• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Study on the Transition State of N-nitropyrazoles Rearrangement Reaction

    2018-05-11 11:20:37YANGFengLIYongXiangANGXinGUOHengJieCHAIXiaoXiao
    結(jié)構(gòu)化學(xué) 2018年4期

    YANG Feng LI Yong-Xiang D ANG Xin GUO Heng-Jie CHAI Xiao-Xiao

    (School of Chemical Engineering and Environment,North University of China, Taiyuan 030051, China)

    1 INTRODUCTION

    Nitropyrazoles have been studied as models of simple aromatic systems, some of which are of biological, pharmaceutical and energetic materials interest[1-6].Nitropyrazoles are usually prepared from the nitration of corresponding pyrazoles.Although nitrification is carried out with the same pyrazoles,the nitrification products obtained in different nitrifying agents are not the same, for instance the syntheses of 1-nitropyrazole and 4-nitropyrazole.But in many cases, it is impossible to introduce nitro group into the specified location of the pyrazole ring,while some certain nitro substituents at specific locations can be obtained by rearrangement of nitro groups, for instance the synthesis of 3-nitropyrazole.Therefore, in order to obtain nitro substituents at different positions of pyrazole, the rearrangement reactions of nitropyrazole have been studied extensively.1-Nitropyrazole can be rearranged to 3-nitropyrazole at 120~180 ℃ for 3~7 h in the solvent which has a high boiling point such as benzonitrile,anisole and so on[7-10].The thermolysis rearrangement of 1,3-dinitropyrazol in benzonitrile at 180 ℃gave 3,5-dinitropyazole in high yield.The rearrangement of nitropyrazole has been extensively studied and its possible rearrangement mechanism has been proposed.Although the molecular structure, vibrational properties and proton transfer reaction of nitropyrazoles were also studied by quantum chemistry in the study of nitropyrazole compounds[11-13],the quantum chemistry of nitropyrazole rearrange-ment reaction is rare, and the structure and charge distribution of the transition state and intermediates in the rearrangement process are not very perspicuous.Therefore, in order to be able to more intuitively understand the structure and charge distribution of the transition state and intermediates of the nitropyrazole rearrangement.The transition state of N-nitropyrazoles rearrangement reaction have been theoretically studied by Gaussian 09 package with gradient-corrected density functional theory (DFT)method at the B3LYP/6-311G (d, p) level of theory.

    2 COMPUTIONAL DETAILS

    The calculations described in this paper were carried out using Gaussian 09 package[14].All compounds were optimized using the gradient-corrected density functional theory (DFT) at the B3LYP/6-311G(d, p) level of theory[15,16]in the gas phase and solvent phase, respectively.The nature of all optimized structures was determined using harmonic frequency analysis as true minima with no imaginary frequency or transition state with only one imaginary frequency.The transition state geometry of the nitropyrazoles rearrangement reactions was determined using Berny method at the B3LYP/6-311G(d,p) level of theory.Meanwhile, the intrinsic reaction coordinate (IRC)[17,18]was calculated to confirm that the transition states are connected to the two corresponding stationary points of the reaction.To illustrate the population of charge of all atoms, natural bond orbital (NBO) analysis[19,20]is calculated at the B3LYP/6-311++G (d, p) level of theory.In order to accurately describe the effect of solvent on the structure and charge of the molecules at each stage of the rearrangement reaction, Truhlar’s implicit solvation model (SMD) was used[21].

    3 RESULTS AND DISCUSSION

    3.1 Geometry structure

    We have optimized the structures at the B3LYP/6-311G(d,p) level of theory.No or only one imaginary frequency was found, confirming that these structures correspond to the true energy minimum or the first order saddle points.For ease illustration, we use(1,3)-rearrangement and (1,5)-rearrangement to express the rearrangement of N-nitropyrazole to 3-nitropyrazole and the rearrangement of 1,3-dinitropyrazole to 3,5-dinitropyrazole, respectively.And the molecular frameworks of pyrazoles with the numbering are presented in Fig.1.

    Scheme 1. Syntheses of 3-nitropyrazole and 3,5-dinitropyrazole by the rearrangement of N-nitropyrazole

    Fig.1. Molecular formula of nitropyrazoles with the numbering of atoms as used in the text:(a) N-nitropyrazole, (b) 3-nitropyrazole, (c) 1,3-dinitropyrazole, (d) 3,5-dinitropyrazole

    3.1.1 Rearrangement of N-nitropyrazole to 3-nitropyrazole

    As we all know, 3-nitropyrazole can not be synthesized by the nitrification of pyrazole directly.It must be prepared from the rearrangement of N-nitropyrazole in high boiling solvent.The optimized stationary structures of the rearrangement reaction are shown in Table S1 (shown in supporting information), and the possible pathways of the reaction are shown in Fig.2.As can be seen from the above figure, the reaction contains two transition states and one intermediate.Throughout the course of reaction, nitro group and hydrogen atom on adjacent carbon atoms are the main reactive groups.The nitro group is the major variant in the process from reactants to intermediates.By calculation we can see, the bond length between nitro nitrogen atom and pyrazole ring nitrogen atom is gradually drawn from 1.44 (RC) to 2.44 ? (INT) and the angle of nitro group (O–N–O) also has a significant change from the beginning of 129.25° (RC) to 134.53° (TS1)and finally changes to 126.89° (INT).Meanwhile,the migration of nitro groups is accompanied by the torsion itself.In transition state the plane of nitro group is almost perpendicular to the plane of pyrazole ring.Subsequently, the change of nitro group from intermediate to product stage is no longer obvious, and the main change is caused by the migration of hydrogen atoms and the change of angle between nitro plane and pyrazole ring plane.In transition state 2 (TS2), the hydrogen atom is no longer unique to carbon atom.At this time, hydrogen atom is almost on the bisector of the connection of carbon atoms and adjacent nitrogen atoms.During the migration of hydrogen atom, the distance between hydrogen and carbon atoms increases from 1.09 ? (INT) to 2.12 ? (PC), and the distance from nitrogen atom decreases from 2.10 ? (INT) to 1.01 ?(PC).With the migration of hydrogen atom, the angle between nitro plane and pyrazole ring plane is gradually reduced.In addition to the above functional groups and atomic changes, pyrazole ring also has an obvious change.During the rearrangement process, the pyrazole ring angles N(1)–N(2)–C(3)and C(4)–C(5)–N(1) showed an increase trend, while C(5)–N(1)–N(2), N(2)–C(3)–C(4) and C(3)–C(4)–C(5) showed a decrease trend.

