av在线播放精品| 亚洲av免费高清在线观看| 成年免费大片在线观看| 日韩电影二区| 国产精品1区2区在线观看.| 亚洲精品乱码久久久久久按摩| 亚洲国产av新网站| 最近视频中文字幕2019在线8| 18禁在线无遮挡免费观看视频| 日韩 亚洲 欧美在线| 精品99又大又爽又粗少妇毛片| 成人二区视频| 欧美97在线视频| 国内精品一区二区在线观看| av在线观看视频网站免费| 高清日韩中文字幕在线| 亚洲国产精品成人综合色| 精品人妻熟女av久视频| 大又大粗又爽又黄少妇毛片口| 看免费成人av毛片| 久久精品人妻少妇| 又粗又硬又长又爽又黄的视频| 搡老妇女老女人老熟妇| 麻豆精品久久久久久蜜桃| 免费黄频网站在线观看国产| 黄色一级大片看看| 亚洲精品日韩在线中文字幕| 精品午夜福利在线看| 两个人视频免费观看高清| 狂野欧美白嫩少妇大欣赏| 亚洲不卡免费看| 国产精品不卡视频一区二区| 天天躁夜夜躁狠狠久久av| 亚洲怡红院男人天堂| 美女xxoo啪啪120秒动态图| 久久国内精品自在自线图片| 老女人水多毛片| 欧美激情国产日韩精品一区| 国产av在哪里看| 久久久国产一区二区| 一个人观看的视频www高清免费观看| 国产美女午夜福利| 联通29元200g的流量卡| 一级毛片黄色毛片免费观看视频| 色网站视频免费| 三级国产精品欧美在线观看| 亚洲真实伦在线观看| 日韩大片免费观看网站| 国产免费视频播放在线视频 | 午夜激情欧美在线| 精品国内亚洲2022精品成人| 免费av不卡在线播放| 免费av毛片视频| 性色avwww在线观看| 男女那种视频在线观看| 亚洲精品乱码久久久久久按摩| av在线天堂中文字幕| 国产单亲对白刺激| 三级经典国产精品| 国产精品日韩av在线免费观看| 精品国产一区二区三区久久久樱花 | 免费看美女性在线毛片视频| 国产乱人偷精品视频| 在线天堂最新版资源| 久久久久久久久大av| 2018国产大陆天天弄谢| 亚洲国产精品成人久久小说| 国产色婷婷99| 人人妻人人澡人人爽人人夜夜 | 日本av手机在线免费观看| 好男人在线观看高清免费视频| 亚洲图色成人| 熟妇人妻久久中文字幕3abv| 亚洲成人中文字幕在线播放| 麻豆国产97在线/欧美| 日本免费a在线| 最近视频中文字幕2019在线8| av女优亚洲男人天堂| 精品亚洲乱码少妇综合久久| 三级男女做爰猛烈吃奶摸视频| 97人妻精品一区二区三区麻豆| 成人特级av手机在线观看| 禁无遮挡网站| 精品99又大又爽又粗少妇毛片| 熟妇人妻久久中文字幕3abv| 黄片wwwwww| 青春草亚洲视频在线观看| 水蜜桃什么品种好| 80岁老熟妇乱子伦牲交| 日韩av在线免费看完整版不卡| 亚洲最大成人中文| 免费播放大片免费观看视频在线观看| 一本久久精品| 国产 一区 欧美 日韩| 成人亚洲精品一区在线观看 | 国产淫片久久久久久久久| 国产在视频线在精品| 黄色一级大片看看| 久久精品国产自在天天线| 欧美性猛交╳xxx乱大交人| 欧美zozozo另类| 舔av片在线| 一本一本综合久久| 中文字幕亚洲精品专区| 一个人看视频在线观看www免费| 日韩av不卡免费在线播放| 亚洲国产欧美在线一区| 亚洲av免费高清在线观看| 国产一区有黄有色的免费视频 | 伦精品一区二区三区| 久久热精品热| or卡值多少钱| 国产亚洲一区二区精品| 精品久久久久久久人妻蜜臀av| 插逼视频在线观看| 色吧在线观看| 国内精品宾馆在线| 观看免费一级毛片| 精品不卡国产一区二区三区| 久久久成人免费电影| 国产成年人精品一区二区| 免费观看无遮挡的男女| 久久草成人影院| 国产精品麻豆人妻色哟哟久久 | 91aial.com中文字幕在线观看| 久久久久久久久久黄片| 国产综合精华液| av女优亚洲男人天堂| 国产一区二区亚洲精品在线观看| av卡一久久| 亚洲国产成人一精品久久久| 高清毛片免费看| 大又大粗又爽又黄少妇毛片口| 国产精品.