• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Couple stress fluid flow in a rotating channel with peristalsis *

    2018-05-14 01:43:10AbdelmaboudSaraAbdelsalamKhMekheimer
    水動力學研究與進展 B輯 2018年2期

    Y. Abd elmaboud , Sara I. Abdelsalam , Kh. S. Mekheimer

    1. Mathematics Department, Faculty of Science and Arts, Khulais, University Of Jeddah, Jeddah, Saudi Arabia.

    2. Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt

    3. Department of Mechanical Engineering, University of California, Riverside, USA

    4. Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt

    5. Basic Science Department, Faculty of Engineering, The British University in Egypt, Cairo, Egypt

    Introduction

    The theory of the couple stress (CS) fluid was first proposed by Stokes[1]in 1966. In this theory Stokes introduced the rotational field in terms of the velocity field for setting up the constitutive relationship between the stress and strain rates. Stokes microcontinuum theory allows for polar effects such as the presence of couple stresses, body couples and a nonsymmetric stress tensor.

    Peristaltic transport is one of the important topics that attracts scientific researchers in bio fluid mechanics branch. Peristaltic transport is a physical mechanism for the flow induced by the traveling wave. This mechanism is found in the body of living creatures,and it frequently occurs in organs such as ureter,intestines and arterioles (small arteries). The mechanism of peristaltic transport has also been found in the industry. There are many industrial applications that involve peristaltic transport, some of which, sanitary fluid transport, blood pumps in heart lung machine,and transport of corrosive fluids where the contact of the fluid with the machinery parts is prohibited. The first investigation of peristaltic transport was done by Latham[2]. Recently, considerable attention has been devoted to the problem of peristaltic transport with Newtonian or non-Newtonian fluid in channel or a tube[3-16].

    In most mathematical models there are some difficulties to achieve the exact solution. Homotopy analysis method (HAM) ( homotopy perturbation method (HPM) is a special case) is a new analytical technique that employs a transformation procedure which reduces the involved partial differential equations into ordinary differential equations. Series solutions of the resulting systems are constructed. The convergence of the obtained series solutions is seen through graphical results and tabular values. The method gives flexibility in the choice of basic functions for the solution and for the linear inversion operators (when compared with the Adomian decomposition method), while still retaining a simplicity that makes the method easily understandable from the standpoint of general perturbation methods. This method has been first introduced by Liao[17,18].Recently, many authors[19-22]have used HPM in a wide variety of scientific and engineering applications.

    Motivated by these ideas, the goal of this investigation is to study the couple stress fluid flow in a rotating channel with peristalsis. The governing equations are modeled and reduced to a simple form using the long wavelength approximation then solved using the HPM. The analyses for the velocity, pressure gradient, flow rate due to secondary velocity, and the pressure rise have been discussed for various values of the problem parameters.

    1. Formulation of the problem and mathematical model

    Consider a two-dimensional infinite channel filled with homogeneous incompressible couple stress fluid. We assume that the channel rotates with a constant angular speed Ω, about theZ′-axis. The flow is induced by sinusoidal wave trains propagating with constant speedc, along the channel walls (see Fig.1). The geometry of the wall surface is defined as

    whereais the half-width of the channel,bis the wave amplitude, λ is the wavelength andt′ is the time. With regard to the rotating frame the fluid velocity vector is given byV′= (U′(X′,Z′,t′),V′(X′,Z′,t′),W′(X′,Z′,t′)), whereU′,V′ andW′ are the velocity components inX′,Y′ andZ′, respectively. Introducing the wave frame (x′,y′,z′) that moves with velocitycaway from the fixed frame(X′,Y′,Z′). We employ the transformation:

    where (u′,v′,w′) are the velocity components in the wave frame, alsop′ andP′ are the pressures in the wave and fixed frames respectively.

    The governing equations for the couple stress fluid, taking into account the rotating frame, will be in the form:

    where ρ is the density, μ is the fluid viscosity, η is the couple stress fluid parameter,p′ =p′*-ρΩ2(x′2+y′2) /2 is the modified pressure andp′*is hydrostatic pressure.

    Fig.1 Geometry of the problem

    Assuming the components of the couple stress tensor are all zero at the wall[1,23], the corresponding non-slip boundary conditions will be:

    Consider the following non-dimensional variables and parameters:

    whereReis the Reynolds number, δ is the dimensionless wave number, γ (γ>0) is the couple stress fluid parameter indicating the ratio of the channel width (which is constant) to the material characteristic length (since1/2(η/ )μ, has the dimension of length), φ is the amplitude ratio andTrepresents Taylor’s number.

    Using the dimensionless variables and parameters given by Eq. (8), together with the stream function ψ(x,z) (such thatu= ψz,w=-δψx), the continuity Eq. (3) is identically satisfied and Eqs.(4)-(6) become:

    We define the instantaneous volume flow rate in the fixed frame as follows

    whereH′ is function ofX′,t′.