    Fig.2. Optimized structures of N-nitropyrazole (RC), transition state (TS1, 2), intermediates (INT), and 3-nitropyrazole(PC) of the (1, 3)-rearrangement in the gas phase (red = oxygen, blue = nitrogen, gray = carbon, white = hydrogen)

    Table 1. Calculated Frontier Orbital Energy of (1,3)-Rearrangement at the B3LYP/6-311G(d,p) Level

    3.1.2 Rearrangement of 1,3-dinitropyrazole to 3,5-dinitropyrazole

    From Fig.3, it is clear that as in the case of (1,3)-rearrangement, the migration of nitro and hydrogen atom is included throughout the (1, 5)-rearrangement process.Moreover, the nitro group and hydrogen atom are not in the same side of the pyrazole ring plane throughout the process.The beginning of the rearrangement is the migration of nitro group, and the distance between nitro nitrogen atom and pyrazole ring nitrogen atom is continuously stretched from 1.47 ? (RC) to 2.45 ? (INT) during the migration, and the distance between nitro nitrogen atom and pyrazole ring carbon atom reduces from 2.52 ? (RC) to 1.53 ? (INT).The second half of the rearrangement occurs where the hydrogen atom migrates, and the distance between pyrazole ring carbon and hydrogen atom is from 1.09 ? (INT)to 2.12 ? (PC), while the distance between hydrogen and nitrogen atoms is gradually reduced from 2.15 ?(RC) to 1.01 ? (PC).During the whole process of rearrangement, there is also a significant change in the angle of nitro formation angle (O–N–O),especially in the process of nitro migration due to the change of interaction of nitro group and pyrazole ring.In the transition state 1 (TS1) period, the nitro formation angle is the largest 136.5°, owing to the weakest interaction between nitro and pyrazole ring.However, unlike the process of (1, 3)-rearrangement,the internal angle change of pyrazole ring is not particularly significant during (1, 5)-rearrangement process.It can be seen from Fig.3 that the internal angle of pyrazole ring changes in intermediate process (TS1, INT, TS2) of the rearrangement, but the difference in internal angle of reactants (RC) and product (PC) is small.And the optimized stationary structures of the rearrangement reaction are shown in Table S2 (in the supporting information).

    Fig.3. Optimized structures of 1,3-dinitropyrazole (RC), transition states (TS1, 2), intermediates(INT) and 3,5-dinitropyrazole (PC) of the (1,5)-rearrangement in the gas phase (red = oxygen,blue = nitrogen, gray = carbon, white = hydrogen)

    3.2 Electronic characteristics

    In order to further understand the interaction between migrating and connecting atoms, the natural bond orbital (NBO) charge for optimized structures is detailedly calculated in this work.From previous part of discussion, we know that whether for the (1,3)- or (1, 5)-rearrangement, the main changes are nitro and hydrogen atom.Therefore, we mainly carry out electronic analysis of the atoms involved in the rearrangement process and the NPA charges for all atoms in the rearrangement process are shown in Tables S3 and S4 (listed in the supporting information).It can be seen from Figs.4 and 5 that the tendency of (1, 3)-rearrangement is similar to that of(1, 5)-rearrangement.Compared with the main reaction atoms on the pyrazole ring, the charge changes of the atoms on the nitro group are not obvious.The net charge of nitro nitrogen atom decreases with the progress of reaction, while the net charge of oxygen atom decreases first and then increases, and the maximum value of charge appears during the TS1 period.For the main reactive atoms on pyrazole ring,the positive charge of carbon and hydrogen atoms increases significantly as the reaction proceeds, while the negative charge of nitrogen atoms also increases,but the change process is not monotonically increased.The reason for the above phenomenon may be that the first stage of rearrangement process is that the nitro group gradually moves away from the pyrazole ring nitrogen atom and close to the carbon atom.In this process, the interaction between nitro nitrogen atom and pyrazole ring nitrogen atoms gradually weakens, and that of nitrogen atoms gradually increases.Furthermore, the interaction between nitro and pyrazole ring is the weakest at TS1 period, the angle of nitro is the largest, and the length of O–N bond is the smallest, so that the negative electron of oxygen atom is assigned to the nitro nitrogen atom, while the nitro and pyrazole ring systems of electronic effects are gradually weakened,which make the phenomenon of electron delocalization of pyrazole ring nitrogen atoms weaken and the electronegativity of nitrogen atoms increase.For the second stage, the electrons of nitro group and pyrazole ring are gradually enhanced due to the decrease of angle between nitro group and pyrazole ring plane.Because the hydrogen atom is gradually away from carbon atoms and close to nitrogen atoms, the nitrogen atom gets more electrons from hydrogen and carbon atoms, thus the negative charge of nitrogen atom increases, and for the same reason the positive electricity of carbon and hydrogen atoms increases.