久久久| 日韩人妻高清精品专区| 少妇的逼好多水| 亚洲国产最新在线播放| 亚洲美女搞黄在线观看| 成人高潮视频无遮挡免费网站| 久久久午夜欧美精品| 黄色日韩在线| 婷婷六月久久综合丁香| 18禁在线无遮挡免费观看视频| 久久久久性生活片| 欧美高清成人免费视频www| 亚洲欧美一区二区三区黑人 | 青春草亚洲视频在线观看| 久久99热这里只频精品6学生| 老司机影院成人| 亚洲天堂国产精品一区在线| 国产老妇女一区| 免费观看a级毛片全部| 激情 狠狠 欧美| 中文乱码字字幕精品一区二区三区 | 久久久久性生活片| 在线播放无遮挡| 亚洲精品aⅴ在线观看| 一级毛片 在线播放| 午夜福利视频精品| 亚洲精品中文字幕在线视频 | 亚洲电影在线观看av| 久久久久精品久久久久真实原创| 性色avwww在线观看| 国产 一区 欧美 日韩| 人体艺术视频欧美日本| 色吧在线观看| av女优亚洲男人天堂| 成人午夜精彩视频在线观看| 久久99精品国语久久久| 欧美性感艳星| 一本久久精品| 久久久欧美国产精品| 午夜日本视频在线| 天美传媒精品一区二区| 大香蕉97超碰在线| 欧美一级a爱片免费观看看| 寂寞人妻少妇视频99o| 亚洲自偷自拍三级| 亚洲国产精品成人久久小说| 熟妇人妻久久中文字幕3abv| 日韩伦理黄色片| 免费观看无遮挡的男女| 亚洲天堂国产精品一区在线| 纵有疾风起免费观看全集完整版 | 好男人视频免费观看在线| 成人亚洲精品av一区二区| 内射极品少妇av片p| 日韩欧美 国产精品| 97超视频在线观看视频| 乱系列少妇在线播放| 亚洲av中文字字幕乱码综合| 三级男女做爰猛烈吃奶摸视频| 自拍偷自拍亚洲精品老妇| 日韩成人av中文字幕在线观看| 亚洲av不卡在线观看| av在线亚洲专区| 日本色播在线视频| 免费观看性生交大片5| 亚洲精品国产av蜜桃| 日本色播在线视频| 一二三四中文在线观看免费高清| 97精品久久久久久久久久精品| 韩国高清视频一区二区三区| 韩国高清视频一区二区三区| 中文在线观看免费www的网站| 成人综合一区亚洲| 别揉我奶头 嗯啊视频| 最近最新中文字幕大全电影3| 成人美女网站在线观看视频| 不卡视频在线观看欧美| 高清视频免费观看一区二区 | 国产精品麻豆人妻色哟哟久久 | 亚洲天堂国产精品一区在线| 少妇的逼水好多| 伦理电影大哥的女人| 插逼视频在线观看| 亚洲熟女精品中文字幕| 啦啦啦中文免费视频观看日本| 国产成人freesex在线| 国产一区二区三区av在线| 搡老乐熟女国产| 99久国产av精品| 丝瓜视频免费看黄片| 99久久九九国产精品国产免费| 黄色配什么色好看| 天天一区二区日本电影三级| 亚洲,欧美,日韩| 我的老师免费观看完整版| 日本免费在线观看一区| 久久久久久久久久人人人人人人| 男女边摸边吃奶| 又粗又硬又长又爽又黄的视频| 亚洲av电影在线观看一区二区三区 | 国产亚洲最大av| 久久精品国产亚洲网站| 白带黄色成豆腐渣| 国产精品精品国产色婷婷| 97精品久久久久久久久久精品| 国产亚洲av片在线观看秒播厂 | 国产一区有黄有色的免费视频 | 国产探花在线观看一区二区| av专区在线播放| 人人妻人人看人人澡| 99re6热这里在线精品视频| 免费观看av网站的网址| 精华霜和精华液先用哪个| 免费看美女性在线毛片视频| 欧美成人一区二区免费高清观看| 国产亚洲一区二区精品| 国产 一区 欧美 日韩| 色视频www国产| 成年人午夜在线观看视频 | 精品人妻熟女av久视频| 又黄又爽又刺激的免费视频.