• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3D-QSAR Studies on 4-([1,2,4]Triazolo[1,5-α]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl)imidazole Analogues as Potent Inhibitors of Transforming Growth Factor-β Type I Receptor Kinase

    2018-05-11 11:20:35SUNLiQinMENGLiQingYANChoQunCUIDongXioMIAOJunQiuCHENJingRunLIANGTiGngLIQingShn
    結(jié)構(gòu)化學(xué) 2018年4期

    SUN Li-Qin MENG Li-Qing YAN Cho-Qun CUI Dong-Xio MIAO Jun-Qiu CHEN Jing-Run LIANG Ti-Gng, LI Qing-Shn,

    a (College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China)

    b (Shanxi University of Chinese Medicine, Taiyuan 030024, China)

    1 INTRODUCTION

    The transforming growth factor-β (TGF-β) is a critical member of TGF-β superfamily, which consists of TGF-β1, TGF-β2, TGF-β3, activins, inhibins and bone morphogenetic proteins (BMPs).These family members induce various effects and have been reported to control differentiation, proliferation, migration and apoptosis of many different cell types[1].They trigger signals bind to the complex of TGF-β receptors that are composed of two type I receptors and two type II receptors.Moreover, both of these receptors are serine/threonine kinase receptors[2].After the ligand binds to the constitutively active type II receptor, the type I receptor, also called activin receptor-like kinase 5 (ALK5), is phosphorylated, which further phosphorylates Smad2/Smad3 proteins. In the nucleus, phosphorylated Smad2/Smad3 proteins form a heteromeric complex with Smad4 binding other DNA-binding transcripttion factors as partners for TGF-β target genes recognition and transcriptional regulation[3].TGF-β plays an essential role in the initiation and developpment of fibrosis in kidney[4], heart[5], lung[6], and liver[7].Slight changes of TGF-β signaling have been also concerned with various diseases including cancer[8], pancreatic diseases[9]and hematological malignancies[10].Thus selecting ALK5 inhibitors might have preclinical and clinical potential for the treatment of related diseases.

    Nowadays, quantitative structure-activity relationship (QSAR) has been applied extensively in correlating molecular structural features with biological activities.In addition, QSAR models are ideal alternatives to replace or reduce experiments because of their higher efficiency and lower cost in many fields like toxicology[11], environmental science[12]and other fields[13,14].For instance, Qu et al.[12]revealed the main molecular descriptors controlling the degradation rate of different PFCAs species through theory-based calculations, which will provide useful information for future researches.

    Presently, three-dimensional quantitative structureactivity relationship (3D-QSAR) method has been applied broadly in correlating molecular structure features with biological activities and then could be helpful to more new chemical compounds’ synthesis and design[15].It can reflect spatial information between medicine and receptor and reveal the interaction mechanism more deeply.Generally speaking, the most common 3D-QSAR methods are comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA).CoMFA calculates steric and electrostatic properties according to Lennard-Jones and Coulomb potentials,while CoMSIA model includes five field descriptors such as hydrophobic, hydrogen bond donor, hydrogen-bond acceptor and two above-mentioned fields[16].CoMFA and CoMSIA have been widely used: Wu et al.[17]and Liu et al.[18]predicted the activities of compounds with CoMFA and CoMSIA methods and both of these models had certain predictive ability.

    In this study, a series of 4-([1,2,4]Triazolo[1,5-α]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl)imidazole and -thiazole derivatives has been synthesized and evaluated for their ALK5 inhibitory activity.Therefore, CoMFA and CoMSIA models were used to foresee activities of new compounds.The obtained models could be meaningful to identify the key structural features affecting the ALK5 inhibitory activities and consequently all the results would be useful in the design of novel ALK5 inhibitors.

    2 MATERIALS AND METHODS

    2.1 Dataset

    In the current work, 123 compounds used in 3D-QSAR studies were obtained from the literatures[1,3,19,20].The biological activities were expressed in IC50values and converted into pIC50values by using the formula pIC50= –logIC50.The structures of the compounds and their biological data are given in Table 1.Then, 95 compounds were randomly selected as the training set.External validation was performed with a test set of 28 compounds.

    Table 1. Structures and Biological Activities of the Training and Test Sets of Molecules

    ?

    ?

    ?

    ?

    2.2 Molecular modeling and alignment

    All molecular modeling and calculations for CoMFA and CoMSIA were using SYBYL package(SYBYL-X2.0, Tripos Inc., St.Louis, MO, USA) on windows operating system.The structures of all compounds were revealed in SYBYL and the energy minimization was performed using Tripos force field with a distance-dependent dielectric function and Powell conjugate gradient algorithm with a convergence criterion of 0.05 kcal/mol ? using 1000 iterations.Partial atomic charges were calculated using the Gastieger-Huckel method[21].

    Molecular alignments of the compounds is a vital step in 3D-QSAR studies[22].In the present work, the most potent compound 28 was used as the template and the remanent molecules in the training set were aligned to it by using the common substructure.Fig.1 describes the common substructure for the alignment which is marked in red and the aligned compounds are displayed in Fig.2.