    Fig.4. NPA charges of migrating atoms and the connecting atoms of the (1, 3)-rearrangement

    Fig.5. NPA charges of migrating atoms and the connecting atoms of the (1, 5)-rearrangement

    Table 2. Calculated Frontier Orbital Energy of(1,5)-Rearrangement at the B3LYP/6-311G(d,p) Level

    3.3 Molecular electrostatic potentials and Frontier molecular orbital analysis

    The molecular electrostatic potential is the potential energy of a proton at a particular location near a molecule.In the figures, the blue and red parts represent positive and negative potential regions of the molecule, which correspond to the attraction and repulsion of protons, and the magnitude of this effect is represented by the depth of the color, so the greater the difference in color between the different regions of the molecule, the greater polarity of the molecule.From Figs.6 and 7 we can see that the polarity of each stage in the rearrangement process has a more obvious change, and the structural polarity of intermediate process is higher, and the polarity of molecular structure in the (1, 3)-rearrangement process is significantly higher than the molecular structure in the (1, 5)-rearrangement process.The reason for the above phenomenon can be attributed to the influence of molecular structure, as described in Figs.4 and 5 due to the transfer of nitro group and hydrogen atom during the reaction so that the charge distribution of the molecule changes, and for (1,5)-rearrangement, the electron-withdrawing effect of the nitro group on the 3-carbon atom makes the electron distribution of the system more uniform.

    Fig.6. 3D molecular electrostatic potential maps of each stage in the gas phase during the (1, 3)-rearrangement reaction, where dark blue denotes positive charge and dark red denotes negative charge

    Fig.7. 3D molecular electrostatic potential maps of each stage in the gas phase during the(1, 5)-rearrangement reaction, where dark blue denotes positive charge and dark red denotes negative charge

    The frontier molecular orbital energies which involve the highest occupied molecular orbital(HOMO) energies and the lowest unoccupied molecular orbital (LUMO) energies are known to play a crucial role in governing the chemical reactions.In several studies it is revealed that the band gap between the frontier molecular orbital energies(ε(HOMO –LUMO)) is an important stability index of the molecules[25–31].A large band gap implies high stability and small band gap implies low stability; in turn, high stability indicates low chemical reactivity and low stability indicates high reactivity.The frontier molecular orbitals of the rearrangement computed from the B3LYP/6-311G(d,p) level of theory are shown in Figs.8 and 9 and the band gap values obtained from the B3LYP/6-311G(d,p) level of theory are listed in Tables 1 and 2.From the above tables we can see that the ε(HOMO – LUMO) values of the reaction transition state and the intermediate are smaller than that of the reactants and products,indicating that the reactants and products have a higher stability than the intermediate process of rearrangement reactions.As shown in the above table,the band gap values of 1-nitropyrazole, 3-dinitropyrazole, 1,3-dinitropyrazole, and 3,5-dinitropyrazole calculated from the B3LYP/6-311G(d,p) level are 0.191020, 0.205017, 0.187336 and 0.187435 a.u.respectively.From the above changes in the value of ε(HOMO – LUMO), the positions and number of nitro groups are the key to the impact of ε(HOMO –LUMO) values.Furthermore, the band gap is highly correlative with the Hess-Schaad resonance energy per π-electron, a measure of thermodynamic stability due to the cyclic conjugation[32].This correlation means that thermodynamically stable compounds are also kinetically stable.Thus the stability order of the above molecules is as follows: 3-nitropyrazole >N-nitropyrazole > 3,5-dinitropyrazole > 1,3-dinitropyrazole.

    Fig.8. 3D frontier molecular orbital maps (HOMO and LUMO)of (1,3)-rearrangement computed at the B3LYP/6-311G(d,p) level

    Fig.9. 3D frontier molecular orbital maps (HOMO and LUMO)of (1,5)-rearrangement computed at the B3LYP/6-311G(d,p) level

    In order to explore the electronic structure and bonding characteristics of the compounds during the reactions, the orbital of each phase in the reaction process was systematically analyzed.The sum of squares of the atomic orbital coefficients is used to represent its contribution in the molecular orbital and normalized.The compounds are divided into the following sections: C, H, O, N(6), N(2) N(1), N(9).The calculation results are shown in Tables 3, 4 and Figures 10, 11.The compounds have the following bonding characteristics during the reaction: (1) In the frontier molecular orbitals, since the pyrazole ring has good conjugated delocalization, no matter which rearrangement reaction it is, the contribution of pyrazole ring to the entire orbital was greater than 70%.In the process of rearrangement, the com-position of carbon atom C is reduced while that of pyrazole N(1) and N(2) is significantly increased.(2)For the unoccupied molecular orbitals, the contribution of atoms to the molecular orbital is inconsistent with the occupied orbital.Nitro oxygen atoms O and nitrogen atom N(6) also occupy a higher composition.During rearrangement, the composition of O and N(6)atoms decreases, while the N(1), N(2) and C atoms increase.(3) Comparing various orbital compositions of HOMO and LUMO, it is easy to see that when the electrons are excited from HOMO to the LUMO orbital, the electrons of pyrazole ring carbon atoms and nitrogen atoms are mainly transferred to the oxygen and nitrogen atoms of the nitro group.

    Table 3. Calculated Frontier Orbital Composition of(1,3)-Rearrangement at the B3LYP/6-311G(d,p) Level

    Table 4. Calculated Frontier Orbital Composition of (1,5)-Rearrangement at the B3LYP/6-311G(d,p) Level

    Fig.10. Calculated frontier orbital composition of the (1,3)-rearrangement

    Fig.11. Calculated frontier orbital composition of the (1,5)-rearrangement

    3.4 Solvent effects

    It is well known that the rearrangement of nitropyrazole compounds often occurs in high-boiling solvents.In order to reflect the influence of solvent on the rearrangement reaction, the solvent effect is also explored by quantum chemistry.In the calculation results, we found that in addition to the nitro formation angle (O–N–O) with a significant change,the changes of other structural parameters are not obvious, so we only discuss the construction of the nitro formation angle.