| 亚洲熟女精品中文字幕| 国产视频内射| 久久久久久九九精品二区国产| 国产精品久久视频播放| 岛国毛片在线播放| 自拍偷自拍亚洲精品老妇| 国产精品综合久久久久久久免费| 精品酒店卫生间| 一边亲一边摸免费视频| 午夜精品一区二区三区免费看| 亚洲欧美成人综合另类久久久| 美女高潮的动态| 久久久久久九九精品二区国产| 欧美另类一区| 日本免费a在线| 国产av不卡久久| 热99在线观看视频| 26uuu在线亚洲综合色| 99热网站在线观看| 夫妻午夜视频| 亚洲精品色激情综合| 日韩制服骚丝袜av| 91午夜精品亚洲一区二区三区| 日韩伦理黄色片| 精品欧美国产一区二区三| 国产成人a区在线观看| 亚洲av成人精品一二三区| 久热久热在线精品观看| 国产精品无大码| 午夜激情福利司机影院| 国产精品综合久久久久久久免费| 在线免费十八禁| 精品熟女少妇av免费看| 午夜免费激情av| 国产黄片美女视频| 好男人视频免费观看在线| 色综合色国产| 亚洲精品影视一区二区三区av| 国产精品99久久久久久久久| 国产精品女同一区二区软件| 80岁老熟妇乱子伦牲交| 91久久精品国产一区二区三区| 免费黄频网站在线观看国产| 我的女老师完整版在线观看| 天堂影院成人在线观看| 亚洲综合色惰| videos熟女内射| 搡女人真爽免费视频火全软件| 青春草国产在线视频| 亚洲激情五月婷婷啪啪| 午夜激情欧美在线| 国产亚洲5aaaaa淫片| 最近的中文字幕免费完整| 两个人的视频大全免费| 成年人午夜在线观看视频 | 大香蕉久久网| 免费大片黄手机在线观看| 亚洲色图av天堂| 午夜福利网站1000一区二区三区| 午夜日本视频在线| eeuss影院久久| 国产精品三级大全| 一级毛片久久久久久久久女| 久久韩国三级中文字幕| 性插视频无遮挡在线免费观看| 啦啦啦啦在线视频资源| 国产精品人妻久久久久久| 日本猛色少妇xxxxx猛交久久| 天堂网av新在线| 国产精品一区二区三区四区久久| 亚洲三级黄色毛片| 97在线视频观看| 一级毛片aaaaaa免费看小| 亚洲熟妇中文字幕五十中出| 亚洲丝袜综合中文字幕| 国国产精品蜜臀av免费| 午夜免费男女啪啪视频观看| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 欧美性感艳星| 九草在线视频观看| videossex国产| 久久久久久久久久人人人人人人| 午夜福利视频1000在线观看| 国产高潮美女av| 国产淫片久久久久久久久| 成人毛片a级毛片在线播放| 午夜精品在线福利| 边亲边吃奶的免费视频| 国产黄色视频一区二区在线观看| 男人舔奶头视频| 亚洲精品第二区| 午夜日本视频在线| 国产精品伦人一区二区| 亚洲av国产av综合av卡| 99热全是精品| 亚洲欧美日韩无卡精品| 午夜精品国产一区二区电影 | 亚洲av成人精品一二三区| 精品亚洲乱码少妇综合久久| 一级毛片 在线播放| 国产成人a区在线观看| 少妇的逼好多水| 亚洲av中文字字幕乱码综合| 我要看日韩黄色一级片| 伊人久久精品亚洲午夜| 日日干狠狠操夜夜爽| 国产毛片a区久久久久| 国产免费视频播放在线视频 | 在线免费十八禁| 亚洲激情五月婷婷啪啪| 婷婷色av中文字幕| 国内揄拍国产精品人妻在线| 精品人妻一区二区三区麻豆| 国产一区亚洲一区在线观看| 中文字幕av在线有码专区| av在线天堂中文字幕| 欧美人与善性xxx| 亚洲精品国产成人久久av| 少妇的逼水好多| 一级二级三级毛片免费看| 国产精品99久久久久久久久| 两个人视频免费观看高清| 国产精品伦人一区二区| 久久久成人免费电影| 久久久精品欧美日韩精品| 日本一二三区视频观看| 特大巨黑吊av在线直播| 午夜视频国产福利| 中文字幕av在线有码专区| 在线天堂最新版资源| 国产成年人精品一区二区| 人妻系列 视频| 中文字幕久久专区| 国产有黄有色有爽视频| 日韩伦理黄色片| 在线天堂最新版资源| 中文字幕av成人在线电影| 亚洲美女视频黄频| 我要看日韩黄色一级片| 一区二区三区免费毛片| 一级av片app| 真实男女啪啪啪动态图| 麻豆久久精品国产亚洲av| 有码 亚洲区| 亚洲一区高清亚洲精品| 国产精品美女特级片免费视频播放器| 最近视频中文字幕2019在线8| 十八禁国产超污无遮挡网站| 亚洲成人中文字幕在线播放| 熟女人妻精品中文字幕| 黄色日韩在线| 嫩草影院精品99| 亚洲不卡免费看| 亚洲精品日韩在线中文字幕| 