    Fig.1. Chemical structure of compound 28 used as template molecule in 3D-QSAR modeling.The common substructure used for molecular alignments is represented in red

    Fi g.2.Alignment of 95 compounds of the training set for 3D-QSAR stu dies

    2.3 3D-QSAR mode ls studies

    In order tostatistically evaluate the3D-QSAR models,partialleast-squares(PLS)approachwas used.The CoMFA, CoMSIA descriptors wereused asindependent variablesand biologicalactivity(pIC50) asdependent variables in PLS analysis.The cross-validation analysiswasimplemented by the leave-one-out (LOO)method toobtain the highest cross-validated (q2)and the optimal number of components(N)which would beused todothe compute again to get Standard Error of Estimate, in addition to F and r squared values.

    3 RESULTS AND DI SCUSSION

    3.1 3D-QSAR statistical results

    Theresultsof PLSanalysiscorrelated with CoMFA and CoMSIA modelsare demonstrated in Table 2.The statistical parameters of CoMFA including a cross-validated correlation (q2)were0.652 with 6components.Thenon-cross-validated PLS analysisgenerated a highnon-cross-validated correlation coefficient (r2) of 0.876 with the F value of 103.363,anda standarderror estimate (SEE)of 0.106.These statisticalargumentsimplied that the CoMFA modelhas a good interior predictability.

    Tabl e 2.Statistic al Parameters of CoMFA an d CoMSIA Mo dels by PLS Analysis

    CoMSIA models were performed by five different fields: steric, electrostatic, hydrophobic, hydrogenbond donor and acceptor in multiple combinations.After clarifying every single CoMSIA field, the model with single electrostatic field was low (< 0.5),conversely both steric, hydrophobic, hydrogen-bond donor and acceptor fields are fundamental on CoMSIA study.The model with steric, electrostatic,hydrophobic, hydrogen-bond acceptor was selected based on an overall consideration, which gave a q2value of 0.648 using 6 components with an r2value of 0.884, a SEE value of 0.102, and an F value of 111.392.Both models with AHS (A = hydrogen-bond acceptor, H = hydrophobic, S = steric) and HSE (H =hydrophobic, S = steric, E = electrostatic) gave similar q2value of 0.549 among diverse field combinations.

    3.2 Validation of models

    In the present work, the external test set of 28 molecules excluded in model generation was used to assess the predictive ability of both models.The actual activities, predicted activities and residuals of all set compounds are shown in Table 4.In both CoMFA and CoMSIA models, the predicted values fell close to the actual values, deviating by not more than 1.0 logarithmic unit.Fig.3 shows the plots of experimental versus predicted activities for both training and test sets of the two constructed QSAR models.

    Table 3. Results of CoMSIA Models Based on Different Field Combinations (Final CoMSIA Model in Bold)

    Table 4. Experimental Activities, Predicted Activities and Residual Values of 123 ALK5 Inhibitors Shown in CoMFA and CoMSIA Models

    ?

    ?

    Fig.3. Plots of the experimental pIC50 versus predicted pIC50 for CoMFA (A) and CoMSIA (B)

    3.3 CoMFA contour maps

    In the CoMFA model, the proportion of steric field contribution occupies 84.8%, while the contribution of electrostatic field only accounts for 15.2% in the whole variance, which suggested the steric field was vital in explaining the variations of these compounds.

    Fig.4(A) shows the steric contour map for the CoMFA model with the most active compound 28 as the reference.The green contours in CoMFA steric map indicate areas where bulky groups would increase the potency, while yellow contours indicate areas where bulky groups would be unfavorable to the activity.There is a yellow contour located near the 3- and 4-positions of E ring.It can explain well why compounds 40~42 which possessed a relative bulkier group on this region showed significantly decreased activities compared with compound 38.For instance, compound 41 bearing a -OCF3group at the 4-position of E ring indicated decreased potential activity than compound 38 with a -Me group.The same phenomenon was observed that the comparison among compounds 99, 100 and 101 turns out that 99(pIC50= 8.058) > 100 (pIC50= 7.614) > 101 (pIC50=7.215) which contain groups -Me, -OMe and -OCF3,respectively.On the contrary, there is a large green contour around the E ring, which means a bulkier group is highly favorable to the biological activity at this area.After checking up all molecules by these groups, it was found that compounds 68, 70 and 71 have an activity order of 71 (pIC50= 7.658) > 70(pIC50= 7.444) > 68 (pIC50= 7.319).It can also explain why compounds 64 and 72 showed lower activities: 64 (pIC50= 7.244), 72 (pIC50= 7.108).

    The CoMFA contour map of electrostatic is shown in Fig.4(B).Similarly, in the electrostatic field, the blue contours indicate areas where the addition of electropositive substituent increases the activity; red contours indicate areas where the addition of electronegative substituent increases the activity.In CoMFA electrostatic contour, onelarge red contour surrounded E ring showed that electron-rich in this area will increase the inhibitory activity.It may be for the reason that compounds 85 (pIC50= 8.035), 87(pIC50= 8.115) and 88 (pIC50= 7.967) have higher biological activities with electron-withdrawing groupssuch as-F,-CNand -CONH2.Meanwhile,this is in agreement with the fact that compounds 5(pIC50= 8.046), 6 (pIC50= 8.155), 28 (pIC50= 8.301)and 29 (pIC50=8.046)showed more potency.It is also a possiblereason why compounds 39, 40 and 50 which containe lectropo sitive groups-i–Pr,-OMe and -NHCOMe on the E ring have decreased activity than compound 36which containselectroneg ative group -Cl at this area.