    The geometric parameters of the molecules at each stage of the rearrangement reaction in different solvents are shown in Tables S5 and S6 (supporting information).Obviously, it can be seen from the table that the solution has little effect on the geometrical parameters of each stage of the rearrangement reaction, but the dipole moments at each stage have a significant change.It is indicated that the electron density of the molecular system has changed from different solvents.From Tables 5 and 6, compared with the gas phase, the increase in the dipole moment in the acetonitrile and ethanol solutions is obvious,but the increasing trend has no correlation with the change trend of the solvent polarity, and in the ethanol solution, the maximum dipole moment value occurs.For nitro formation angle (O–N–O), the presence of acetonitrile and ethanol has reduced the angle of nitro formation, but it is contrary to the change trend of the dipole moment, and the angle of nitro group in ethanol solution is the smallest.Here we can find that the maximum angle of nitrification angle corresponds to the minimum dipole moment,and reverses the smallest nitro angle corresponding to the maximum dipole moment.Therefore, the change of nitro formation angle (O–N–O) may be one of the reasons leading to the change of dipole moment.By comparing the two tables, it can be seen that the change of dipole moment of dinitropyrazole is smaller than that of mononitropyrazole in the same solvent.

    Table 5. Nitro Formation Angle (O–N–O) and Dipole Moments (D) of the (1,3)-Rearrangement Process at Different Stages in Various Solvents Using the SMD Implicit Solvation Model

    Table 6. Nitro Formation Angle (O–N–O) and Dipole Moments (D) of the (1,5)-Rearrangement Process at Different Stages in Various Solvents Using the SMD Implicit Solvation Model

    4 CONCLUSION

    As suggested by Jassen, the rearrangement reaction of N-nitropyrazoles involves the transfer of nitro group to form 3-H intermediates process and the rapid transfer of 3-H intermediate hydrogen atom to form 3-nitropyrazole process.The migration of nitro and hydrogen atoms during the rearrangement process is not carried out on the same side of the pyrazole ring plane, which can be attributed to the change of interaction between the migration group and pyrazole ring during the rearrangement reaction.The system structure and charge distribution change significantly.In the whole process of rearrangement,part of the negative charge of the molecular system is transferred to the migrating nitro group.For HOMO,the pyrazole ring contributes the most to the orbital composition, while for LUMO, the nitro group has a significant contribution.In addition to the nitro formation angle (O–N–O), the structure of the rearrangement reaction in the solvent has no significant change compared with that in the air, and when the reaction occurs in the ethanol, the nitrification angle is the smallest and the molecular dipole moment is the largest.

    REFERENCES

    (1) Larina, L.; Lopyrev, L.Nitroazoles: synthesis, structure and applications.Springer, New York 2009.

    (2) Zaitsev, A.A.; Dalinger, I.L.; Shevelev, S.A.Dinitropyrazoles.Russ.Chem.Rev.2009, 7, 589–627.

    (3) Herve, G.; Roussel, C.; Graindorg, H.Selective preparation of 3,4,5-trinitro-1H-pyrazole: a stable all-carbon-nitrated arene.Angew.Chem.Int.Ed.2010, 49, 3177–3181.

    (4) Zhang, Y.; Guo, Y.; Joo, Y.H.; Parrish, D.A.; Shreeve, J.M.3,4,5-Trinitropyrazole-based energetic salts.Chem.Eur.J.2010, 16, 10778–10784.

    (5) Kimler, B.F.; Mcdonald, T.; Cheng, C.C.; Podrebarac, E.G.; Mansfield, C.M.Development and testing of new hypoxic cell radiosensitizers.Radiology1979, 133, 515–517.

    (6) Kanishchev, M.I.; Korneeva, N.V.; Shevelev, S.A; Fainzil'Berg, A.A.Nitropyrazoles (review).Chem.Hetero.Com.1988, 24, 353–370.

    (7) Hüttel, R.; Büchele, F.über N-Nitro-pyrazole.Chem.Ber.1955, 88, 1586–1590.

    (8) Janssen, J.W.A.M.; Koeners, H.J.; Kruse, C.G.; Habraken, C.L.Pyrazoles.XII.Preparation of 3(5)-nitropyrazoles by thermal rearrangement of N-nitropyrazoles.J.Org.Chem.1973, 38, 1777–1782.

    (9) Janssen, J.W.A.M.; Habraken, C.L.Pyrazoles.VIII.Rearrangement of N-nitropyrazoles.Formation of 3-nitropyrazoles.J.Org.Chem.1971, 21,3081–3084.

    (10) Janssen, J.W.A.M.; Habraken, C.L.; Louw, R.On the mechanism of the thermal N-nitropyrazole rearrangement.Evidence for a [1,5] sigmatropic nitro migration.J.Org.Chem.1976, 41, 1758–1762.

    (11) Nageswara Rao, E.; Ravi, P.; Tewari, S.P.; Venugopal Rao, S.Experimental and theoretical studies on the structure and vibrational properties of nitropyrazoles.J.Mol.Struc.2013, 1043, 121–131.

    (12) Ravi, P.Experimental and DFT studies on the structure, infrared and Raman spectral properties of dinitropyrazoles.J.Mol.Struc.2015, 1079,433–447.

    (13) Chermahini, A.N.; Teimouri, A.Theoretical studies on proton transfer reaction of 3(5)-substituted pyrazoles.J.Chem.Sci.2014, 126, 273–281.

    (14) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.;Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.Jr.; Peralta, J.E.; Ogliaro, F.;Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.;Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts,R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, ?.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.Gaussian, Inc.:Gaussian 09, revision C.01.Wallingford CT 2009.

    (15) Becke, A.D.Density-functional thermochemistry.III.The role of exact exchange.J.Chem.Phys.1993, 98, 5648–5652.

    (16) Lee, C.; Yang, W.; Parr, R.G.Development of the colle-salvetti correlation energy formula into a functional of the electron density.Phys.Rev.B1988, 37, 785–789.

    (17) Gonzalez, C.; Schlegel, H.B.Reaction path following in mass-weighted internal coordinates.J.Phys.Chem.1990, 94, 5523–5527.

    (18) Gonzalez, C.; Schlegel, H.B.An improved algorithm for reaction path following.J.Chem.Phys.1989, 90, 2154–2161.