91精品伊人久久大香线蕉| 欧美潮喷喷水| 国产不卡一卡二| av女优亚洲男人天堂| 不卡视频在线观看欧美| 国产精品一区二区三区四区久久| 亚洲在线观看片| 欧美最新免费一区二区三区| 日本猛色少妇xxxxx猛交久久| 18禁动态无遮挡网站| 亚洲精品自拍成人| 亚洲va在线va天堂va国产| 天堂网av新在线| 黄片wwwwww| 毛片女人毛片| 精品少妇黑人巨大在线播放| 国产精品一区二区三区四区久久| 免费黄网站久久成人精品| 中文字幕av成人在线电影| videossex国产| 亚洲国产日韩欧美精品在线观看| 日韩不卡一区二区三区视频在线| 在线免费十八禁| av福利片在线观看| 亚洲欧洲日产国产| 99久久人妻综合| 国产精品福利在线免费观看| 在线观看免费高清a一片| 成人综合一区亚洲| 亚洲成人精品中文字幕电影| 久久6这里有精品| 成人午夜高清在线视频| 日本免费a在线| 非洲黑人性xxxx精品又粗又长| 国产午夜精品一二区理论片| 国内少妇人妻偷人精品xxx网站| 久久久精品欧美日韩精品| av在线老鸭窝| 亚洲自拍偷在线| 精品久久久精品久久久| 中文资源天堂在线| 免费av毛片视频| 99久久精品国产国产毛片| 一级毛片aaaaaa免费看小| 男人舔奶头视频| av在线播放精品| 晚上一个人看的免费电影| 少妇高潮的动态图| 亚洲欧美成人综合另类久久久| 免费观看无遮挡的男女| 嘟嘟电影网在线观看| 熟女电影av网| 精华霜和精华液先用哪个| 26uuu在线亚洲综合色| 好男人在线观看高清免费视频| 国产成人一区二区在线| 搡女人真爽免费视频火全软件| 亚洲欧美清纯卡通| 亚洲无线观看免费| 一边亲一边摸免费视频| 99久久人妻综合| 日韩欧美 国产精品| 亚洲av电影在线观看一区二区三区 | 爱豆传媒免费全集在线观看| 性色avwww在线观看| 国产成人a区在线观看| 亚洲激情五月婷婷啪啪| 偷拍熟女少妇极品色| 最近最新中文字幕大全电影3| 日韩av在线免费看完整版不卡| 久久久精品欧美日韩精品| 免费黄色在线免费观看| 日韩在线高清观看一区二区三区| 神马国产精品三级电影在线观看| 久久99热这里只有精品18| 男女视频在线观看网站免费| 国产久久久一区二区三区| 亚洲人成网站在线观看播放| 国产女主播在线喷水免费视频网站 | 一级爰片在线观看| 午夜福利在线观看免费完整高清在| 亚洲av电影在线观看一区二区三区 | 亚洲成人精品中文字幕电影| 插阴视频在线观看视频| 一级毛片aaaaaa免费看小| 26uuu在线亚洲综合色| 国产精品伦人一区二区| 亚洲自拍偷在线| 成人二区视频| 久久99精品国语久久久| 亚洲精品第二区| 91久久精品电影网| 亚洲国产最新在线播放| 国产黄片美女视频| 免费观看无遮挡的男女| 岛国毛片在线播放| 免费观看无遮挡的男女| .国产精品久久| 18禁裸乳无遮挡免费网站照片| 美女脱内裤让男人舔精品视频| 久久久色成人| 成人毛片a级毛片在线播放| a级毛色黄片| 亚洲精品成人久久久久久| 欧美 日韩 精品 国产| 亚洲伊人久久精品综合| 91精品一卡2卡3卡4卡| 亚洲精品影视一区二区三区av| 欧美区成人在线视频| 亚洲最大成人手机在线| 成年女人看的毛片在线观看| 国产老妇伦熟女老妇高清| 精品人妻偷拍中文字幕| 国产成人aa在线观看| freevideosex欧美| 三级毛片av免费| 亚洲激情五月婷婷啪啪| 51国产日韩欧美| 亚洲av中文av极速乱| 国产亚洲一区二区精品| 亚洲欧美成人综合另类久久久| 精品一区二区三卡| 亚洲欧洲日产国产| 久久久久免费精品人妻一区二区| 18禁在线播放成人免费| 日韩,欧美,国产一区二区三区| 日本爱情动作片www.在线观看| 大香蕉久久网| 一级毛片我不卡| 精品熟女少妇av免费看| 国产美女午夜福利| 日产精品乱码卡一卡2卡三| 中文字幕制服av| 一级毛片 在线播放| 日韩欧美一区视频在线观看 | 亚洲av成人精品一二三区|