    Fig.4.CoMFA stdev*coeff contour plots for steric (A) and electrostatic (B) fields.Compound 28 was displayed as reference.Sterically favored/disfavored areas are shown in green/yellow, while the blue/red polyhedra depict the favorable site for positively/negatively chargedgroups.Favored and disfavored levels of these displayedinteraction fields were fixedat 80% and 20%, respectively

    3.4 CoMSIA contour maps

    Compared to standard CoMFA,four contributors obtained by CoMSIAstudies including steric,electrostatic,hydrophobicand hydrogen-bond acceptor fields arepresented as3D contourplots in Fig.5.In CoMSIAstudy, the contributionsfrom steric,electrostatic,hydrophobic and hydrogen-bond acceptor fields for the present models are 28.7%, 5.9%, 31.8%and 33.6%,respectively.Fig.5(A)describesthe steric andelectrost aticcontour maps of the CoMSIA models.These conclusions are similar to the CoMFA ones.

    The hydrophobiccontour mapof theCoMSIA model in the presence of compound 28 is displayed in Fig.5(B).The whiteand yellow contour maps highlightareas where hydrophilicand hydrophobic properties are preferred.One moderate yellowcontour was observed around the E ring of the C-3 and C-4 positions, which means that hydrophobic groups are necessary to improve biological activity.It is also supportedby the factthat compounds 35~37with hydrophobic substituents (-F, -Cl, -Br)at the paraposition of theE ring exhibit potent activity, whereas compound 45with ahydrophilicsubstituent(-CONH2) of the C-4 position displayslow activity.Meanwhile,compounds13(pIC50=7.854)and 27(pIC50=7.921)have better potent activity with hydrophobic group (-CH=CH2) than compound 15(pIC50= 7.523) with -CONH2except for compound 29(pIC50= 8.046).On theother hand,thereare several white contours located below the E ring, thus displacement of benzenewith the pyridine ring maybe increases the potency.

    The hydrogen-bond acceptor contour map of the CoMSIA model with compound 28isdepicted in Fig.5(C).The magenta contours identified favorable positions in the hydrogen-bond acceptor field, while the red ones identified the unfavorable positions.A red contour near the E ring of the C-4 position indicatesthat hydrogen-bond acceptorgroupsare unfavorable there.This finding can account for the fact that compounds 45 (pIC50= 7.260), 48 (pIC50=7.108) and 49 (pIC50=7.409) showed less activity by the introduction of hydrogen-bond acceptor groups-CONH2,-CO2Me and -NHCOMe.Several magenta contours werefound above the D ring, which can explain that most compounds with pyridinyl substituent could exhibit high ALK5 inhibitory activities.

    4 CON CLUSION

    In this work, CoMFA and CoMSIA model swere developed for a seriesof 4-([1,2,4]triazolo[1,5-α]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl)imidazole analogues as ALK5 inhibitors.The cross-validated q2and non-cross-validated r2of CoMFA and CoMSIA are 0.652and 0.648, 0.876 and 0.884, respectively.The predictive ability of the models was manifested in trivial residues between actual pIC50and predicted pIC50values of the test compounds.The contour mapsderived from CoMFA and CoMSIA models indicated that activity sitesof these compounds were 3-and 4-positions of E ring.Overall, the CoMSIA model described better herein than CoMFA, which implied different contributions of steric,electrostatic,hydrophobic and H-bond acceptor fields around the molecules.In addition, the3D-QSAR contour maps provided enough information tounderstand the structure-activity relationshipof thesecompounds,and further guided the design and chemical synthesis ofnovel ALK5inhibitors.

    REFERENCES

    (1) Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Lee, H.J.; Park, S.J.; Sheen, Y.Y.; Kim, D.K.4-([1,2,4]Triazolo[1,5-α]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl) imidazole and -pyrazole derivatives as potent and selective inhibitors of transforming growth factor-βtype Ⅰ receptor kinase.Bioorg.Med.Chem.2014, 22, 2724?2732.

    (2) Travis, M.A.; Sheppard, D.TGF-βactivation and function in Immunity.Annu.Rev.Immunol.2014, 32, 51?82.

    (3) Krishnaiah, M.; Jin, C.H.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Son, D.H.; Park, H.J.; Kim, S.W.; Sheen, Y.Y.; Kim, D.K.Synthesis and biological evaluation of 2-benzylamino-4(5)-(6-methylpyridin-2-yl)-5(4)-([1,2,4]triazolo[1,5-α]-pyridin-6-yl)thiazoles as transforming growth factor-βtype 1 receptor kinase inhibitors.Eur.J.Med.Chem.2012, 57, 74?84.

    (4) Wang, W.; V.Koka, V.; Lan, H.Y.Transforming growth factor-beta and Smad signalling in kidney diseases.Nephrology2005, 10, 48?56.