    The rate of volume flow in the wave frame is given by

    whereh′ is function ofx′ alone. Hence, the two rates of volume flow are related through

    The time mean flow over a period τ at a fixed positionxis defined as

    substituting (14) into (15), and integrating, we get

    We define the dimensionless time-mean flows θ andFin the fixed and wave frame as:

    one finds that (16) may be written as

    where

    Under lubrication approach (negligible inertiaRe→ 0 and long wavelength δ?1), the Eqs. (9)-(11) reduce to

    The corresponding boundary conditions will be

    2. Solution methodology

    Equation (22) shows that the pressurepis not a function ofz. Further,py=0 because the secondary flow is caused by the rotation only. Differentiating Eq. (20) with respect tozand taking into account the above note, one finds that

    and Eq. (21) will be in the form

    To solve Eqs. (24), (25) with the corresponding boundary conditions (23), we are going to use the powerful homotopy perturbation method. The homotopy equation for the given problem is defined as:

    whereq∈ [0,1] is the embedded parameter, and L1and L2are the linear operators that are assumed to be L1=?6/?z6and L2=?4/?z4. We define the initial guess as:

    where

    Now we describe Substituting the above equation into Eqs. (26),(27) and then taking the terms of order zero, one, and two, we obtain the following models along with the corresponding boundary conditions:

    Zeroth-order

    with the corresponding boundary conditions

    The solution of the zeroth order system can be obtained by using Eqs. (28), (29) and is directly written as

    First-order

    with the corresponding boundary conditions

    The solutions of the above linear ordinary differential equations are found as

    Second-order

    with the corresponding boundary conditions

    The solutions of this order is very large so we omit it from the text. We substitute the values of0ψ,1ψ and2ψ andv0,v1andv2in Eqs. (30), (31),respectively. Now forq→1, we approach the final solutions.

    The secondary flow is an indication for the rotating frame in most cases. The physical quantities of interest, such as the dimensionless flow rateF2,due to secondary velocity and the pressure rise Δpare defined, respectively, as:

    The shear stress at the wallwτ, after implementing the long wavelength approximation and taking into consideration that the couple stress value vanishes at the wall, will be in the form

    3. Quantitative investigation

    In this section, theoretical estimates of different physical quantities that are of relevance to the fluid problem have been obtained on the basis of the present study. We investigate novelties brought about by the introduction of Taylor’s numberT, which is due to rotation of channel about thez-axis, and couple stress parameter γ into the model. Particularly, we discuss their effects on the longitudinal velocity distributionu, pressure gradient dp/dx,pressure rise per wavelength Δp, and on the dimensionless flow rate due to secondary velocityF2. The formation of a bolus of fluid which is presented by a snapshot of flow field characteristic streamlines enclosing the pattern is also investigated. For this purpose, the following data that are valid in the physiological range[1,3,7,24]have been used: γ=0.01-3.00,T=0-7, θ= -1 .5-1.5 and φ=0.4-0.6.

    3.1 Distribution of velocity

    The variations ofTand γ on the longitudinal velocity distributionuhave been portrayed and investigated in this subsection. Figures 2, 3 are constructed to serve this purpose. As shown in Fig.2,the couple stress parameter γ enhances the longitudinal flow velocity and is almost constant within the range 0≤z≤0.2, after which it has a decreasing effect onu. It is obvious that forz≥0.2,udecreases with the variation ofzfor a fixed value of γ. For large values of γ (i.e., move to Newtonian fluid), the longitudinal velocityuincreases in the center region of the fluid layer and decreases near to the wavy walls. Figure 3 elucidates thatuincreases with an increase inTuntil it reaches the center of the channel where the trend is reversed. It is also concluded thatuhas smaller values in the absence of the inertial forces due to rotation till it reaches the center of the channel, where the trend is reversed.Generally, it is obvious thatuattains its maximum value and stays constant over a certain range ofz(0 ≤z≤ 0.2) after which it begins to decrease rapidly.Thus, this considerable increase inu, due to rotation,near the lower wall supports the motion at that zone.Finally, the longitudinal velocity for the rotating fluid is higher than that for non rotating one (T=0). The curves that describe the variation ofufor various values of γ are qualitatively similar to those of Fig.2.

    Fig.2 The longitudinal velocity distribution u,across the channel with different values of T at x=0.2, θ=1.5, γ=3.0 and φ=0.4

    3.2 Pumping behaviour

    Fig.3 The longitudinal velocity distribution u,across the channel with different values of γ at x=0.2,θ=1.5, T=4 and φ=0.4

    Fig.4 Variation of pressure gradient versus x with different values of T for fixed φ=0.4, θ=-1.5 and γ=2.0

    The pumping characteristics can be determined through the variation of time averaged flux with difference in pressure across one wave length. It is known that if the flow is steady in the wave frame, the instantaneous pressure difference between two stations one wave length apart is a constant. Since the pressure gradient is a periodic function of (Z-t), pressure rise per wave length Δpis equal to λ times the time-averaged pressure gradient. The graph is sectored so that the region in which the pressure difference vanishes, Δp=0, is regarded to as the free pumping zone, while the region where Δp>0 (adverse pressure gradient) and θ>0 (positive pumping) is said to be the peristaltic pumping zone where the peristalsis of the walls overcomes the resistance of the pressure and assists the fluid of flow. When Δp>0 and θ<0, the region is known as retrograde or backward pumping where the flux of fluid is opposite to the wave propagation. The situation when Δp<0(favorable pressure gradient) and θ>0 (positive pumping) corresponds to the so-called co-pumping or augmented zone where the pressure difference amplifies the flow. Figures 4, 5 present the variations of dp/dxfor different values ofTand γ where it is noticed that the pressure gradient has a periodic nature. One may observe from Fig.4 that in the range of values of Taylor’s number examined in the present study, the pressure gradient is weakly affected byTin the narrow region of the channel, nevertheless, it has a decreasing effect on the wider region where, it over the ranges of 0 ≤x≤ 0.35 and 0.6≤x≤1,approximately. Generally, the pressure gradient attains its maximum value at the narrow region of the channel from where it decreases rapidly as we go to the wider parts. Figure 5 elucidates that dp/dxis strongly affected by γ which has a decreasing effect on it. It is noticed that the maxima of pressure gradient curve decreases rapidly with an increase in γ. The variations of Δpwith θ for various values ofTand γ are presented in Fig.6. It is seen from the graph that Δpand θ are inversely proportional to each other. Further, Fig.6 shows that upon increasingTand γ, Δpdecreases in the retrograde pumping till a certain value in the peristaltic pumping region after which the pumping rate will increase by increasingTand γ in both, the peristaltic and co-pumping regions. It is observed that the pumping region (Δp>0) decreases with an increase inTfor fixed values of γ. It is also observed that the maximum pressure against which peristalsis works as a positive displacement pump (that is, Δpfor θ=0) decreases for large value ofT(=5). It appears that for the case γ =2, free pumping is independent ofT, but this is not true as seen from the enlargement ofTshown in figure. In contrast, if one keeps increasingT, Δpbecomes negative for most of the positive values of θ. Thus, forT=5, the free pumping is not independent ofT. Hence, for a fluid in a frame rotating with large angular speed, pressure does not rise against the direction of the peristaltic wave. It implies that the pressure assists the flow in such a case.In fact, the rotation of the channel produces a negative secondary component of the velocity which, in turn, is responsible for Coriolis force acting on the fluid in the positivey-direction. This force pulls the fluid outwards and thus, reduces the pressure rise. It is interesting to note that the lines for different values ofTintersect in the region Δp>0. On the other hands,it is noticed from Fig.6 that the pumping region decreases with increasing the values of γ for fixed values ofT. It is also observed that the maximum pressure against which peristalsis works as a positive displacement pump decreases with increasing γ. It appears that free pumping is not independent of γ.Also, if one keeps increasing γ , Δpbecome negative for most of the positive values of θ and the pressure assists the flow. It is interesting to note that the lines for different values of γ intersect in the region Δp<0.