    (19) Reed, A.E.; Curtiss, L.A.; Weinhold, F.Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint.Chem.Rev.1988, 88,899-9 26.

    (20) Gledening, E.D.; Reed, A.E.; Carpenter, J.A.; Weinhold, F.NBO, version 3.1.ed.

    (21) Marenich, A.V.; Cramer, C.J.; Truhlar, D.G.Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.J.Phys.Chem.B2009, 113, 6378?6396.

    (22) Tarimici, C.; Schempp, E.N-nitropyrazole.ActaCrrystallogr.Sect.B1977, 33, 240–243.

    (23) Foces-Foces, C.; Llamas-Saiz, A.L.; Menendez, M.; Jagerovic, N.Structure of 3-nitropyrazole in solution and in the solid state.J.Phys.Org.Chem.1997, 10, 637–645.

    (24) Wang, Y.L.; Ji, Y.P.; Wang, B.Z.Analysis of crystal structure of 3,5-dinitropyrazole.Chem.Propell.Polym.Mater.2014, 12, 87–89.

    (25) Fukui, K.; Yonezawa, T.; Shingu, H.A molecular orbital theory of reactivity in aromatic hydrocarbons.J.Chem.Phys.1952, 20, 722–725.

    (26) Zhou, Z.; Parr, R.G.Activation hardness: new index for describing the orientation of electrophilic aromatic substitution.J.Am.Chem.Soc.1990,112, 5720–5724.

    (27) Pearson, R.G.Absolute electronegativity and hardness: applications to organic chemistry.J.Org.Chem.1989, 54, 1423–1430.

    (28) Hess Jr, B.A.; Schaad, L.J.Hueckel molecular orbital.pi.resonance energies.Benzenoid hydrocarbons.J.Am.Chem.Soc.1971, 93, 2413–2416.

    (29) Haddon, R.C.; Fukunaga, T.Unified theory of the thermodynamic and kinetic criteria of aromatic character in the [4n+2]annulenes.Tetra.Lett.1980, 21, 1191–1192.

    (30) Schmalz, T.G.; Seitz, W.A.; Klein, D.J.; Hite, G.E.Elemental carbon cages.J.Am.Chem.Soc.1988, 110, 1113–1127.

    (31) Zhang, C.; Shu, Y.; Huang, Y.; Zhao, X.; Dong, H.Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds.J.Phys.Chem.B2005, 109, 8978–8982.

    (32) Pearson, R.G.Chemical Hardness.Wiley-VCH.Weinheim 1997.

