• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Redistribution Mechanism of Chloromethylsilanes Catalyzed by HZSM-5 with Big and Small Apertures①

    2018-05-11 11:20:38XUWenYunLIXioYnYANGMeiYANGShoMingFANGZhiLiHONGSnGuo
    結(jié)構(gòu)化學(xué) 2018年4期

    XU Wen-Yun LI Xio-Yn YANG Mei YANG Sho-Ming FANG Zhi-Li HONG Sn-Guo

    a (College of Materials Science and Engineering,East China Jiaotong University, Nanchang 330013, China)

    b (College of Chemistry, Nanchang University, Nanchang 330031, China)

    1 INTRODUCTION

    Organosilicone has been widely used in many fields for its electronic insulation, anti-radiation,temperature resistance and corrosion resistance[1,2].In addition, it has myriad forms to meet a wide range of industrial needs.(CH3)2SiCl2is the most important monomer that affects the development of organosilicone[3-5].In this regard, many techniques have been reported for the synthesis of (CH3)2SiCl2.Though the reported techniques are found suitable for the synthesis, it suffers from the residual problems of CH3SiCl3and (CH3)3SiCl[6-8].To tackle the issue some researchers prepared (CH3)2SiCl2by catalytic disproportionation using CH3SiCl3and(CH3)3SiCl as precursors, which can be economic and resolve the residual problems[9-11].However, the selection of disproportionation catalyst is in dire need[13].Tan et al[12]synthesized mesoporous MCM-type catalysts with amine by co-condensation to produce (CH3)2SiCl2with a 38.3% yield.Ao et al[13]produced (CH3)2SiCl2catalyzed by the bentonite after H2SO4activation.It is noticed that the HZSM-5 has a lot of cross-channel structure and abundant active protons (H) with identical properties on the surface[14-17].Hence, HZSM-5 as an acid catalyst is effective for these disproportionation and redistribution reactions[18-20].In our recent work, it was found that the surfaces of 3 T and 5 T cluster HZSM-5 had good catalytic activity towards the disproportionation production of (CH3)2SiCl2[21,22].This work deals the application of '7T HZSM-5 with small aperture' and '24T HZSM-5 with large aperture' for the disproportionation production of (CH3)2SiCl2.As per the guess 24T HZSM-5 with large aperture would be good for the disproportionation reaction compared to 7T HZSM-5 with small aperture due to the certain molecular volume of silane monomers.In order to support it, in this paper, we investigated the catalytic mechanism of HZSM-5 with two separate apertures of 24 T and 7 T.

    2 METHODOLOGY

    Fig.1 shows the optimized models of 7 T and 24 T cluster HZSM-5.Before optimization of 24 T and 7 T cluster HZSM-5, H atoms are used to saturate the dangling bonds, and the Si–H bond length is fixed as 0.150 nm in the intercepted models[23].The Si–H bonds are adjusted to line up with the direction of original Si–O bonds.

    B3LYP/6-311++G (3df, 2pd) basis set was used to calculate the parameters of the reactants, transition states and products.In order to ensure the calculation accuracy, the frequency vibration by using the same basis set of each substance, the internals reaction coordinate (IRC) analysis of the spacing traces of the key atoms and localized orbital locator(LOL) of catalysts were considered.All the calculations were performed by Gaussian 09[24], Gaussion View 5.0[25]and Multiwfn 3.3[26].

    In this study, the whole structures of 7 T (Fig.1a)and 24 T (Fig.1b) were calculated.The frequency vibration of 7 T and 24 T cluster HZSM-5 models was analyzed to ensure the correctness of the intercepted models.Wherein, the stretching vibration frequency of O2–H3was 3683 cm-1in 7 T and 3575.69 cm-1in 24 T, and the error was just less than 2% compared to the experiment result (3618 cm-1)[27].

    Consequently, the intercepted models found correct and those can be used to simulate the acid point in the HZSM-5 structure.However, in order to illustrate the mechanism of their disproportionation in one figure, both 7 T and 24 T HZSM-5 were endowed with the same active sites (Fig.1c).Thus,the simplified model with key atoms was given in Fig.1 and Scheme 1 to represent the 7 T and 24 T cluster HZSM-5.

    Fig.1. Models of 7T (a) and 24T (b) cluster HZSM-5

    In this paper, the transition states were found by the combining synchronous transit and quasi-Newton (STQN) methods[28].There is just one negative value in all eigenvalues as per the frequency vibration analysis of reactants, transition states and products.All eigenvalues of reactants and products are positive while those of transition states have only one negative eigenvalue (a virtual frequency), and the minor frequencies caused by fixed bonds are small enough to be negligible.These results preliminarily show that the obtained transition states are valid.Then, by calculating IRC of each transition state, we find the steepest descent route to connect reactants and products, which not only corresponds with the reaction pathway, but also confirms the correctness of transition states.In addition, by analyzing the activation energies and the heat of reaction along the reaction pathways, the possibility of the reaction has been predicted.