    Fig.5 Variation of pressure gradients versus x with different values of γ for fixed φ=0.4, θ=-1.5 and T=0

    Fig.6 Variation of pressure rises over the length versus θ with different values of couples tress parameter γ and Taylor’s number T at φ=0.4

    Fig.7 The dimensionless flow rates due to secondary velocity F2 for different values of T with φ=0.6, γ=1.0 and θ=-0.2

    3.3 Dimensionless flow rate due to secondary velocity

    Figures 7, 8 are plotted so as to study the behavior of dimensionless flow rate due to secondary velocity withxfor various values of the concerned parameters. The caseT=0 corresponds to flow rate in the absence of centrifugal forces i.e., the inertial forces due to rotation of channel about thez-axis. It is evident thatF2vanishes when the rotation of channel disappears. For θ=-0.2, it is noticed thatF2is positive in the narrow part of the channel,otherwise, it is negative. It is observed thatThas an increasing effect onF2except over the ranges 0.2≤x≤0.8 and 1.2≤x≤1.8 where the behavior is reversed. Moreover, as the value ofTincreases,F2becomes positive over the whole wavelength of the channel. Figure 8 depicts the influence of couple stress parameter γ onF2for θ=-0.2. It is revealed thatF2is positive over the whole wavelength of the channel for all values of γ. Yet, γ has an increasing effect onF2except for the ranges ofxthat are between 0.2 to 0.8 and 1.2 to 1.8 where the trend reverses.

    Fig.8 The dimensionless flow rates due to secondary velocity F2 for different values of γ with φ=0.6, T=2 and θ=-0.2

    3.4 Streamlines and trapping

    Trapping is an important aspect of peristaltic motion. It occurs when streamlines on the central line are split to enclose a bolus of fluid particles circulating along closed streamlines in the wave frame of reference. Then the fluid particles contained in the bolus move at a mean speed of advance equal to the wave propagation speed, whereas the remaining fluid has a smaller mean speed of advance. Under the purview of the present study, Figs. 9, 10 give an insight into the changes in the patterns of streamlines and trapping that occur due to changes in the values of different parameters governing the flow in the wave frame of reference. Figure 9 illustrates the influence of the rotation of channel on the trapping phenomenon.The caseT=0 corresponds to trapping in the absence of rotation. Here, we observe that the trapped bolus exists about the center streamline. However, the number of closed streamlines circulating the bolus gets raised as we move towards higher values of flow field rotation parameter (increase the values ofT=0,2,5). It is also noticed that the effect ofTis to enhance the area (size) of the trapped bolus with a tendency to move towards the boundary asTincreases. Yet, for small values ofT(=2), there is not much difference in the area trapped bolus compared with that of the absence of rotation case. This phenomenon is useful in understanding the movement of the food bolus in the gastrointestinal tract and the formation of thrombus in blood. Streamlines for various values of the of couple stress parameter γ are depicted in Fig.10. This figure indicates that the occurrence of trapping is strongly influenced by the value of γ. With an increase in γ (move to Newtonian fluid), the bolus is found to appear in a distinct manner and it is observed that the number of closed streamlines circulating the bolus increases.

    Fig.9 Streamlines for different values of Taylor’s number T,with fixed values of θ=-1.0, φ=0.4 and γ=2.0

    3.5 Distribution of wall shear stress

    Fig.10 Streamlines for different values of couple stress parameter γ, respectively, with fixed values of θ=1.0,φ= 0.4 and T=0

    It is very interesting to note that for fluids in microcontinuum (couple stress fluids, micropolar fluids,dipolar fluids, etc.), stress tensor is not symmetric. It is known that the stress tensor for a couple stress fluid contains a symmetric and asymmetric parts. And since there are vanishing components of the couple stress tensor at the channel walls, the stress tensor at the wall will have the symmetric part only. Figures 11, 12 display the variation of the symmetric part of the wall shear stress with thex-axis for different values of the couple stress parameter γ and the rotation parameterT. The figures show that the wall shear stress behave just as the wall sinusoidal wave. Further,there exists two peaks in the shear stress distribution,over the rangex=0-2, with a gradual ramp in between. However, the negative peak of the wall shear stress τminis not as large as the maximum wall shear stress, τmax. The transition from τminto τmaxof the wall shear stress takes place in some zone between the minimum and maximum width of the channel.Moreover, an increase in the couple stress parameter γ (i.e., moves towards a Newtonian fluid) and in the rotation parameterTleads to a slight variation in the wall shear stress and this variation is obvious in the bottom area of the wall shear stress wave. However,this variation increases as the rotation parameter increases and is reduced by moving towards a Newtonian fluid (γ take large values ).