    人人妻人人澡人人爽人人夜夜| 97在线视频观看| 青草久久国产| 熟女av电影| 韩国精品一区二区三区| 国产片特级美女逼逼视频| 91在线精品国自产拍蜜月| 各种免费的搞黄视频| 亚洲美女视频黄频| 国产精品成人在线| 母亲3免费完整高清在线观看 | 国产深夜福利视频在线观看| 久久精品91蜜桃| 97人妻天天添夜夜摸| 亚洲va日本ⅴa欧美va伊人久久| 午夜日韩欧美国产| xxxhd国产人妻xxx| svipshipincom国产片| 18禁黄网站禁片午夜丰满| 免费看十八禁软件| 中文字幕人妻丝袜制服| 国产亚洲欧美在线一区二区| 黄色女人牲交| 一区二区日韩欧美中文字幕| 91成人精品电影| 国产野战对白在线观看| 涩涩av久久男人的天堂| 国产成人欧美| 国产精品一区二区精品视频观看| 91在线观看av| 国产成人精品久久二区二区免费| 伦理电影免费视频| 成年人黄色毛片网站| 黄片大片在线免费观看| 一级片免费观看大全| 国产精品久久视频播放| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品国产精品久久久不卡| 国产精品免费一区二区三区在线| avwww免费| av在线播放免费不卡| 日本 av在线| 日韩欧美一区视频在线观看| av欧美777| 日韩欧美一区视频在线观看| 久久精品国产亚洲av香蕉五月| 亚洲国产看品久久| 一级a爱片免费观看的视频| 丁香欧美五月| 99国产极品粉嫩在线观看| 在线视频色国产色| 伊人久久大香线蕉亚洲五| 欧美一区二区精品小视频在线| 午夜精品国产一区二区电影| 久久人人97超碰香蕉20202| 老熟妇仑乱视频hdxx| 99久久久亚洲精品蜜臀av| 久久久久久免费高清国产稀缺| 国产亚洲精品久久久久久毛片| 欧美成人午夜精品| 亚洲 欧美 日韩 在线 免费| 妹子高潮喷水视频| 亚洲精品国产区一区二| 纯流量卡能插随身wifi吗| 女人被躁到高潮嗷嗷叫费观| 国产成人欧美| 欧美一区二区精品小视频在线| 999久久久国产精品视频| 好男人电影高清在线观看| 久久久久久人人人人人| 悠悠久久av| 女人被躁到高潮嗷嗷叫费观| 国产三级在线视频| 人人妻,人人澡人人爽秒播| 新久久久久国产一级毛片| 波多野结衣高清无吗| 欧美+亚洲+日韩+国产| 国产三级在线视频| 国产av一区二区精品久久| 一a级毛片在线观看| 人人妻,人人澡人人爽秒播| 欧美日韩精品网址| 激情视频va一区二区三区| 麻豆久久精品国产亚洲av | 久久人妻福利社区极品人妻图片| 欧美成人性av电影在线观看| 大型av网站在线播放| 嫁个100分男人电影在线观看| 成年人黄色毛片网站| 午夜老司机福利片| 熟女少妇亚洲综合色aaa.| 搡老乐熟女国产| 免费在线观看日本一区| 丝袜美足系列| 欧美日韩瑟瑟在线播放| 久热爱精品视频在线9| 男人舔女人的私密视频| 村上凉子中文字幕在线| 悠悠久久av| 欧美日本亚洲视频在线播放| 在线观看一区二区三区| 亚洲第一青青草原| 天堂动漫精品| 国产精品自产拍在线观看55亚洲| 男女之事视频高清在线观看| 亚洲国产精品一区二区三区在线| 久久精品91无色码中文字幕| 久久九九热精品免费| 黄色片一级片一级黄色片| 性欧美人与动物交配| 正在播放国产对白刺激| 日日夜夜操网爽| 亚洲自偷自拍图片 自拍| 久热爱精品视频在线9| 亚洲全国av大片| 日韩 欧美 亚洲 中文字幕| 欧美老熟妇乱子伦牲交| 在线天堂中文资源库| 亚洲七黄色美女视频| 一区二区三区精品91| 性少妇av在线| 国产精品 欧美亚洲| 50天的宝宝边吃奶边哭怎么回事| 中文字幕高清在线视频| 九色亚洲精品在线播放| 少妇粗大呻吟视频| 一级a爱片免费观看的视频| 免费在线观看完整版高清| 欧美日韩中文字幕国产精品一区二区三区 | 欧美精品一区二区免费开放| 亚洲成人免费av在线播放| 欧美精品啪啪一区二区三区| 久久久久精品国产欧美久久久| 欧美中文日本在线观看视频| 极品人妻少妇av视频| 一级片'在线观看视频| 精品第一国产精品| 色播在线永久视频| 777久久人妻少妇嫩草av网站| 丝袜在线中文字幕| 亚洲成人免费av在线播放| 婷婷六月久久综合丁香| 99精品欧美一区二区三区四区| 91成年电影在线观看| 一级片免费观看大全| 久久性视频一级片| 国产国语露脸激情在线看| www.精华液| 熟女少妇亚洲综合色aaa.| 日日摸夜夜添夜夜添小说| 水蜜桃什么品种好| 国产乱人伦免费视频| 精品电影一区二区在线| 亚洲成人免费av在线播放| 在线永久观看黄色视频| 精品久久久久久久毛片微露脸| 亚洲精华国产精华精| 人人妻人人澡人人看| 成人18禁在线播放| 亚洲午夜理论影院| 成人黄色视频免费在线看| 免费人成视频x8x8入口观看| 久久性视频一级片| 亚洲免费av在线视频| 国产在线精品亚洲第一网站| 91九色精品人成在线观看| 国产亚洲av高清不卡| 午夜视频精品福利| 国产免费av片在线观看野外av| 国产亚洲欧美在线一区二区| 久久久久久久久久久久大奶| 亚洲人成电影免费在线| 法律面前人人平等表现在哪些方面| 搡老乐熟女国产| 国产亚洲精品一区二区www| 妹子高潮喷水视频| 中文亚洲av片在线观看爽| 日本黄色视频三级网站网址| 国产精品影院久久| 男女午夜视频在线观看| 国产在线精品亚洲第一网站| 妹子高潮喷水视频| 成人精品一区二区免费| 国产免费男女视频| 啪啪无遮挡十八禁网站| 国产亚洲精品久久久久5区| 后天国语完整版免费观看| 黑人猛操日本美女一级片| 女人爽到高潮嗷嗷叫在线视频| 亚洲一区二区三区色噜噜 | 免费在线观看完整版高清| 性色av乱码一区二区三区2| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国产一级毛片高清牌| 亚洲国产欧美网| 真人做人爱边吃奶动态| 免费日韩欧美在线观看| 女同久久另类99精品国产91| 人人妻,人人澡人人爽秒播| 亚洲欧美日韩无卡精品| 国产精品九九99| 久久精品成人免费网站| 