    3 RESULTS AND DISCUSSION

    3.1 Reaction systems

    The optimized geometric parameters (bond lengths, bond angles) of HZSM-5 are shown in Table 1.By comparing the parameters of 7 T and 24 T HZSM-5 in Table 1, we can see that the bond length of the active site (O2–H3) and the bond angle(∠O2–Al–O4) in 24 T are bigger than those in 7 T HZSM-5, indicating that the bond O2–H3in 24 T breaks easily than that in 7T HZSM-5, and 24 T HZSM-5 has a larger pore to accommodate the reactants.It preliminarily shows that 24T HZSM-5 has better catalytic activity.

    Table 1. Optimized Geometric Parameters of HZSM-5 Catalyst

    After calculating the IRC of each transition state,it is found that the transition states have only one negative eigenvalue (a virtual frequency) and they have the route to connect reactants and products.The virtual vibration modes oriented towards the products of TS are shown in Fig.2.However, those oriented towards reactants are omitted.Hence, the reaction pathway (Scheme 1) could be obtained.Depending on the different sequences of absorbing(CH3)3SiCl and CH3SiCl3into 7 T and 24 T HZSM-5, the reactions would proceed through channels 1 and 2.There are three steps in channel 1(Scheme 1).In the first step, (CH3)3SiCl absorbed in the catalyst reacts to produce product 1 (P1) through transition state 1 (TS1) and releases CH4, followed by the absorption of CH3SiCl3into P1 to produce P2 through TS2 and release (CH3)2SiCl2.In subsequent process the released CH4from the first step is absorbed into P2 to produce P3 through TS3.Lastly,P3 breaks down into (CH3)2SiCl2and HZSM-5.Similarly, Pattern was noticed in channel 2 (Scheme 1),in which the initially CH3SiCl3absorbed in the catalyst reacts to produce P4 through TS4.Then,(CH3)3SiCl is absorbed into P4 to produce P5 through TS5 and release SiCl4, followed by reducing P5 into P6 through TS6.Lastly P6 further breaks down into (CH3)4Si and HZSM-5.Hence, channel 1 is the main reaction channel when (CH3)2SiCl2is the goal product.The mechanism in Scheme 1 is accordant with the specific experimental results that(CH3)2SiCl2is the main product, whereas (CH3)4Si and SiCl4are the by-products[13].It shows that the reaction pathway in Scheme 1 is credible.

    Fig.3 shows the spacing traces of the key atoms along the IRC analysis results of 7 T and 24 T HZSM-5 catalyzed disproportionation reaction.Here,we take TS1 as an example: when (CH3)3SiCl is absorbed with HZSM-5 to produce P1, the bond lengths of O2–H3and Si11–C10both widen to break.As a result, the distance between Si11and O4atoms was decreased, which facilitated the formation of new bonds, so did it between C10atom and H3atom.Based on IRC analysis of the catalyzed process, the variation trends of the distance between key atoms in 7 T and 24 T HZSM-5 are almost accordant.It matches with the result of the previous virtual vibration modes of TS, and proves that the mechanism shown in Scheme1 is credible.

    3.2 Localized orbital locator(LOL) of the catalyst

    LOL graphs of 7 T and 24 T HZSM-5 are shown in Fig.4, where the active sites are circled.By comparing to the LOL graphs of 7 T and 24 T HZSM-5, it can be seen that the electron locality of the active atoms (O2–H3) in 7 T is stronger than that in 24 T.That is to say, electrons of the active atoms in 24 T can be delocalized more easily.Hence, the active sites in 24 T can bond with (CH3)3SiCl and CH3SiCl3more easily, which means that the disproportionation activity of 24 T is higher than that of 7 T.

    Scheme 1. Reaction process of the disproportionation catalyzed by HZSM-5 zeolite

    Fig.2. Vibrated modes of transition states

    Fig.3. Variation trends of the distance between key atoms along IRC in the catalytic system(——7 T, -----24 T)

    Fig.4. LOL graphs of 7 T (a) and 24 T (b) cluster HZSM-5

    3.3 Activation energy and reaction heat

    Based on the density functional theory (DFT) and the energy gradient method, the energies of all stationary points in the potential energy surface are optimized, and the zero-point energies (ZPEs) are corrected using basis set of B3LYP/6-311++G (3df,2pd).Fig.5 provides the activation energies and the heat reaction along the reaction pathways.The energy of corresponding reactant is regarded as the zero point energy in each step, and the energies of transition states and products in subsequent steps are the gaps with their respective reactants.For example,the energy of R1 (R4) was assigned zero point energy of the first step to calculate the reaction enthalpies of P1 and the activation energies of TS1.

    Fig.5. Data of active energies and reaction heats along the pathways

    The reaction enthalpies (ΔH) and activation energies (Ea) are given in Table 2.In the disproportionation reaction catalyzed by 7T HZSM-5, the rate determining step of channel 1 produces P2 through TS2 (Ea2= 362.06 kJ/mol), whereas rate determining step of channel-2 absorbs CH3SiCl3in the catalyst through TS4 (Ea4= 394.35 kJ/mol).It can be seen that Ea2is lower than that of Ea4.Hence, the disproportionation in channel-1 proceeds more easily than that of channel-2.As a result channel-1 could be considered as a main reaction pathaway catalyzed by 7 T.However, in the disproportionation reaction catalyzed by 24 T HZSM-5, the rate determining step of channel 1 produces (CH3)2SiCl2through TS3 (Ea3= 220.05 kJ/mol), whereas the rate determining step of channel 2 absorbs (CH3)3SiCl in the catalyst through TS5 (Ea5= 289.07 kJ/mol).Obviously, the reaction through channel 1 proceeds more easily, wherein the activation energies of both the first and second steps found very small.As a result channel 1 could be considered as a main reaction pathaway catalyzed by 24 T, which is consistent with the reaction pathway shown in Scheme1 and the experimental results[13].