    Fig.12 Wall shear stress wτ versus x with different values of γ at T=0, φ=0.4 and θ=0.5

    4. Concluding remarks

    In this study, we investigate the peristaltic flow of a non-Newtonian couple stress fluid in a rotating frame of reference under the long wavelength assumption. The resulting equations are solved, using the powerful HPM, for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The main findings can be summarized as follows:

    (1) Taylor’s number and the couple stress parameter have an increasing effect onutill half of the channel from where the behavior is reversed.

    Fig.11 Wall shear stress wτ versus x with different values of T at γ=2.0 , φ=0.4 and θ=0.2

    (2) The pressure gradient, dp/dx, has a periodic nature under the influence of both,Tand γ.

    (3) The couple stress parameter strongly affects dp/dxcausing it to decrease, unlikeTwhich weakly affects it.

    (4) The pressure rise, Δp, decreases in the retrograde pumping till a certain value in the peristaltic pumping region after which the pumping rate will increase by increasingTand γ in the peristaltic and co-pumping regions.

    (5) Free pumping is dependent on high values ofTand on γ in which the pressure does not rise against the direction of the peristaltic wave and hence,assists the flow.

    (6) BothTand γ have an increasing effect on the flow rate due to secondary velocity,F2, over certain range ofx.

    (7) AsTand γ increase, number of closed streamlines circulating the bolus increases.

    (8) The results for the Newtonian incompressible fluid in a rotating frame can be recovered for large values of γ[24].

    (9) The shear stress profiles is not significantly disturbed by the numerical value of γ orTin the narrow parts in the channel.

    (10) In the absence ofT, our results perfectly match with the results computed on the basis of our study of peristaltic flow of couple stress fluid in the absence of heat transfer in a fixed frame[23].

    [1] Stokes V. K. Couple stress fluid [J].Physics of Fluids,1966, 9(9): 1709-1715.

    [2] Latham T. W. Fluid motion in a peristaltic pump [D].Master Thesis, Massachusetts, USA: Massachusetts Institute of Technology, 1966.

    [3] Noreen S. A., Wahid B. A. Physiological transportation of casson fluid in a plumb duct [J].Communications in Theoretical Physics, 2015, 63(3): 347-352.

    [4] Abd elmaboud Y. Thermomicropolar fluid flow in a porous channel with peristalsis [J].Journal of Porous Media, 2011, 14(11): 1033-1045.

    [5] Abd elmaboud Y., Mekheimer Kh. S. Non-linear peristaltic transport of a second-order fluid through a porous medium [J].Applied Mathematical Modelling, 2011, 35(6):2695-2710.

    [6] Noreen S. A., Wahid B. A. Heat transfer analysis for the peristaltic flow of herschel-bulkley fluid in a nonuniform inclined channel [J].Zeitschrift Für Naturforschung A,2015, 70(1): 23-32.

    [7] Noreen S. A. Application of Eyring-Powell fluid model in peristalsis with nano particles [J].Journal of Computational and Theoretical Nanosciences, 2015, 12(1): 94-100.

    [8] Ellahi R., Bhatti M. M., Riaz A. et al. The effects of magnetohydrodynamics on peristaltic flow of Jeffrey fluid in a rectangular duct through a porous medium [J].Journal of Porous Media, 2014, 17(2): 143-157.

    [9] Hayat T., Asfar A., Khana M. et al. Peristaltic transport of a third order fluid under the effect of a magnetic field [J].Computers and Mathematics with Applications, 2007,53(7): 1074-1087.

    [10] Mekheimer Kh. S., Husseny S. Z. A., Abd elmaboud Y.Effects of heat transfer and space porosity on peristaltic flow in a vertical asymmetric channel [J].Numerical Methods for Partial Differential Equations, 2010, 26(4):747-770.

    [11] Ellahi R., Bhatti M. M., Vafai K. Effects of heat and mass transfer on peristaltic flow in a non-uniform rectan- gular duct [J].International Journal of Heat and Mass Transfer,2014, 71(4): 706-719.

    [12] Mekheimer Kh. S., Abdel maboud Y. Peristaltic flow of a couple stress fluid in an annulus: Application of an endoscope [J].Physica A, 2008, 387(11): 2403-2415.

    [13] Hayat T., Wang Y., Siddiqui A. M. et al. Peristaltic transport of a third order fluid in a circular cylindrical tube [J].MathematicalModels and Methods in Applied Sciences,2002, 12(12): 1691-1706.

    [14] Hayat T., Wang Y., Siddiqui A. M. et al. Peristaltic transport of an Oldroyd-B fluid in a planar channel [J].Mathematical Problems in Engineering, 2004, 2004(4):347-376.

    [15] Nadeem S., Riaz A., Ellahi R. et al. Heat and mass transfer analysis of peristaltic flow of nanofluid in a vertical rectangular duct by using the optimized series solution and genetic algorithm [J].Computational and Theoretical Nanoscience, 2014, 11(4): 1133-1149.

    [16] Nadeem S., Riaz A., Ellahi R. Peristaltic flow of viscous fluid in a rectangular duct with compliant walls [J].Computational Mathematics and Modeling, 2014, 25(3):404-415.

    [17] Liao S. General boundary element method for non-linear heat transfer problems governed by hyperbolic heat conduction equation [J].Computational Mechanics, 1997,20(5): 397-406.