    (5) Lim, H.; Zhu, Y.Z.Role of transforming growth factor-beta in the progression of heart failure.Cell.Mol.Life Sci.2006, 63, 2584?2596.

    (6) Gu, L.; Zhu, Y.J.; Yang, X.; Guo, Z.J.; Xu, W.B.; Tian, X.L.Effect of TGF-β/Smad signalling pathway on lung myofibroblast differentiation.Acta Pharmacol.Sin.2007, 28, 382?391.

    (7) Shek, F.W.; Benyon, R.C.How can transforming growth factor beta be targeted usefully to combat liver fibrosis?Eur.J.Gastroenterol.Hepatol.2004, 16, 123?126.

    (8) Bierie, B.; Moses, H.L.Tumor microenvironment: TGF-beta: the molecular Jekyll and Hyde of cancer.Nat.Rev.Cancer.2006, 6, 506?520.

    (9) Rane, S.G.; Lee, J.H.; Lin, H.M.Transforming growth factor-beta pathway: role in pancreas development and pancreatic disease.Cytokine Growth Factor Rev.2006, 17, 107?119.

    (10) Dong, M.; Blobe, G.C.Role of transforming growth factor-beta in hematologic malignancies.Blood.2006, 107, 4589?4596.

    (11) Wang, X.D.; Tang, S.L.; Liu, S.S.; Cui, S.H.; Wang, L.S.Molecular hologram derived quantitative structure-property relationships to predict physico-chemical properties of polychlorinated biphenyls.Chemosphere2003, 51, 617?632.

    (12) Qu, R.J.; Liu, J.Q.; Li, C.G.; Wang, L.S.; Wang, Z.Y.; Wu, J.C.Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids.Water Res.2016, 104, 34?43.

    (13) Qu, R.J.; Liu, H.X.; Feng, M.B.; Yang, X.; Wang, Z.Y.Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones.J.Chem.Eng.Data2012, 57, 2442?2455.

    (14) Dai, Y.; Shi, J.Q.; Zheng, Q.; Wang, Z.Y.Thermodynamic properties and relative stability of polyhydroxylated dibenzo-pdioxins calculated by density functional theory.Chin.J.Struc.Chem.2011, 30, 354?361.

    (15) Zhao, X.; Chen, M.; Huang, B.; Ji, H.; Yuan, M.Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis(CoMSIA) studies onα1A-adrenergic receptor antagonists based on pharmacophore molecular alignment.Int.J.Mol.Sci.2011, 12, 7022?7037.

    (16) Verma, J.; Khedkar, V.M.; Coutinho, E.C.3D-QSAR in drug design-a review.Curr.Top.Med.Chem.2010, 10, 95?115.

    (17) Wu, Y.; Wang, F.Y.; Yu, H.X.; Wang, Z.Y.; Wang, L.S.3D-QSAR study on the inhibitory activity of flavonoids on PIM-1 kinase.Chin.J.Struc.Chem.2010, 29, 1147?1154.

    (18) Liu, H.X.; Shi, J.Q.; Liu, H.; Wang, Z.Y.Improved 3D-QSPR analysis of the predictive octanoleair partition coefficients of hydroxylated and methoxylated polybrominated diphenyl ethers.Atmos.Environ.2013, 77, 840?845.

    (19) Krishnaiah, M.; Jin, C. H.; Sheen, Y. Y.; Kim, D. K. Synthesis and biological evaluation of 5-(fluoro-substituted-6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-α]-pyridin-6-yl) imidazoles as inhibitors of transforming growth factor-βtype Ⅰ receptor kinase.Bioorg.Med.Chem.2015, 25, 5228?5231.

    (20) Jin, C.H.; Krishnaiah, M.; Sreenu, D.; Subrahmanyam, V.B.; Rao, K.S.; Lee, H.J.; Park, S.J.; Park, H.J.; Lee, K.; Sheen, Y.Y.; Kim, D.K.Discovery of N-((4-([1,2,4]Triazolo[1,5-α]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-βtype Ⅰ receptor Kinase as cancer immunotherapeutic/antifibrotic agent.J.Med.Chem.2014, 57, 4213?4238.

    (21) Aparoy, P.; Suresh, G.K.; Kumar, R.K.; Reddanna, P.CoMFA and CoMSIA studies on 5-hydroxyindole-3-carboxylate derivatives as 5-lipoxygenase inhibitors: generation of homology model and docking studies.Bioorg.Med.Chem.Lett.2011, 21, 456?462.

    (22) Hawkins, D.M.; Basak, S.C.; Mills, D.Assessing model fit by cross-validation.J.Chem.Inf.Comp.Sci.2003, 43, 579?586

    (23) Derynck, R.; Zhang, Y.E.Smad-dependent and Smad-independent pathways in TGF-βfamily signalling.Nature2003, 425, 577?584.

    (24) Derynck, R.; Muthusamy, B.P.; Saeteurn, K.Y.Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition.Curr.Opin.Cell.Biol.2014, 31, 56?66.

    (25) Massague, J.TGF-βsignalling in context.Nat.Rev.Mol.Cell.Biol.2012, 13, 616?630.