    Table 2. Reaction Enthalpies and Activation Energies of Disproportion Catalyzed by HZSM-5

    The activation energies of (CH3)3SiCl and CH3SiCl3absorbed in 7 T HZSM-5 are 145.72 and 394.35 kJ/mol, respectively.By contrast, the corresponding activation energies in 24 T HZSM-5 are 16.54 and 115.52 kJ/mol respectively, both of which are lower than those in 7 T.Hence, it is easier to form chemical bonds with two reactants in 24 T.The activation energies of rate-determining step in channel 1 of the disproportionation catalyzed by 24 T and 7 T HZSM-5 showed that the data of 24 T were far less than 7 T, indicating that the catalytic activity of 24 T was better than that of 7 T.This matches well with the structural analysis, LOL analysis and our expected results.

    According to our previous research, the activation energies of rate-determining step of the disproportionation catalyzing the surfaces of 3 T and 5 T ZSM-5 are 155.64 and 181.68 kJ/mol[21,22].This indicates that the catalytic activity found in ZSM-5 channels is not as good as surfaces, which may be due to the repulsion of atoms that hinder the binding between the active sites on the catalyst and reactants.

    4 CONCLUSION

    In the present paper, B3LYP/6-311++G (3df, 2pd)basis set has been used to calculate the disproportionation reaction to produce dichlorodimethylsilane catalyzed by 7 T and 24 T HZSM-5.The electron locality of active site atoms in 24 T is weaker than that in 7 T HZSM-5.In 7 T HZSM-5 catalyzed disproportionation reaction, the rate-determining step generates (CH3)2SiCl2in channel 1 (Ea2=362.06 kJ/mol).When catalyzed by 24 T HZSM-5,the rate-determining step reduces the catalyst in channel 1 (Ea3= 220.05 kJ/mol).Hence, 24T HZSM-5 with large aperture would be good for the disproportionation reaction compared to 7 T HZSM-5 with small aperture.The results of structural analysis, reaction mechanism, LOL analysis and energy analysis are consistent with the expected results of calculation and the results of experiments.However, the catalytic activity of ZSM-5 channels is not as good as that of surfaces.

    REFERENCES

    (1) Cao, D.; Xia, Y.; Yao, H.T.; Qi, Z.; Sun, Y.; Li, F.Synthesis of linear oligomer of dimethyltetrasiloxane.Chin.J.App.Chem.2015, 32, 527?534.

    (2) Camel, D.; Drevet, B.; Eustathopoulos, N.Capillarity in the processing of photovoltaic silicon.J.Mater.Sci.2016, 51, 1722?1737.

    (3) Balaev, A.N.; Osipov, V.N.; Okhmanovich, K.A.; Fedorov, V.E.Dimethyldichlorosilane – an effective reagent for one-step synthesis ofα-amino acid amides.Pharm.Chem.J.2015, 49, 334?339.

    (4) Wa, Y.Focus on research of international organosilicon chemistry.Silicone.Mater.2015, 2, 125?138.

    (5) Liu, H.Innovation and internationalization: enhance competitiveness of silicon industry chain.Silicone.Mater.2015, 2, 150?154.

    (6) Zou, S.; Ji, Y.; Li, J.; Zhang, Y.; Jin, Z.; Jia, L.; Guo, X.; Zhong, Z.; Su, F.Novel leaflike Cu–O–Sn nanosheets as highly efficient catalysts for the rochow reaction.J.Catal.2016, 337, 1?13.

    (7) Pakizeh, M.; Moghadam, A.N.; Omidkhah, M.R.; Namvar-Mahboub, M.Preparation and characterization of dimethyldichlorosilane modified SiO2/PSfnanocomposite membrane.Korean J.Chem.Eng.2013, 30, 751?760.

    (8) Zhai, Y.; Ji, Y.; Wang, G.; Zhu, Y.; Liu, H.; Zhong, Z.; Su, F.Controllable wet synthesis of multicomponent copper-based catalysts for Rochow reaction.RSC Adv.2015, 5, 73011?73019.

    (9) Graf, W.P.; John Frey, V.US Patent No.4158010 Jun 12 1979.

    (10) Xue, J.G.; Long, J.F.; Gong, S.X.; Shi, H.B.; Feng, C.X.Preparation of dimethyldichlorosilane disproportionated from methyltrichlorosilane.Silicone Mater.2000, 14, 20?22.