    [18] Liao S. Numerically solving nonlinear problems by the homotopy analysis method [J].Computational Mechanics,1997, 20(6): 530-540.

    [19] Ellahi R., Riaz A., Nadeem S. et al. Peristaltic flow of Carreau fluid in a rectangular duct through a porous medium [J].Mathematical Problems in Engineering, 2012,Article ID 329639.

    [20] Abd Elmaboud Y., Mekheimer Kh. S., Mohamed M. S.Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis [J].Journal of Hydrodynamics, 2015, 27(6): 969-979.

    [21] Saadatmandi A., Dehghan M., Eftekhari A. Application of He’s homotopy perturbation method for non-linear system of second-order boundary value problems [J].Nonlinear Analysis: Real World Applications, 2009, 10(3):1912-1922.

    [22] Mekheimer Kh. S., Abdelmaboud Y., Abdellateef A. I.Particulate suspension flow induced by sinusoidal peristaltic waves through eccentric cylinders: Thread annular[J].International Journal of Biomathematics, 2013, 6(4):1350026.

    [23] Abd elmaboud Y., Mekheimer Kh. S., Abdellateef A. I.Thermal properties of couple-stress fluid flow in an asymmetric channel with peristalsis [J].Journal of Heat Transfer, 2013, 135(4): 044502-1.

    [24] Ali N., Sajid M., Javed T. et al. Peristalsis in a rotating fluid [J].Scientific Research and Essays, 2012, 7(32):2891-2897.