国产欧美日韩综合在线一区二区| 国产精品永久免费网站| 看片在线看免费视频| 在线观看免费视频日本深夜| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲男人天堂网一区| 免费看十八禁软件| 99久久综合精品五月天人人| 在线国产一区二区在线| 久久婷婷成人综合色麻豆| 亚洲视频免费观看视频| 久久精品国产亚洲av高清一级| 欧美丝袜亚洲另类 | 夜夜夜夜夜久久久久| 日本三级黄在线观看| 又黄又粗又硬又大视频| 嫩草影视91久久| 1024香蕉在线观看| a级毛片在线看网站| 久久久国产成人精品二区 | 99热只有精品国产| 免费人成视频x8x8入口观看| e午夜精品久久久久久久| 99精品在免费线老司机午夜| 久久香蕉精品热| av在线播放免费不卡| 18禁观看日本| av天堂在线播放| av有码第一页| 国产极品粉嫩免费观看在线| 久久久久久久久中文| 婷婷精品国产亚洲av在线| 成在线人永久免费视频| 久久久国产成人精品二区 | 免费女性裸体啪啪无遮挡网站| 亚洲成国产人片在线观看| 久久精品亚洲熟妇少妇任你| 色在线成人网| 亚洲性夜色夜夜综合| 国产单亲对白刺激| 欧美激情久久久久久爽电影 | 精品国产美女av久久久久小说| 色精品久久人妻99蜜桃| 久久久久精品国产欧美久久久| 亚洲三区欧美一区| 国产一区二区在线av高清观看| 色婷婷av一区二区三区视频| 亚洲专区国产一区二区| 黄色视频,在线免费观看| 亚洲国产中文字幕在线视频| 亚洲国产毛片av蜜桃av| 国产成人一区二区三区免费视频网站| 一二三四在线观看免费中文在| 亚洲性夜色夜夜综合| 我的亚洲天堂| 国产欧美日韩一区二区三| 亚洲成国产人片在线观看| 成人av一区二区三区在线看| 丝袜人妻中文字幕| 欧美日韩精品网址| 亚洲一码二码三码区别大吗| 成人永久免费在线观看视频| 亚洲熟妇中文字幕五十中出 | 国产又爽黄色视频| 久久九九热精品免费| 亚洲av五月六月丁香网| 黄色视频,在线免费观看| 精品国产乱子伦一区二区三区| 日本 av在线| e午夜精品久久久久久久| 丝袜在线中文字幕| 中文欧美无线码| 女性被躁到高潮视频| 久久久国产精品麻豆| 国产精品一区二区免费欧美| 丰满的人妻完整版| 多毛熟女@视频| 精品电影一区二区在线| 成人手机av| 一区二区三区国产精品乱码| 19禁男女啪啪无遮挡网站| 级片在线观看| 80岁老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 亚洲精品一区av在线观看| 久久香蕉激情| 每晚都被弄得嗷嗷叫到高潮| 香蕉国产在线看| av免费在线观看网站| 免费观看人在逋| 精品高清国产在线一区| 成人免费观看视频高清| 欧美大码av| 亚洲成人免费av在线播放| 女警被强在线播放| 少妇粗大呻吟视频| 别揉我奶头~嗯~啊~动态视频| 欧美精品亚洲一区二区| 国产成人精品久久二区二区91| 99久久99久久久精品蜜桃| 成年人免费黄色播放视频| 久久影院123| 男女做爰动态图高潮gif福利片 | 亚洲在线自拍视频| 在线免费观看的www视频| 午夜成年电影在线免费观看| 久久精品aⅴ一区二区三区四区| 狂野欧美激情性xxxx| 日本五十路高清| 免费在线观看黄色视频的| 热re99久久精品国产66热6| 欧美日韩乱码在线| 超碰成人久久| 18禁美女被吸乳视频| 热re99久久国产66热| 日韩欧美三级三区| 人人澡人人妻人| 91麻豆精品激情在线观看国产 | 十八禁网站免费在线| 精品久久久久久电影网| 老司机靠b影院| 电影成人av| 好看av亚洲va欧美ⅴa在| 国产精品一区二区三区四区久久 | 久久人人精品亚洲av| 欧美精品一区二区免费开放| 亚洲五月色婷婷综合| 一夜夜www| 99精品在免费线老司机午夜| 88av欧美| 国产成人一区二区三区免费视频网站| 妹子高潮喷水视频| 十八禁人妻一区二区| 不卡av一区二区三区| 亚洲精品美女久久av网站| 免费av中文字幕在线| 在线视频色国产色| 亚洲成a人片在线一区二区| 亚洲va日本ⅴa欧美va伊人久久| 久久香蕉国产精品| 日日摸夜夜添夜夜添小说| 国产精品二区激情视频| 精品午夜福利视频在线观看一区| 国产在线观看jvid| 91麻豆av在线| 一区福利在线观看| 免费av中文字幕在线| 免费看a级黄色片| 精品无人区乱码1区二区| www.自偷自拍.com| 日本wwww免费看| 嫩草影视91久久| 人人妻人人澡人人看| 天天躁夜夜躁狠狠躁躁| 免费在线观看亚洲国产| 亚洲成人精品中文字幕电影 | 99久久久亚洲精品蜜臀av| 亚洲色图 男人天堂 中文字幕| 午夜两性在线视频| 男人操女人黄网站| 大型黄色视频在线免费观看| 亚洲欧美激情综合另类| 亚洲自偷自拍图片 自拍| 少妇裸体淫交视频免费看高清 | 丁香六月欧美| 久久久国产精品麻豆| 在线播放国产精品三级| 日韩欧美三级三区| 精品国内亚洲2022精品成人| 亚洲av日韩精品久久久久久密| 真人做人爱边吃奶动态| 国产av精品麻豆| 91九色精品人成在线观看| 99精国产麻豆久久婷婷| 日韩国内少妇激情av| 国产有黄有色有爽视频| 岛国在线观看网站| 18美女黄网站色大片免费观看| 变态另类成人亚洲欧美熟女 | 久久久久精品国产欧美久久久| 国产免费av片在线观看野外av| 首页视频小说图片口味搜索| 天天影视国产精品| 亚洲精品国产一区二区精华液| 精品一品国产午夜福利视频| 中文字幕最新亚洲高清| 久久国产乱子伦精品免费另类| 人人妻人人澡人人看| 亚洲av成人不卡在线观看播放网| 成人国语在线视频| 午夜福利欧美成人| 天堂影院成人在线观看| 欧美黄色片欧美黄色片| 国产99久久九九免费精品| 国产精品九九99| 男男h啪啪无遮挡| 亚洲狠狠婷婷综合久久图片| 99国产精品一区二区三区| 欧美成人性av电影在线观看| 国产精品1区2区在线观看.