    亚洲av成人精品一区久久| 色播亚洲综合网| 国产精品三级大全| av视频在线观看入口| 男人的好看免费观看在线视频| 啦啦啦啦在线视频资源| 如何舔出高潮| 午夜久久久久精精品| 久久亚洲国产成人精品v| 成年版毛片免费区| 成人毛片60女人毛片免费| 亚洲av中文av极速乱| 国产成人91sexporn| 91aial.com中文字幕在线观看| 黄色一级大片看看| 寂寞人妻少妇视频99o| 日韩精品青青久久久久久| 精品国产三级普通话版| 久久久久久伊人网av| 麻豆国产97在线/欧美| 免费观看人在逋| 男女下面进入的视频免费午夜| 在线观看一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 国产免费又黄又爽又色| 午夜视频国产福利| 欧美激情久久久久久爽电影| 国产av码专区亚洲av| 免费观看在线日韩| 免费看a级黄色片| 亚洲av男天堂| 嫩草影院新地址| 成人性生交大片免费视频hd| 国产一级毛片在线| 看黄色毛片网站| 国语自产精品视频在线第100页| 夫妻性生交免费视频一级片| 网址你懂的国产日韩在线| 男女啪啪激烈高潮av片| 亚洲精品日韩在线中文字幕| 哪个播放器可以免费观看大片| 特大巨黑吊av在线直播| 女人被狂操c到高潮| 直男gayav资源| 啦啦啦韩国在线观看视频| 黄色一级大片看看| 国产 一区精品| 国国产精品蜜臀av免费| 毛片女人毛片| 99久久人妻综合| 中国美白少妇内射xxxbb| 午夜福利网站1000一区二区三区| 精品一区二区免费观看| 久久6这里有精品| 国产麻豆成人av免费视频| 男女那种视频在线观看| 国产精品一区二区在线观看99 | 三级经典国产精品| 97人妻精品一区二区三区麻豆| 一级毛片电影观看 | 中文字幕av在线有码专区| 国产一级毛片七仙女欲春2| 国产成人免费观看mmmm| 69av精品久久久久久| 又爽又黄无遮挡网站| 亚洲人成网站在线观看播放| 色网站视频免费| 日韩欧美精品v在线| 亚州av有码| 亚洲国产精品成人综合色| 日韩 亚洲 欧美在线| 国产av一区在线观看免费| 国产伦在线观看视频一区| 成人毛片60女人毛片免费| 少妇丰满av| 欧美性感艳星| 欧美色视频一区免费| 如何舔出高潮| 欧美高清成人免费视频www| 高清午夜精品一区二区三区| 日韩欧美精品v在线| 亚洲国产欧美人成| 国语对白做爰xxxⅹ性视频网站| 久久草成人影院| 看片在线看免费视频| 熟女电影av网| 深夜a级毛片| 欧美性猛交黑人性爽| 一本一本综合久久| 亚洲成人久久爱视频| 色视频www国产| 日韩欧美国产在线观看| 啦啦啦观看免费观看视频高清| 免费看光身美女| 三级国产精品欧美在线观看| 欧美bdsm另类| 舔av片在线| 69av精品久久久久久| 中文天堂在线官网| 国产一区二区三区av在线| 久久人人爽人人爽人人片va| 观看美女的网站| 亚洲综合精品二区| 最近的中文字幕免费完整| 99久久人妻综合| 97超碰精品成人国产| 免费观看在线日韩| 国产不卡一卡二| 亚洲五月天丁香| 国产精品永久免费网站| 三级国产精品欧美在线观看| 国产精品精品国产色婷婷| 免费看日本二区| 亚洲av二区三区四区| 丰满人妻一区二区三区视频av| 国产亚洲精品久久久com| 联通29元200g的流量卡| 男人舔奶头视频| 免费观看人在逋| 内地一区二区视频在线| 精品熟女少妇av免费看| 中文字幕熟女人妻在线| 中文字幕免费在线视频6| 插逼视频在线观看| 亚洲国产欧美人成| 中文字幕亚洲精品专区| 欧美三级亚洲精品| 国产一区二区亚洲精品在线观看| 婷婷色av中文字幕| 人体艺术视频欧美日本| 国产一区二区亚洲精品在线观看| 99久国产av精品| 亚洲成人av在线免费| 精品午夜福利在线看| 热99re8久久精品国产| 国产伦一二天堂av在线观看| www.色视频.com| 日本欧美国产在线视频| 18+在线观看网站| 日本五十路高清| 国产亚洲午夜精品一区二区久久 | 久久热精品热| 国产成人精品婷婷| 亚洲欧美清纯卡通| 亚洲av电影不卡..