    欧美日本中文国产一区发布| 一级片'在线观看视频| 高清视频免费观看一区二区| 精品福利观看| 国产精品一区二区在线观看99| 999精品在线视频| 欧美日韩视频高清一区二区三区二| 久久亚洲精品不卡| 亚洲午夜精品一区,二区,三区| 日本黄色日本黄色录像| 一本久久精品| 欧美精品av麻豆av| 一区二区av电影网| 久久精品国产亚洲av高清一级| 熟女av电影| 一级黄片播放器| 亚洲国产精品一区三区| 18禁裸乳无遮挡动漫免费视频| 人成视频在线观看免费观看| 国产成人一区二区在线| 欧美日韩黄片免| 亚洲欧美一区二区三区久久| xxx大片免费视频| 一区二区三区精品91| 亚洲人成77777在线视频| 日韩电影二区| 婷婷色av中文字幕| 天天躁日日躁夜夜躁夜夜| 久久国产精品人妻蜜桃| 国产麻豆69| 中文欧美无线码| 1024视频免费在线观看| 叶爱在线成人免费视频播放| 狠狠精品人妻久久久久久综合| 黄色毛片三级朝国网站| 午夜免费鲁丝| 久久精品久久精品一区二区三区| 99国产精品99久久久久| 国产片内射在线| 日本午夜av视频| 亚洲熟女精品中文字幕| 久久99精品国语久久久| 欧美精品人与动牲交sv欧美| 妹子高潮喷水视频| 又粗又硬又长又爽又黄的视频| 亚洲精品日韩在线中文字幕| 视频在线观看一区二区三区| 一级片免费观看大全| 国产伦人伦偷精品视频| 欧美日韩亚洲高清精品| 91精品伊人久久大香线蕉| 伦理电影免费视频| 又大又黄又爽视频免费| 国产欧美日韩综合在线一区二区| 精品国产乱码久久久久久小说| 亚洲激情五月婷婷啪啪| 老司机影院毛片| 美女高潮到喷水免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美日韩一区二区三区在线| 嫩草影视91久久| videos熟女内射| 亚洲精品国产区一区二| 啦啦啦在线观看免费高清www| 亚洲七黄色美女视频| 精品国产一区二区三区久久久樱花| 性高湖久久久久久久久免费观看| 国产无遮挡羞羞视频在线观看| 热99国产精品久久久久久7| 免费一级毛片在线播放高清视频 | 国产高清不卡午夜福利| 免费在线观看影片大全网站 | netflix在线观看网站| 亚洲国产欧美在线一区| 观看av在线不卡| 麻豆av在线久日| 成人亚洲精品一区在线观看| 久久毛片免费看一区二区三区| 丁香六月天网| 飞空精品影院首页| 一级黄色大片毛片| 99国产精品一区二区三区| av在线播放精品| 欧美少妇被猛烈插入视频| 99久久精品国产亚洲精品| 久久精品亚洲av国产电影网| 男女下面插进去视频免费观看| 久久久久视频综合| 成人手机av| 视频在线观看一区二区三区| 看十八女毛片水多多多| 午夜免费男女啪啪视频观看| 国产不卡av网站在线观看| 深夜精品福利| 久热爱精品视频在线9| 国语对白做爰xxxⅹ性视频网站| 99久久99久久久精品蜜桃| 国产免费一区二区三区四区乱码| 啦啦啦在线免费观看视频4| 男男h啪啪无遮挡| 久久精品亚洲熟妇少妇任你| 免费一级毛片在线播放高清视频 | 欧美精品av麻豆av| 国产亚洲午夜精品一区二区久久| 欧美精品av麻豆av| 首页视频小说图片口味搜索 | 自拍欧美九色日韩亚洲蝌蚪91| 男人操女人黄网站| 国产极品粉嫩免费观看在线| 国产精品亚洲av一区麻豆| 国产高清videossex| 色综合欧美亚洲国产小说| 婷婷色麻豆天堂久久| 久久久国产精品麻豆| 久久人妻福利社区极品人妻图片 | 可以免费在线观看a视频的电影网站| 啦啦啦在线观看免费高清www| 黑人欧美特级aaaaaa片| 丰满迷人的少妇在线观看| xxx大片免费视频| 男女高潮啪啪啪动态图| www.精华液| 日本vs欧美在线观看视频| 亚洲成国产人片在线观看| 搡老乐熟女国产| 精品少妇内射三级| 丝袜美足系列| 亚洲人成电影免费在线| 亚洲一码二码三码区别大吗| 色精品久久人妻99蜜桃| 午夜av观看不卡| 香蕉国产在线看| 亚洲欧美一区二区三区黑人| 亚洲九九香蕉| 久久国产精品大桥未久av| 黄色一级大片看看| 国产精品二区激情视频| 黄片小视频在线播放| 国产一卡二卡三卡精品| 国产成人一区二区在线| 青春草视频在线免费观看| 欧美av亚洲av综合av国产av| 每晚都被弄得嗷嗷叫到高潮| 欧美精品亚洲一区二区| 午夜福利视频精品| 国产av国产精品国产| 午夜免费鲁丝| 精品少妇久久久久久888优播| 国产日韩一区二区三区精品不卡| 午夜久久久在线观看| 亚洲欧洲日产国产| 国产精品免费大片| 国产一区亚洲一区在线观看| 男女边吃奶边做爰视频| 人人澡人人妻人| netflix在线观看网站| 国产精品 欧美亚洲| svipshipincom国产片| 十分钟在线观看高清视频www| 免费av中文字幕在线| 啦啦啦在线免费观看视频4| 免费日韩欧美在线观看| 中文乱码字字幕精品一区二区三区| 午夜福利影视在线免费观看| 狂野欧美激情性bbbbbb| 国产精品久久久久久精品古装| 亚洲欧美色中文字幕在线| 成年av动漫网址| 免费在线观看视频国产中文字幕亚洲 | 成年av动漫网址| avwww免费| 亚洲成色77777| 肉色欧美久久久久久久蜜桃| 91麻豆精品激情在线观看国产 | 老司机午夜十八禁免费视频| 国产亚洲精品第一综合不卡| 精品少妇内射三级| 真人做人爱边吃奶动态| 国产精品熟女久久久久浪| 一级黄片播放器| 精品国产超薄肉色丝袜足j| 婷婷成人精品国产| 欧美精品高潮呻吟av久久| 国产欧美日韩精品亚洲av| 欧美激情高清一区二区三区| 亚洲 国产 在线| 性色av一级| 999精品在线视频| 日本五十路高清| 亚洲熟女毛片儿| 丝袜脚勾引网站| 亚洲欧美激情在线| 国产一级毛片在线| 国产日韩欧美亚洲二区| 男女无遮挡免费网站观看| www.av在线官网国产| 色网站视频免费| 久久人妻熟女aⅴ| a级毛片在线看网站| 麻豆国产av国片精品| 18在线观看网站| 国产福利在线免费观看视频| 精品国产一区二区久久| 国产男人的电影天堂91| 国产熟女午夜一区二区三区| 亚洲欧洲国产日韩| 久久久久视频综合| 