    (11) Schweizer, J.I.; Meyer, L.; Nadj, A.; Diefenbach, M.; Holthausen, M.C.Unraveling the amine-induced disproportionation reaction of perchlorinated silanes?a DFT study.Chem.Eur.J.2016, 22, 14328?14335.

    (12) Tan, Y.P.; Zhang, N.; Wang, S.H.; Yao, L.Synthesis, characterization and activity of a new mesoporous catalyst for cracking of organosilane high boiling residues.J.Chem.Ind.Eng.2008, 59, 2800?2804.

    (13) Ao, Z.Y.; Zhang, Y.; Jian, L.J.; Fu, Q.; Zhang, F.; Chen, C.Synthesis of dimethyldichlorosilane by catalytic disproportionation of methyltrichlorosilane over a H2SO4activated chinese bentonite.Phosphorus.Sulfur.2011, 186, 2135?2144.

    (14) Li, L.; Janik, J.M.; Nie, X.; Song, C.; Guo, X.Reaction mechanism of toluene methylation with dimethyl carbonate or methanol catalyzed by H-ZSM-5.Acta.Phys.Chim.Sin.2013, 29, 1467?14778.

    (15) Jansen, A.; Ruangpornvisuti, V.An oniom investigation of reaction mechanisms of propylene glycol dehydration over H-ZSM-5 and H?MOR catalysts.J.Mol.Catal.A: Chem.2012, 363?364, 171?177.

    (16) Tsai, T.C.; Liu, S.B.; Wang, I.Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts.Appl.Catal.A-Gen.1999, 181,355?398.

    (17) Nishiyama, N.; Miyamoto, M.; Egashira, Y.; Ueyama, K.Zeolite membrane on catalyst particles for selective formation ofp-xylene in the disproportionation of toluene.Chem.Commun.2001, 18, 1746?1747.

    (18) Mitsuyoshia, D.; Kuroiwaa, K.; Kataokaa, Y.; Nakagawaa, T.; Kosakaa, M.; Nakamuraa, K.; Suganumab, S.; Arakic, Y.; Katada, N.Shape selectivity in toluene disproportionation into para-xylene generated by chemical vapor deposition of tetramethoxysilane on MFI zeolite catalyst.Micropor.Mesopor.Mat.2017, 242, 118?126.

    (19) Dumrongsakda, P.; Ruangpornvisuti, V.Theoretical investigation of ethanol conversion to ethylene over H–ZSM–5 and transition metals-exchanged ZSM-5.Catal.Lett.2012,142, 143?149.

    (20) Xia, W.; Chen, K.; Takahashi, A.; Li, X.; Mu, X.; Han, C.; Liu, L.; Nakamura, I.; Fujitani, T.Effects of particle size on catalytic conversion of ethanol to propylene over H-ZSM-5 catalysts-smaller is better.Catal.Commun.2016, 73, 27?33.

    (21) Yao, C.J.Theoretical study for disproportionation of methyltrichlorosilane catalyzed by different cluster model ZSM-5 zeolite catalyst.Master Thesis.East China Jiaotong University: Jiangxi 2017, p43?65.

    (22) Xu, W.Y.; Liu, Y.P.; Zhou, J.X.; Hu, L.; Hong, S.G.Transforming br?nsted acid to Lewis acid on ZSM-5 disproportionation catalyst before and after loading AlCl3.Asian J.Chem.2015, 27, 1147?1152.

    (23) Nikonov, G.I.; Vyboishchikov, S.F.; Shirobokov, O.G.Facile activation of H–H and Si–H bonds by boranes.J.Am.Chem.Soc.2012, 134,5488?5491.

    (24) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery Jr.J.A.; Vreven, T.; Kudin, K.N.;Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.;Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.;Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain,M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.;Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara,A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.Gaussian, Inc.Pittsburgh PA.Gaussian 09,Revision B.012009.

    (25) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery Jr.J.A.; Vreven, T.; Kudin, K.N.;Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.;Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.;Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain,M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.;Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara,A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.Gaussian, Inc.Pittsburgh PA.Gaussian View,Revision 5.02009.

    (26) Tian, L.Beijing Kein Research Center for Natural Sciences.Multiwfn, Revision 3.3.92016.

    (27) Tronlbetta, M.; Armaroli, T.; Alejandre, A.G.; Solis, R.; Busca, G.An FT-IR study of the internal and external surfaces of HZSM5 zeolite.Appl.Catal.A: Gen.2000, 192, 125?136.

    (28) Peng, C.Y.; Schlegel, H.B.Combining synchronous transit and quasi-newton methods to find transition states.Isr.J.Chem.1993, 33, 449?454.