在线观看| 国产精品乱码一区二三区的特点| 亚洲精品,欧美精品| av在线天堂中文字幕| 成人鲁丝片一二三区免费| 国产在视频线在精品| 欧美最新免费一区二区三区| 日韩欧美精品v在线| 久久久久久国产a免费观看| 国产精品久久久久久精品电影小说 | 午夜激情福利司机影院| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久成人| 久久热精品热| 国产私拍福利视频在线观看| 日韩欧美国产在线观看| 国产精品电影一区二区三区| 国产精品一区二区三区四区免费观看| 亚洲国产欧洲综合997久久,| 成人鲁丝片一二三区免费| av天堂中文字幕网| 国产成人福利小说| 如何舔出高潮| 日本黄大片高清| 99九九线精品视频在线观看视频| 尤物成人国产欧美一区二区三区| 亚洲av中文av极速乱| 欧美激情在线99| 一级爰片在线观看| 国产真实伦视频高清在线观看| 欧美成人a在线观看| 亚洲丝袜综合中文字幕| 最新中文字幕久久久久| 国产美女午夜福利| av天堂中文字幕网| 乱人视频在线观看| 亚洲国产精品国产精品| 只有这里有精品99| 美女cb高潮喷水在线观看| 亚洲精华国产精华液的使用体验| 婷婷六月久久综合丁香| 欧美xxxx性猛交bbbb| 国产精品国产高清国产av| 中文精品一卡2卡3卡4更新| 99热这里只有是精品在线观看| 国产白丝娇喘喷水9色精品| 亚洲国产欧洲综合997久久,| 国产精品蜜桃在线观看| 永久免费av网站大全| 日韩成人av中文字幕在线观看| 国产大屁股一区二区在线视频| 男女啪啪激烈高潮av片| 插阴视频在线观看视频| 久久久久久久久久成人| 高清av免费在线| 超碰97精品在线观看| 熟女电影av网| 一夜夜www| 久久人妻av系列| 久久99精品国语久久久| 毛片女人毛片| 国产精品.久久久| 国产国拍精品亚洲av在线观看| 久久久国产成人精品二区| 在线天堂最新版资源| 国产高清国产精品国产三级 | 99在线人妻在线中文字幕| 如何舔出高潮| 日韩av在线免费看完整版不卡| 欧美激情在线99| 美女被艹到高潮喷水动态| 久久久久精品久久久久真实原创| 午夜激情欧美在线| 日本免费在线观看一区| 岛国在线免费视频观看| 可以在线观看毛片的网站| 欧美bdsm另类| 麻豆精品久久久久久蜜桃| 成人亚洲欧美一区二区av| 日本wwww免费看| 性插视频无遮挡在线免费观看| 欧美成人免费av一区二区三区| 看黄色毛片网站| 亚洲激情五月婷婷啪啪| a级毛片免费高清观看在线播放| 最近的中文字幕免费完整| 赤兔流量卡办理| 波多野结衣高清无吗| 噜噜噜噜噜久久久久久91| 啦啦啦啦在线视频资源| 内射极品少妇av片p| 五月伊人婷婷丁香| 一个人观看的视频www高清免费观看| 亚洲美女搞黄在线观看| 亚洲成人av在线免费| 国产欧美另类精品又又久久亚洲欧美| 国产精品嫩草影院av在线观看| 联通29元200g的流量卡| 亚洲激情五月婷婷啪啪| videossex国产| 欧美日本视频| 一边亲一边摸免费视频| 高清在线视频一区二区三区 | 久久久久网色| 免费av不卡在线播放| 激情 狠狠 欧美| 日本一本二区三区精品| 日本wwww免费看| 久久99热6这里只有精品| 亚洲电影在线观看av| av在线播放精品| 小蜜桃在线观看免费完整版高清| 97超视频在线观看视频| 国产精品久久电影中文字幕| 人人妻人人澡欧美一区二区| 简卡轻食公司| 国产熟女欧美一区二区| 国产成人a∨麻豆精品| 91精品一卡2卡3卡4卡| 亚州av有码| 精品久久久久久成人av| 久久99蜜桃精品久久| 欧美色视频一区免费| 亚洲成色77777| 免费大片18禁| 美女被艹到高潮喷水动态| 亚洲综合色惰| 欧美高清性xxxxhd video| 神马国产精品三级电影在线观看| 一本一本综合久久| 熟女电影av网| videossex国产| 日韩国内少妇激情av| 久久久久久久午夜电影| 99热精品在线国产| 五月玫瑰六月丁香| 色尼玛亚洲综合影院| 国产真实伦视频高清在线观看| 熟女人妻精品中文字幕| 大话2 男鬼变身卡| 国产在视频线精品| 欧美日韩综合久久久久久| 少妇裸体淫交视频免费看高清| 啦啦啦观看免费观看视频高清| 日韩制服骚丝袜av| 精品99又大又爽又粗少妇毛片| 波多野结衣高清无吗| 国产精品熟女久久久久浪| 亚洲经典国产精华液单| 欧美zozozo另类| 日韩成人伦理影院| 丰满乱子伦码专区| 一级毛片aaaaaa免费看小| 七月丁香在线播放| 又爽又黄a免费视频| 精华霜和精华液先用哪个| 免费黄色在线免费观看| 日韩一本色道免费dvd| 亚洲欧美清纯卡通| 波野结衣二区三区在线| 99久久无色码亚洲精品果冻| 少妇熟女aⅴ在线视频| 综合色av麻豆| 