久久久精品94久久精品| 黄色a级毛片大全视频| 色播在线永久视频| 老司机深夜福利视频在线观看 | 精品第一国产精品| 国产成人a∨麻豆精品| 久久国产亚洲av麻豆专区| 一级毛片电影观看| 不卡av一区二区三区| 91字幕亚洲| 亚洲男人天堂网一区| 国产一区二区激情短视频 | 欧美+亚洲+日韩+国产| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成网站在线观看播放| 免费观看av网站的网址| 成年人黄色毛片网站| 大码成人一级视频| 午夜久久久在线观看| 日韩免费高清中文字幕av| 18禁观看日本| 国产成人一区二区在线| av视频免费观看在线观看| 少妇精品久久久久久久| 男女无遮挡免费网站观看| 捣出白浆h1v1| 日韩大码丰满熟妇| 黑人猛操日本美女一级片| av不卡在线播放| 真人做人爱边吃奶动态| 人人妻人人添人人爽欧美一区卜| 精品久久久精品久久久| 亚洲精品第二区| 黄色视频在线播放观看不卡| 久久精品国产a三级三级三级| 19禁男女啪啪无遮挡网站| 男人操女人黄网站| 人人澡人人妻人| 欧美精品亚洲一区二区| 亚洲专区中文字幕在线| 美女中出高潮动态图| 99国产综合亚洲精品| 男人操女人黄网站| 国产成人av教育| 精品少妇久久久久久888优播| 久久人人爽人人片av| 精品一品国产午夜福利视频| 最近中文字幕2019免费版| 最近中文字幕2019免费版| 看十八女毛片水多多多| 大话2 男鬼变身卡| 各种免费的搞黄视频| 午夜91福利影院| 少妇粗大呻吟视频| av在线app专区| 国产精品国产av在线观看| 人人妻人人澡人人爽人人夜夜| 国产黄色免费在线视频| 两人在一起打扑克的视频| 天堂8中文在线网| 免费日韩欧美在线观看| 国产爽快片一区二区三区| 少妇被粗大的猛进出69影院| 日韩熟女老妇一区二区性免费视频| 亚洲黑人精品在线| 日韩av免费高清视频| 亚洲国产精品一区三区| 黄色毛片三级朝国网站| 亚洲国产精品成人久久小说| 悠悠久久av| 国产主播在线观看一区二区 | 18禁裸乳无遮挡动漫免费视频| 黑人欧美特级aaaaaa片| 热99国产精品久久久久久7| 亚洲国产欧美日韩在线播放| 欧美日韩亚洲高清精品| 乱人伦中国视频| 中文字幕人妻丝袜一区二区| 亚洲av日韩在线播放| 一区在线观看完整版| 日本猛色少妇xxxxx猛交久久| 在线观看免费高清a一片| 亚洲欧美日韩另类电影网站| 国产亚洲精品第一综合不卡| 欧美人与善性xxx| 亚洲国产精品一区二区三区在线| 观看av在线不卡| 一级毛片电影观看| 日韩免费高清中文字幕av| 国产精品一二三区在线看| 日韩视频在线欧美| 1024视频免费在线观看| 亚洲综合色网址| 在线 av 中文字幕| 巨乳人妻的诱惑在线观看| 亚洲av电影在线进入| 久久精品亚洲av国产电影网| 国产高清videossex| 日韩免费高清中文字幕av| 丝袜在线中文字幕| 国产爽快片一区二区三区| avwww免费| a级毛片在线看网站| 波多野结衣一区麻豆| 校园人妻丝袜中文字幕| 一区二区三区激情视频| 欧美变态另类bdsm刘玥| 免费观看人在逋| 亚洲综合色网址| 99国产精品一区二区三区| 亚洲第一av免费看| 亚洲七黄色美女视频| 国产精品亚洲av一区麻豆| 国产片内射在线| 一级毛片我不卡| 一级a爱视频在线免费观看| 国产精品麻豆人妻色哟哟久久| 亚洲av日韩在线播放| 国产精品欧美亚洲77777| 97精品久久久久久久久久精品| 欧美变态另类bdsm刘玥| 岛国毛片在线播放| 亚洲精品日韩在线中文字幕| 激情五月婷婷亚洲| 欧美 亚洲 国产 日韩一| 黑人巨大精品欧美一区二区蜜桃| 国产一卡二卡三卡精品| 国产精品一国产av| 国产1区2区3区精品| 国产亚洲精品第一综合不卡| 99国产精品一区二区蜜桃av | 亚洲五月婷婷丁香| 中文字幕最新亚洲高清| 一级a爱视频在线免费观看| 午夜免费观看性视频| 后天国语完整版免费观看| 真人做人爱边吃奶动态| 国产亚洲av片在线观看秒播厂| 国产av精品麻豆| 最新在线观看一区二区三区 | 咕卡用的链子| 热re99久久精品国产66热6| 欧美日本中文国产一区发布| 久久这里只有精品19| 9191精品国产免费久久| 秋霞在线观看毛片| 亚洲精品一二三| 又大又爽又粗| 成人影院久久| 亚洲精品在线美女| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美清纯卡通| 老汉色∧v一级毛片| 午夜影院在线不卡| 久久天躁狠狠躁夜夜2o2o | 99久久人妻综合| 成人免费观看视频高清| 免费观看a级毛片全部| 50天的宝宝边吃奶边哭怎么回事| 精品少妇一区二区三区视频日本电影| 一区二区日韩欧美中文字幕| 日韩一本色道免费dvd| 久久ye,这里只有精品| 亚洲欧美激情在线| 久久天堂一区二区三区四区| 欧美日韩一级在线毛片| 久久久久久久久免费视频了| 国产精品一区二区精品视频观看| 亚洲av在线观看美女高潮| 色94色欧美一区二区| 国产伦人伦偷精品视频| 精品熟女少妇八av免费久了| 成人影院久久| 下体分泌物呈黄色| 中文字幕人妻丝袜一区二区| 国产成人91sexporn| 又黄又粗又硬又大视频| 青春草视频在线免费观看| 亚洲一码二码三码区别大吗| 制服人妻中文乱码| 男人舔女人的私密视频| cao死你这个sao货| 在线观看免费高清a一片| 精品亚洲成a人片在线观看| 交换朋友夫妻互换小说| 国产成人一区二区三区免费视频网站 | 日本av免费视频播放| 热re99久久国产66热| 午夜免费观看性视频| 观看av在线不卡| 老司机深夜福利视频在线观看 | 欧美日韩av久久| 黄片小视频在线播放| 精品国产乱码久久久久久小说| 久久久久久久久免费视频了| 九草在线视频观看| 国产熟女午夜一区二区三区| 一本久久精品| 成人午夜精彩视频在线观看| 国产国语露脸激情在线看| 男人爽女人下面视频在线观看| 人人妻人人爽人人添夜夜欢视频| 久久这里只有精品19| 超碰成人久久| 蜜桃在线观看..