    交换朋友夫妻互换小说| 亚洲精品美女久久久久99蜜臀| 日韩欧美一区二区三区在线观看 | 精品一品国产午夜福利视频| 中文字幕制服av| 纯流量卡能插随身wifi吗| 好男人电影高清在线观看| 久久久精品区二区三区| 一边摸一边抽搐一进一出视频| 两性午夜刺激爽爽歪歪视频在线观看 | 激情在线观看视频在线高清 | 亚洲精品久久成人aⅴ小说| 日韩 欧美 亚洲 中文字幕| 国产又爽黄色视频| 午夜福利,免费看| avwww免费| 日韩欧美一区视频在线观看| 久久亚洲精品不卡| 午夜福利视频在线观看免费| 精品亚洲成国产av| 80岁老熟妇乱子伦牲交| 黄色女人牲交| 久久亚洲精品不卡| 亚洲熟妇中文字幕五十中出 | 精品久久久久久,| 国产精品影院久久| 乱人伦中国视频| 免费在线观看影片大全网站| 天堂俺去俺来也www色官网| 黑人巨大精品欧美一区二区mp4| 又黄又粗又硬又大视频| 成人精品一区二区免费| 成人永久免费在线观看视频| 又黄又粗又硬又大视频| 成年版毛片免费区| 欧美日韩国产mv在线观看视频| 亚洲精品久久午夜乱码| 国产人伦9x9x在线观看| av一本久久久久| 亚洲avbb在线观看| 国产成人欧美在线观看 | 亚洲一区中文字幕在线| 色老头精品视频在线观看| 午夜福利影视在线免费观看| 国产日韩欧美亚洲二区| 一边摸一边做爽爽视频免费| 亚洲一区中文字幕在线| 曰老女人黄片| 欧美日韩av久久| 91在线观看av| 国产精品一区二区精品视频观看| 国产精品久久久久久精品古装| 免费在线观看影片大全网站| videos熟女内射| 亚洲精品久久成人aⅴ小说| 18禁国产床啪视频网站| 亚洲第一青青草原| 国产欧美亚洲国产| 大香蕉久久网| 十八禁网站免费在线| 黄色视频不卡| 国产精品九九99| 91成年电影在线观看| 成人亚洲精品一区在线观看| 在线天堂中文资源库| 亚洲男人天堂网一区| 十八禁网站免费在线| 亚洲精品国产精品久久久不卡| 女性生殖器流出的白浆| 亚洲av成人av| av有码第一页| 少妇裸体淫交视频免费看高清 | 99国产精品一区二区蜜桃av | 国产亚洲精品一区二区www | 久久久久久久午夜电影 | 黄色视频,在线免费观看| 欧美精品人与动牲交sv欧美| 嫁个100分男人电影在线观看| 国产精品 国内视频| 一区在线观看完整版| 国产成人精品无人区| 一级,二级,三级黄色视频| 99国产精品一区二区蜜桃av | 中文字幕av电影在线播放| 久久人人爽av亚洲精品天堂| 丁香六月欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 国产日韩欧美亚洲二区| 成人av一区二区三区在线看| 超碰97精品在线观看| 日本黄色视频三级网站网址 | 嫁个100分男人电影在线观看| 中文字幕人妻熟女乱码| 色综合欧美亚洲国产小说| 99热网站在线观看| 久久久久久亚洲精品国产蜜桃av| 美女扒开内裤让男人捅视频| 亚洲国产中文字幕在线视频| 黄色丝袜av网址大全| 久久ye,这里只有精品| 伦理电影免费视频| 50天的宝宝边吃奶边哭怎么回事| 午夜日韩欧美国产| 成年版毛片免费区| 午夜视频精品福利| 婷婷精品国产亚洲av在线 | av网站免费在线观看视频| 91成年电影在线观看| 亚洲五月天丁香| 国产成人av教育| 午夜成年电影在线免费观看| 亚洲 欧美一区二区三区| 免费日韩欧美在线观看| 久久久精品区二区三区| 婷婷精品国产亚洲av在线 | 国产黄色免费在线视频| 一区二区三区精品91| 日韩一卡2卡3卡4卡2021年| 多毛熟女@视频| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久久免费视频了| 国产1区2区3区精品| 国产精品免费视频内射| 天天躁夜夜躁狠狠躁躁| 欧美av亚洲av综合av国产av| 久热这里只有精品99| 一个人免费在线观看的高清视频| 在线看a的网站| 久久精品成人免费网站| 亚洲成a人片在线一区二区| 国产成人欧美在线观看 | 亚洲全国av大片| av在线播放免费不卡| 99热只有精品国产| 亚洲av日韩精品久久久久久密| 19禁男女啪啪无遮挡网站| 久久久久久久精品吃奶| 欧美人与性动交α欧美精品济南到| 免费av中文字幕在线| xxx96com| 又黄又爽又免费观看的视频| 身体一侧抽搐| 韩国精品一区二区三区| tube8黄色片| 欧美黑人欧美精品刺激| 久久久久久久精品吃奶| 亚洲精品自拍成人| bbb黄色大片| 极品人妻少妇av视频| 久久青草综合色| 中文字幕精品免费在线观看视频| 