| 丝袜人妻中文字幕| 黄色 视频免费看| 99精品久久久久人妻精品| 久久久久久人人人人人| 亚洲成a人片在线一区二区| 欧美av亚洲av综合av国产av| 午夜成年电影在线免费观看| 99热只有精品国产| 久久国产亚洲av麻豆专区| 午夜福利在线免费观看网站| 国产精品乱码一区二三区的特点 | 高清av免费在线| 男女下面进入的视频免费午夜 | 1024视频免费在线观看| 天堂俺去俺来也www色官网| 91国产中文字幕| 久久婷婷成人综合色麻豆| 国产极品粉嫩免费观看在线| 亚洲自拍偷在线| 成人亚洲精品av一区二区 | 高潮久久久久久久久久久不卡| 99国产精品免费福利视频| 丁香六月欧美| 欧美日韩乱码在线| 国产精品免费视频内射| 波多野结衣一区麻豆| 欧美+亚洲+日韩+国产| 久久久久久亚洲精品国产蜜桃av| 一区福利在线观看| 人人澡人人妻人| 国产三级黄色录像| 香蕉久久夜色| 老鸭窝网址在线观看| 亚洲三区欧美一区| 一进一出抽搐动态| 在线观看一区二区三区激情| 国产片内射在线| 亚洲久久久国产精品| 国产成人免费无遮挡视频| 五月开心婷婷网| 国产伦一二天堂av在线观看| 男女之事视频高清在线观看| 欧美精品亚洲一区二区| 波多野结衣一区麻豆| 乱人伦中国视频| 在线av久久热| 国产免费av片在线观看野外av| 国产精品一区二区免费欧美| 午夜福利免费观看在线| 久久久久国产精品人妻aⅴ院| 一级,二级,三级黄色视频| 国产99白浆流出| 国产成人av教育| 欧美av亚洲av综合av国产av| 伦理电影免费视频| 亚洲中文av在线| 搡老熟女国产l中国老女人| 女人精品久久久久毛片| 日本五十路高清| 婷婷丁香在线五月| 18禁国产床啪视频网站| 国产激情欧美一区二区| 90打野战视频偷拍视频| 欧美激情久久久久久爽电影 | 亚洲第一欧美日韩一区二区三区| 男人舔女人下体高潮全视频| 精品第一国产精品| 久久精品亚洲av国产电影网| 嫩草影视91久久| 99久久综合精品五月天人人| 久久天堂一区二区三区四区| 一级毛片精品| 满18在线观看网站| 精品一区二区三区视频在线观看免费 | 国产精品久久电影中文字幕| 亚洲成av片中文字幕在线观看| 看黄色毛片网站| 性色av乱码一区二区三区2| 在线观看66精品国产| 欧美色视频一区免费| 国产三级在线视频| 正在播放国产对白刺激| 久久精品人人爽人人爽视色| 激情在线观看视频在线高清| 波多野结衣一区麻豆| 男女午夜视频在线观看| 国产高清videossex| 日韩三级视频一区二区三区| 不卡av一区二区三区| 嫁个100分男人电影在线观看| www.自偷自拍.com| 欧美中文综合在线视频| 亚洲精品粉嫩美女一区| 岛国在线观看网站| 成人黄色视频免费在线看| 亚洲自拍偷在线| 中文字幕最新亚洲高清| 精品久久久久久久毛片微露脸| 成年版毛片免费区| 欧美日韩一级在线毛片| 一级a爱片免费观看的视频| 久久久久精品国产欧美久久久| 国产一区二区在线av高清观看| 亚洲va日本ⅴa欧美va伊人久久| 超色免费av| 黑人巨大精品欧美一区二区蜜桃| 法律面前人人平等表现在哪些方面| 老汉色av国产亚洲站长工具| 国产精品乱码一区二三区的特点 | 9色porny在线观看| 国内毛片毛片毛片毛片毛片| 久久香蕉精品热| 免费在线观看亚洲国产| 另类亚洲欧美激情| 在线国产一区二区在线| 麻豆av在线久日| 韩国精品一区二区三区| 免费久久久久久久精品成人欧美视频| 成年人免费黄色播放视频| 热99国产精品久久久久久7| 大香蕉久久成人网| 亚洲成人精品中文字幕电影 | 国产精品香港三级国产av潘金莲| 一级毛片女人18水好多| 狠狠狠狠99中文字幕| 999精品在线视频| 中出人妻视频一区二区| 国产欧美日韩精品亚洲av| 国产精品久久久久成人av| 国产色视频综合| 天天躁狠狠躁夜夜躁狠狠躁| 淫妇啪啪啪对白视频| 久久人妻熟女aⅴ| 精品一区二区三区视频在线观看免费 | 亚洲av成人一区二区三| 又大又爽又粗| 亚洲精品在线观看二区| 级片在线观看| 叶爱在线成人免费视频播放| 久久精品91蜜桃| 两人在一起打扑克的视频| 久久中文看片网| 成人永久免费在线观看视频| 欧美精品一区二区免费开放| 巨乳人妻的诱惑在线观看| 夜夜躁狠狠躁天天躁| 亚洲avbb在线观看| 免费高清视频大片| 曰老女人黄片| 热99re8久久精品国产| 日韩欧美一区二区三区在线观看| 亚洲午夜理论影院| 久久久久九九精品影院| 亚洲成人精品中文字幕电影 | 亚洲 国产 在线| √禁漫天堂资源中文www| 99国产精品免费福利视频| 色婷婷久久久亚洲欧美| 久久久国产成人免费| avwww免费| 久久久久久久久中文| 日韩高清综合在线| 无遮挡黄片免费观看| 亚洲在线自拍视频| 国产成人精品无人区| 天天躁夜夜躁狠狠躁躁| 夫妻午夜视频| 十八禁网站免费在线| 成人精品一区二区免费| 91av网站免费观看| 国产精品免费视频内射| 男人舔女人的私密视频| 久久人妻福利社区极品人妻图片| 美女国产高潮福利片在线看| 国产精品久久久久久人妻精品电影| 国产乱人伦免费视频| 日韩高清综合在线| 午夜精品国产一区二区电影| 女人精品久久久久毛片| 亚洲国产精品sss在线观看 | 久99久视频精品免费| 国产精品影院久久| x7x7x7水蜜桃| 国产成人系列免费观看| 日韩免费高清中文字幕av| 美女午夜性视频免费| 久久热在线av| 99精国产麻豆久久婷婷| 日韩精品中文字幕看吧| 大香蕉久久成人网| 大型黄色视频在线免费观看| 女人被狂操c到高潮| 婷婷六月久久综合丁香| 成人18禁高潮啪啪吃奶动态图| 午夜免费观看网址| 一级毛片高清免费大全| 免费搜索国产男女视频| 欧美成人午夜精品| 国产欧美日韩一区二区精品| 久久欧美精品欧美久久欧美| 婷婷丁香在线五月| 久久精品国产清高在天天线| www.熟女人妻精品国产| 久久香蕉国产精品| www日本在线高清视频| 日韩高清综合在线| 男人舔女人的私密视频| 大码成人一级视频| 免费在线观看完整版高清| 99国产精品99久久久久| 亚洲熟妇熟女久久| 国产亚洲精品综合一区在线观看 | 18禁黄网站禁片午夜丰满|