| 精品久久久久久电影网| 女性被躁到高潮视频| 热99久久久久精品小说推荐| 中文字幕人妻熟女乱码| 国产老妇伦熟女老妇高清| 国产欧美日韩精品亚洲av| 成年女人毛片免费观看观看9 | 国产女主播在线喷水免费视频网站| 国产成人一区二区三区免费视频网站 | 欧美另类一区| 在线亚洲精品国产二区图片欧美| 99re6热这里在线精品视频| 国产福利在线免费观看视频| 亚洲情色 制服丝袜| 国产精品久久久久久精品古装| 国产欧美日韩精品亚洲av| 日韩一卡2卡3卡4卡2021年| 亚洲国产精品成人久久小说| 人妻一区二区av| 国产国语露脸激情在线看| 亚洲精品一卡2卡三卡4卡5卡 | 日韩 亚洲 欧美在线| 亚洲精品美女久久久久99蜜臀 | 老汉色∧v一级毛片| 波野结衣二区三区在线| av又黄又爽大尺度在线免费看| 侵犯人妻中文字幕一二三四区| 一二三四社区在线视频社区8| 精品一区二区三区四区五区乱码 | 老汉色av国产亚洲站长工具| 欧美xxⅹ黑人| 久久久久精品国产欧美久久久 | 丁香六月欧美| avwww免费| 午夜老司机福利片| 国产精品国产三级国产专区5o| 叶爱在线成人免费视频播放| 久久热在线av| tube8黄色片| 免费高清在线观看视频在线观看| 亚洲av片天天在线观看| 国产午夜精品一二区理论片| 老司机午夜十八禁免费视频| 丰满饥渴人妻一区二区三| 少妇裸体淫交视频免费看高清 | 成人黄色视频免费在线看| 男人爽女人下面视频在线观看| 美女高潮到喷水免费观看| 欧美另类一区| 波多野结衣av一区二区av| av福利片在线| 亚洲欧美精品综合一区二区三区| 国产亚洲欧美在线一区二区| 国产亚洲欧美精品永久| 国产成人欧美| 亚洲七黄色美女视频| 久久青草综合色| 亚洲精品久久成人aⅴ小说| 久久这里只有精品19| 久久人人爽人人片av| 肉色欧美久久久久久久蜜桃| 久久精品久久精品一区二区三区| 欧美变态另类bdsm刘玥| 各种免费的搞黄视频| 黑人巨大精品欧美一区二区蜜桃| 中国美女看黄片| 欧美日韩国产mv在线观看视频| 亚洲,欧美精品.| av网站在线播放免费| 亚洲av成人不卡在线观看播放网 | 欧美激情高清一区二区三区| 久久青草综合色| 亚洲第一青青草原| 国产亚洲欧美精品永久| 午夜免费成人在线视频| 欧美日韩一级在线毛片| 久久久精品区二区三区| 国产女主播在线喷水免费视频网站| 一级毛片女人18水好多 | 女警被强在线播放| 亚洲专区国产一区二区| 日本a在线网址| 亚洲国产欧美网| 久久久久精品人妻al黑| 久久ye,这里只有精品| 久久亚洲精品不卡| av片东京热男人的天堂| 亚洲熟女毛片儿| 男女下面插进去视频免费观看| 精品高清国产在线一区| 亚洲国产精品999| 欧美日韩亚洲国产一区二区在线观看 | 日韩一本色道免费dvd| av国产久精品久网站免费入址| 1024香蕉在线观看| 18禁裸乳无遮挡动漫免费视频| 蜜桃国产av成人99| 久久久久久久久久久久大奶| 色播在线永久视频| 蜜桃在线观看..| 成年女人毛片免费观看观看9 | 校园人妻丝袜中文字幕| 日韩精品免费视频一区二区三区| av福利片在线| 亚洲欧美日韩另类电影网站| 国产有黄有色有爽视频| 精品国产乱码久久久久久小说| 夜夜骑夜夜射夜夜干| 欧美激情极品国产一区二区三区| 免费av中文字幕在线| 91成人精品电影| 欧美日韩视频精品一区| 日韩 亚洲 欧美在线| 狠狠婷婷综合久久久久久88av| 日本av手机在线免费观看| 免费看不卡的av| 亚洲精品国产一区二区精华液| av天堂在线播放| 69精品国产乱码久久久| 国产亚洲一区二区精品| 精品福利永久在线观看| 国产精品熟女久久久久浪| 国产熟女欧美一区二区| 国语对白做爰xxxⅹ性视频网站| 女人久久www免费人成看片| av一本久久久久| 国产xxxxx性猛交| 两人在一起打扑克的视频| 三上悠亚av全集在线观看| 一级片免费观看大全| 亚洲一区中文字幕在线| 国产成人精品久久久久久| 超碰成人久久| 狠狠婷婷综合久久久久久88av| 美国免费a级毛片| 国产精品av久久久久免费| 91精品国产国语对白视频| 久久鲁丝午夜福利片| 丰满迷人的少妇在线观看| 久久亚洲国产成人精品v| 国产日韩一区二区三区精品不卡| 久久亚洲国产成人精品v| 人人澡人人妻人| 老汉色av国产亚洲站长工具| 欧美日韩视频高清一区二区三区二| 亚洲第一青青草原| 9色porny在线观看| 国产精品二区激情视频| 50天的宝宝边吃奶边哭怎么回事| 宅男免费午夜| 欧美精品av麻豆av| 国产又色又爽无遮挡免| 一边亲一边摸免费视频| 国产成人系列免费观看| 黄色片一级片一级黄色片| 亚洲国产欧美日韩在线播放| 精品国产乱码久久久久久小说| 十八禁高潮呻吟视频| 久久久久久亚洲精品国产蜜桃av| www.自偷自拍.com| 日本wwww免费看| 精品人妻1区二区| 免费观看a级毛片全部| 一边摸一边抽搐一进一出视频| 狠狠婷婷综合久久久久久88av| 亚洲欧美清纯卡通| 美女脱内裤让男人舔精品视频| 王馨瑶露胸无遮挡在线观看| 国产高清不卡午夜福利| 人妻人人澡人人爽人人| 丝袜美腿诱惑在线| 超碰成人久久| 欧美xxⅹ黑人| 欧美精品亚洲一区二区| 国产精品 国内视频| 亚洲精品第二区| 男人操女人黄网站| 成人国产一区最新在线观看 | 欧美成人午夜精品| 亚洲色图 男人天堂 中文字幕| 免费在线观看影片大全网站 | 日本av手机在线免费观看| 日本黄色日本黄色录像| 久久 成人 亚洲| 国产av精品麻豆| 日本欧美国产在线视频| 高清黄色对白视频在线免费看| 国产精品久久久久久精品电影小说| 纵有疾风起免费观看全集完整版| 曰老女人黄片| 免费高清在线观看视频在线观看| 亚洲av综合色区一区| 视频区图区小说| 国产亚洲av片在线观看秒播厂| 欧美日韩亚洲国产一区二区在线观看 | 日本猛色少妇xxxxx猛交久久| 日韩精品免费视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| kizo精华| 黄色怎么调成土黄色| 国产亚洲欧美在线一区二区| netflix在线观看网站| 欧美xxⅹ黑人|