亚洲中文字幕日韩| 久久亚洲精品不卡| 91av网站免费观看| 成人手机av| 亚洲精品国产一区二区精华液| 91精品国产国语对白视频| 麻豆乱淫一区二区| 在线观看免费视频网站a站| 视频区欧美日本亚洲| a级毛片在线看网站| 免费在线观看亚洲国产| 50天的宝宝边吃奶边哭怎么回事| 美女国产高潮福利片在线看| 免费在线观看影片大全网站| 国产精品香港三级国产av潘金莲| 国产高清激情床上av| av有码第一页| 一区在线观看完整版| 人人澡人人妻人| 黄网站色视频无遮挡免费观看| 巨乳人妻的诱惑在线观看| 十八禁网站免费在线| 69av精品久久久久久| 日本wwww免费看| 欧美久久黑人一区二区| 亚洲午夜理论影院| 一边摸一边做爽爽视频免费| 国产真人三级小视频在线观看| 亚洲性夜色夜夜综合| 久久精品亚洲av国产电影网| 最新在线观看一区二区三区| 欧美久久黑人一区二区| 亚洲精品一卡2卡三卡4卡5卡| 国产精品影院久久| 国产欧美日韩一区二区三| 日韩视频一区二区在线观看| 国产国语露脸激情在线看| 成人18禁高潮啪啪吃奶动态图| 又黄又粗又硬又大视频| 精品国产超薄肉色丝袜足j| 欧美日韩亚洲高清精品| 午夜影院日韩av| 高清视频免费观看一区二区| 人成视频在线观看免费观看| 99久久国产精品久久久| 成人18禁高潮啪啪吃奶动态图| 两性午夜刺激爽爽歪歪视频在线观看 | 成人国产一区最新在线观看| 日韩免费av在线播放| av欧美777| 亚洲中文av在线| 男人的好看免费观看在线视频 | 在线观看一区二区三区激情| 俄罗斯特黄特色一大片| bbb黄色大片| 国产99久久九九免费精品| 久久婷婷成人综合色麻豆| 人妻 亚洲 视频| 99国产综合亚洲精品| 欧美亚洲 丝袜 人妻 在线| 国产精品亚洲av一区麻豆| 亚洲色图综合在线观看| 亚洲欧美日韩另类电影网站| 在线观看免费视频网站a站| 99精国产麻豆久久婷婷| 亚洲熟女精品中文字幕| svipshipincom国产片| 不卡av一区二区三区| 亚洲av成人不卡在线观看播放网| 欧美日本中文国产一区发布| 久久精品91无色码中文字幕| 人妻久久中文字幕网| 91九色精品人成在线观看| 国产日韩欧美亚洲二区| 久久人妻福利社区极品人妻图片| 一进一出抽搐动态| 久久影院123| 亚洲一区中文字幕在线| 亚洲美女黄片视频| 日韩三级视频一区二区三区| tocl精华| 国产99久久九九免费精品| 少妇粗大呻吟视频| 亚洲人成77777在线视频| 久久精品亚洲av国产电影网| 成年女人毛片免费观看观看9 | 在线观看66精品国产| 1024香蕉在线观看| 久久午夜亚洲精品久久| 欧美成人免费av一区二区三区 | 久久精品熟女亚洲av麻豆精品| 精品久久久久久久毛片微露脸| 免费在线观看亚洲国产| 精品久久久久久久久久免费视频 | av一本久久久久| 精品福利观看| 精品人妻1区二区| 亚洲精品乱久久久久久| 色播在线永久视频| 午夜精品国产一区二区电影| 国产欧美日韩一区二区三| 高清毛片免费观看视频网站 | 天天操日日干夜夜撸| 色综合欧美亚洲国产小说| 免费在线观看视频国产中文字幕亚洲| 亚洲av成人不卡在线观看播放网| 日韩熟女老妇一区二区性免费视频| 在线观看日韩欧美| 免费一级毛片在线播放高清视频 | 夜夜爽天天搞| 美女 人体艺术 gogo| 一级毛片高清免费大全| 午夜精品国产一区二区电影| 亚洲av美国av| 久久99一区二区三区| 国产精品 欧美亚洲| 国产精品国产高清国产av | 日韩有码中文字幕| 久久人妻av系列| 亚洲精品国产区一区二| 欧美午夜高清在线| 一区二区三区精品91| 亚洲精品国产色婷婷电影| 欧美性长视频在线观看| av中文乱码字幕在线| 午夜亚洲福利在线播放| 欧美日韩福利视频一区二区| 国产精品 欧美亚洲| 欧美人与性动交α欧美软件| 日韩欧美国产一区二区入口| 午夜福利在线免费观看网站| 操出白浆在线播放| 久久 成人 亚洲| 村上凉子中文字幕在线| 亚洲av熟女| 91大片在线观看| 身体一侧抽搐| 国产欧美日韩精品亚洲av| 欧美色视频一区免费| 在线播放国产精品三级| 热re99久久精品国产66热6| 99国产精品免费福利视频| 一级片免费观看大全| 国产97色在线日韩免费| 欧美人与性动交α欧美软件| 久久天堂一区二区三区四区| 欧美日韩福利视频一区二区| 亚洲专区字幕在线| 国产真人三级小视频在线观看| 国产精品av久久久久免费| 可以免费在线观看a视频的电影网站| 脱女人内裤的视频| 飞空精品影院首页| 亚洲av成人av| 女人精品久久久久毛片| 久久久久国产精品人妻aⅴ院 | 老司机午夜十八禁免费视频| 午夜免费鲁丝| 老熟女久久久| 亚洲欧美一区二区三区黑人| 91麻豆av在线| 亚洲国产欧美网| 精品一区二区三区视频在线观看免费 | 啪啪无遮挡十八禁网站| 婷婷丁香在线五月| 成人av一区二区三区在线看| 视频区欧美日本亚洲| 在线av久久热| 欧美不卡视频在线免费观看 | 黄色丝袜av网址大全| 日韩中文字幕欧美一区二区| 成年人免费黄色播放视频| 国产麻豆69| 欧美国产精品va在线观看不卡| 久热这里只有精品99| 电影成人av| 淫妇啪啪啪对白视频| 欧美精品亚洲一区二区| 久久狼人影院| 中亚洲国语对白在线视频| 制服人妻中文乱码| 欧美亚洲日本最大视频资源| 中文字幕另类日韩欧美亚洲嫩草| 99久久综合精品五月天人人| 757午夜福利合集在线观看| 精品人妻在线不人妻| 久9热在线精品视频| 精品国产国语对白av| 一区二区日韩欧美中文字幕| a在线观看视频网站| 久久 成人 亚洲| 极品少妇高潮喷水抽搐| 最近最新免费中文字幕在线| xxx96com| 女人被躁到高潮嗷嗷叫费观| 大香蕉久久网| 热99re8久久精品国产| 97人妻天天添夜夜摸| 久久亚洲精品不卡| 中文欧美无线码| 午夜免费鲁丝| 久久久久久久国产电影| 美女高潮到喷水免费观看| 99久久精品国产亚洲精品| 欧美乱色亚洲激情| 一a级毛片在线观看| 视频在线观看一区二区三区| 国产精品一区二区免费欧美| 中文字幕制服av| а√天堂www在线а√下载 | 亚洲精品在线观看二区| а√天堂www在线а√下载 | a级片在线免费高清观看视频| 如日韩欧美国产精品一区二区三区| 亚洲欧美一区二区三区久久| 久久亚洲精品不卡| 黄片大片在线免费观看| 91精品国产国语对白视频| 欧美在线黄色| 如日韩欧美国产精品一区二区三区| 丝袜美足系列| 亚洲片人在线观看| 别揉我奶头~嗯~啊~动态视频| 啦啦啦免费观看视频1| 久久亚洲真实| 免费在线观看日本一区| 国产无遮挡羞羞视频在线观看| 久久中文字幕一级| 亚洲精品国产色婷婷电影| 大型黄色视频在线免费观看| 欧美精品人与动牲交sv欧美| 人妻丰满熟妇av一区二区三区 | 99精国产麻豆久久婷婷| 国产男女内射视频| 18禁观看日本| 18禁美女被吸乳视频| 欧美久久黑人一区二区| 免费黄频网站在线观看国产| 久久九九热精品免费| 热99国产精品久久久久久7| 亚洲熟妇中文字幕五十中出 | 99热网站在线观看| 成人特级黄色片久久久久久久| 一个人免费在线观看的高清视频| 亚洲国产中文字幕在线视频| 国产精品综合久久久久久久免费 | svipshipincom国产片| 老熟妇仑乱视频hdxx| 亚洲av熟女| 怎么达到女性高潮| 国产不卡一卡二| tocl精华| 欧美不卡视频在线免费观看 | 免费日韩欧美在线观看| 欧美激情 高清一区二区三区| 最新在线观看一区二区三区| 美女视频免费永久观看网站| 国产精品自产拍在线观看55亚洲 | 午夜福利欧美成人| 久久99一区二区三区| 亚洲成人手机| 热99久久久久精品小说推荐| 可以免费在线观看a视频的电影网站| 国产欧美日韩一区二区三区在线| 黄色视频,在线免费观看| 黑人欧美特级aaaaaa片| 日韩欧美一区视频在线观看| 免费在线观看亚洲国产| 在线观看免费视频日本深夜| 国产精品av久久久久免费| 我的亚洲天堂| 午夜福利一区二区在线看| 老司机午夜福利在线观看视频| 天天躁夜夜躁狠狠躁躁| 在线观看免费日韩欧美大片| 亚洲欧美精品综合一区二区三区| 最近最新中文字幕大全免费视频| 亚洲专区字幕在线| 日韩三级视频一区二区三区| 大片电影免费在线观看免费| videos熟女内射| 国产麻豆69| 又黄又爽又免费观看的视频| 日本欧美视频一区| 老司机午夜十八禁免费视频| 纯流量卡能插随身wifi吗| 国产黄色免费在线视频| 欧美激情久久久久久爽电影 | 欧美最黄视频在线播放免费 | 18禁观看日本| 两性夫妻黄色片| 在线观看免费视频日本深夜| 一级,二级,三级黄色视频| 欧美不卡视频在线免费观看 | 精品视频人人做人人爽| 亚洲欧美激情综合另类| 精品国产超薄肉色丝袜足j| 天堂中文最新版在线下载| 脱女人内裤的视频| a级片在线免费高清观看视频| 女人精品久久久久毛片| 麻豆乱淫一区二区| 老司机影院毛片| 日日爽夜夜爽网站| 亚洲第一青青草原| 亚洲第一欧美日韩一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 99riav亚洲国产免费| 热99国产精品久久久久久7| 久久精品人人爽人人爽视色| 