久久久欧美国产精品| 五月玫瑰六月丁香| 国产日韩欧美在线精品| 免费av毛片视频| 特大巨黑吊av在线直播| av国产免费在线观看| 麻豆av噜噜一区二区三区| 午夜福利高清视频| 麻豆成人午夜福利视频| 两个人的视频大全免费| 久久久国产成人免费| 最近中文字幕2019免费版| 色播亚洲综合网| 内射极品少妇av片p| 亚洲最大成人av| 秋霞伦理黄片| 97在线视频观看| 中文字幕久久专区| 亚洲国产欧美在线一区| 精品久久久噜噜| 最近最新中文字幕免费大全7| 亚洲图色成人| 免费av毛片视频| 蜜桃久久精品国产亚洲av| 免费观看a级毛片全部| 久久精品国产亚洲网站| 只有这里有精品99| 亚洲一区高清亚洲精品| 亚洲乱码一区二区免费版| 99热全是精品| 自拍偷自拍亚洲精品老妇| 少妇人妻精品综合一区二区| 日韩精品青青久久久久久| 成人性生交大片免费视频hd| 天天躁夜夜躁狠狠久久av| 亚洲国产色片| 久久久久久九九精品二区国产| 中文乱码字字幕精品一区二区三区 | 日韩欧美 国产精品| 亚洲欧美清纯卡通| 日本黄大片高清| 2021少妇久久久久久久久久久| 老司机影院毛片| 亚洲五月天丁香| 国产白丝娇喘喷水9色精品| 69av精品久久久久久| 成人高潮视频无遮挡免费网站| 免费大片18禁| 日本熟妇午夜| 丝袜美腿在线中文| 人人妻人人澡人人爽人人夜夜 | 久久久久网色| 午夜福利高清视频| 99热6这里只有精品| 午夜福利高清视频| 一级黄片播放器| 午夜日本视频在线| 久久99热6这里只有精品| 亚洲真实伦在线观看| 国产中年淑女户外野战色| 国内少妇人妻偷人精品xxx网站| 久久久色成人| 久久久亚洲精品成人影院| 在线免费十八禁| 国产女主播在线喷水免费视频网站 | 免费在线观看成人毛片| av在线观看视频网站免费| a级毛色黄片| 亚洲精品久久久久久婷婷小说 | 我的老师免费观看完整版| 亚洲最大成人手机在线| 1000部很黄的大片| 免费黄色在线免费观看| 日韩欧美精品v在线| 成人二区视频| 成人国产麻豆网| 亚洲精品乱码久久久v下载方式| 国内揄拍国产精品人妻在线| 日韩欧美国产在线观看| 亚洲av成人av| 国产色婷婷99| a级毛片免费高清观看在线播放| 午夜免费男女啪啪视频观看| 成人漫画全彩无遮挡| 欧美人与善性xxx| 天美传媒精品一区二区| 欧美不卡视频在线免费观看| 日韩高清综合在线| 1000部很黄的大片| 99热全是精品| 精品久久久久久久久亚洲| 一卡2卡三卡四卡精品乱码亚洲| 少妇被粗大猛烈的视频| 国产在视频线在精品| 婷婷色综合大香蕉| 最近的中文字幕免费完整| 高清午夜精品一区二区三区| 免费大片18禁| 久久精品国产亚洲av天美| 亚洲精品自拍成人| 一边摸一边抽搐一进一小说| 搞女人的毛片| 久久久久久国产a免费观看| 乱码一卡2卡4卡精品| 91av网一区二区| 非洲黑人性xxxx精品又粗又长| 精品熟女少妇av免费看| 六月丁香七月| 国产探花极品一区二区| 床上黄色一级片| 精品人妻一区二区三区麻豆| 婷婷色综合大香蕉| 人妻系列 视频| 精品一区二区三区人妻视频| 欧美成人a在线观看| 国产探花极品一区二区| 国产精品爽爽va在线观看网站| 精品久久久噜噜| 99久久精品热视频| 亚洲精品456在线播放app| 欧美又色又爽又黄视频| 亚洲国产精品成人久久小说| 你懂的网址亚洲精品在线观看 | 女人久久www免费人成看片 | 日韩精品青青久久久久久| 韩国高清视频一区二区三区| 久久精品国产自在天天线| 国产av一区在线观看免费| 国产欧美另类精品又又久久亚洲欧美| 精品久久久久久久人妻蜜臀av| 舔av片在线| 人妻制服诱惑在线中文字幕| videossex国产| 亚洲av日韩在线播放| 午夜激情欧美在线| 黄片wwwwww| av黄色大香蕉| 国产亚洲午夜精品一区二区久久 | 联通29元200g的流量卡| 一级二级三级毛片免费看| 国产精品国产高清国产av| 一级毛片我不卡| 成人毛片60女人毛片免费| 99热全是精品| 亚洲av成人精品一二三区| 丝袜喷水一区| 国产精品爽爽va在线观看网站| 久久精品国产亚洲av涩爱| 亚洲五月天丁香| 国产免费福利视频在线观看| 三级国产精品片| 少妇丰满av| 十八禁国产超污无遮挡网站| 欧美一区二区国产精品久久精品| 熟妇人妻久久中文字幕3abv| 午夜老司机福利剧场| 亚洲av日韩在线播放| 久久久久性生活片| 草草在线视频免费看| 久久人妻av系列| 久久久久久国产a免费观看| 伦精品一区二区三区| 国产精品久久久久久av不卡| 亚洲精品aⅴ在线观看| 99热这里只有是精品在线观看| 久久久久精品久久久久真实原创| 又黄又爽又刺激的免费视频.| 少妇的逼好多水| 亚洲,欧美,日韩| 欧美成人一区二区免费高清观看| 精品人妻偷拍中文字幕| 中文字幕制服av| 97超视频在线观看视频| 国产亚洲精品av在线| 国产免费视频播放在线视频 | 长腿黑丝高跟| 亚洲在久久综合| 18禁裸乳无遮挡免费网站照片| 丝袜美腿在线中文| 成年女人看的毛片在线观看| 国产视频内射| 国产伦精品一区二区三区视频9| 精品久久久噜噜| 深爱激情五月婷婷| 欧美区成人在线视频| 51国产日韩欧美| 黄片wwwwww| 久久久精品大字幕| 成人漫画全彩无遮挡| .国产精品久久| 久99久视频精品免费| 亚洲精品成人久久久久久| 国产综合懂色| 国产精品爽爽va在线观看网站| 欧美不卡视频在线免费观看| 在线免费十八禁| 哪个播放器可以免费观看大片| 久久人妻av系列| 乱人视频在线观看| 小说图片视频综合网站| 最近2019中文字幕mv第一页| 免费播放大片免费观看视频在线观看 | 亚洲欧美日韩卡通动漫| 精品熟女少妇av免费看| 啦啦啦啦在线视频资源| 丰满人妻一区二区三区视频av| 日韩欧美在线乱码| 欧美成人一区二区免费高清观看| 亚洲精品自拍成人| 色尼玛亚洲综合影院| 国国产精品蜜臀av免费| 三级经典国产精品| 久久精品夜色国产| 精品久久久久久电影网 | 丝袜美腿在线中文| 午夜福利高清视频| 蜜桃久久精品国产亚洲av| 九色成人免费人妻av| 岛国毛片在线播放| 久久久国产成人免费| 日本午夜av视频| 亚洲三级黄色毛片| 女人十人毛片免费观看3o分钟| 麻豆久久精品国产亚洲av| 嘟嘟电影网在线观看| 亚洲欧美成人综合另类久久久 | 91在线精品国自产拍蜜月| 亚洲欧美精品自产自拍| 国产精品伦人一区二区| 国产亚洲91精品色在线| 国产毛片a区久久久久| 亚洲欧美日韩高清专用| eeuss影院久久| 中文字幕人妻熟人妻熟丝袜美| 激情 狠狠 欧美| 99视频精品全部免费 在线| a级毛色黄片| 99久久中文字幕三级久久日本| 久久亚洲国产成人精品v| 久久久久九九精品影院| 亚洲成人精品中文字幕电影| 国产成人精品一,二区| 日本爱情动作片www.在线观看| 精品一区二区三区人妻视频| 中文字幕亚洲精品专区| 国产一区二区亚洲精品在线观看| 亚洲成色77777| 少妇熟女欧美另类| 99久久中文字幕三级久久日本| 亚洲性久久影院| 日本欧美国产在线视频| 少妇被粗大猛烈的视频| 看片在线看免费视频| videossex国产| 国产亚洲5aaaaa淫片| 国产亚洲av片在线观看秒播厂 | 久久午夜福利片| 只有这里有精品99| 天堂网av新在线| 99国产精品一区二区蜜桃av| 精品人妻偷拍中文字幕| 国产在视频线在精品| 综合色丁香网| 中文天堂在线官网| 国产精品永久免费网站| 18禁在线播放成人免费| 人妻夜夜爽99麻豆av| 蜜桃久久精品国产亚洲av| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久电影| 免费看av在线观看网站| 久久人人爽人人爽人人片va| 久久久久久久久久久免费av| 日韩一区二区三区影片| av又黄又爽大尺度在线免费看 | 乱人视频在线观看| 天堂中文最新版在线下载 | 岛国在线免费视频观看| 91午夜精品亚洲一区二区三区| 99久久人妻综合| 久久综合国产亚洲精品| 边亲边吃奶的免费视频| 蜜桃久久精品国产亚洲av| 我要看日韩黄色一级片| 寂寞人妻少妇视频99o| 蜜桃久久精品国产亚洲av| 青春草亚洲视频在线观看| 国产成人精品久久久久久| 99久国产av精品| 欧美性猛交黑人性爽| 欧美三级亚洲精品| 久久久久久久国产电影| 久久久精品欧美日韩精品| 亚洲第一区二区三区不卡| 成年av动漫网址| 美女xxoo啪啪120秒动态图| 国产女主播在线喷水免费视频网站 | 国产日韩欧美在线精品| 卡戴珊不雅视频在线播放| 神马国产精品三级电影在线观看| 日本一本二区三区精品| 91久久精品国产一区二区成人| 国产亚洲5aaaaa淫片| 联通29元200g的流量卡| 成人无遮挡网站| 亚洲精品成人久久久久久| 欧美高清成人免费视频www| 美女cb高潮喷水在线观看|