国产99久久九九免费精品| 免费在线观看完整版高清| 国产人伦9x9x在线观看| 丁香欧美五月| 国产精品美女特级片免费视频播放器 | xxx96com| 男女午夜视频在线观看| 久久久国产成人免费| 国产精品亚洲一级av第二区| 大型av网站在线播放| 日日夜夜操网爽| 国产欧美日韩一区二区三| 亚洲国产中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 男人操女人黄网站| 国产精品98久久久久久宅男小说| 精品国产一区二区三区久久久樱花| 真人做人爱边吃奶动态| www.999成人在线观看| 老司机福利观看| 色在线成人网| 极品人妻少妇av视频| av免费在线观看网站| 亚洲性夜色夜夜综合| 在线国产一区二区在线| 欧美老熟妇乱子伦牲交| 亚洲免费av在线视频| 丝袜在线中文字幕| 99riav亚洲国产免费| 亚洲一区中文字幕在线| 精品国产乱码久久久久久男人| 精品国产国语对白av| 国产精品.久久久| 成人18禁高潮啪啪吃奶动态图| 午夜福利欧美成人| 亚洲人成伊人成综合网2020| 国产欧美日韩一区二区三区在线| 丝袜人妻中文字幕| 久久精品亚洲熟妇少妇任你| 午夜福利在线免费观看网站| 欧美最黄视频在线播放免费 | 飞空精品影院首页| 久9热在线精品视频| 高清av免费在线| 国产野战对白在线观看| 99久久精品国产亚洲精品| 人人妻,人人澡人人爽秒播| 午夜老司机福利片| 99久久人妻综合| 视频区图区小说| 成人国产一区最新在线观看| 久99久视频精品免费| 999精品在线视频| tocl精华| 欧美亚洲日本最大视频资源| 中文欧美无线码| 妹子高潮喷水视频| 国产精品成人在线| 12—13女人毛片做爰片一| 久久香蕉激情| 国产高清视频在线播放一区| 99热国产这里只有精品6| www.自偷自拍.com| 国产区一区二久久| tube8黄色片| 高清av免费在线| 另类亚洲欧美激情| 国产aⅴ精品一区二区三区波| 99国产精品免费福利视频| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 欧美性长视频在线观看| 亚洲av熟女| 在线观看免费视频日本深夜| 一区二区三区精品91| 少妇粗大呻吟视频| 黄色片一级片一级黄色片| 韩国精品一区二区三区| 两人在一起打扑克的视频| 国产在线观看jvid| 亚洲精品国产一区二区精华液| av视频免费观看在线观看| 国产精品久久电影中文字幕 | av超薄肉色丝袜交足视频| 久久久精品区二区三区| 精品熟女少妇八av免费久了| 新久久久久国产一级毛片| 狂野欧美激情性xxxx| 搡老岳熟女国产| 免费久久久久久久精品成人欧美视频| 国产主播在线观看一区二区| 高清在线国产一区| 午夜福利,免费看| 欧美最黄视频在线播放免费 | 亚洲国产精品sss在线观看 | 在线观看免费日韩欧美大片| 国产精品久久久久久精品古装| 在线观看日韩欧美| 亚洲精品在线观看二区| 少妇的丰满在线观看| 久久狼人影院| 亚洲精品国产色婷婷电影| 男女床上黄色一级片免费看| 日日爽夜夜爽网站| 国产精品av久久久久免费| 欧美激情久久久久久爽电影 | 精品亚洲成a人片在线观看| 99久久综合精品五月天人人| 日韩欧美一区视频在线观看| 最新美女视频免费是黄的| 亚洲成av片中文字幕在线观看| 91精品国产国语对白视频| 免费高清在线观看日韩| 欧美国产精品va在线观看不卡| 麻豆av在线久日| 热re99久久精品国产66热6| 欧美色视频一区免费| 精品人妻1区二区| 中出人妻视频一区二区| 久久亚洲精品不卡| 久久国产精品人妻蜜桃| 久久久久久久午夜电影 | 97人妻天天添夜夜摸| 成人手机av| 嫩草影视91久久| 女人精品久久久久毛片| 亚洲第一av免费看| 欧美国产精品一级二级三级| 热99久久久久精品小说推荐| 亚洲情色 制服丝袜| 久久久久精品人妻al黑| 国产精品电影一区二区三区 | 日日夜夜操网爽| 国产精品av久久久久免费| 9热在线视频观看99| 一区在线观看完整版| 国产深夜福利视频在线观看| www.精华液| 精品人妻熟女毛片av久久网站| 99久久99久久久精品蜜桃| 交换朋友夫妻互换小说| 黄色 视频免费看| 狂野欧美激情性xxxx| 欧美午夜高清在线| 真人做人爱边吃奶动态| av网站免费在线观看视频| 欧美 日韩 精品 国产| 18禁裸乳无遮挡动漫免费视频| 一进一出好大好爽视频| 午夜日韩欧美国产| 亚洲一区二区三区欧美精品| 999久久久精品免费观看国产| 十分钟在线观看高清视频www| 成年动漫av网址|