李麗春,劉書貴,尹怡,鄭光明,馬麗莎,戴曉欣,單奇,趙城
(中國水產(chǎn)科學研究院珠江水產(chǎn)研究所,農(nóng)業(yè)部水產(chǎn)品質(zhì)量安全風險評估實驗室(廣州),農(nóng)業(yè)部休閑漁業(yè)重點實驗室,廣東廣州 510380)
擬除蟲菊酯類農(nóng)藥(Pyrethroids)是一類高效廣譜、低毒低殘留且可生物降解的新型殺蟲劑,廣泛運用于農(nóng)業(yè)、林業(yè)和漁業(yè)生產(chǎn)中[1,2]。農(nóng)業(yè)和林業(yè)生產(chǎn)中使用的擬除蟲菊酯類農(nóng)藥隨農(nóng)田排水和地表徑流等進入水體,嚴重破壞水生生態(tài)系統(tǒng)結(jié)構(gòu)和功能,并通過食物鏈進入人體,給人類健康帶來嚴重隱患[1,3]。隨著水產(chǎn)品中農(nóng)藥殘留問題的日趨嚴重,歐盟規(guī)定了水產(chǎn)品中氯氰菊酯最高殘留量為50 μg/kg,溴氰菊酯為10μg/kg[4]。日本“肯定列表制度”中規(guī)定了鮭形目:大馬哈魚(Oncorhynchus keta)和虹鱒(Oncorhynchusmykiss)等中氯氰菊酯、溴氰菊酯最高殘留限量為30 μg/kg,其他魚及水生動物均為 10 μg/kg[5],中國農(nóng)業(yè)部 235號公告也規(guī)定魚肌肉中溴氰菊酯最大殘留限量為 30μg/kg[6]。目前水產(chǎn)品中農(nóng)藥殘留主要集中在有機磷和有機氯農(nóng)藥[7~12],菊酯類農(nóng)藥研究較少,其殘留檢測方法主要有氣相色譜法(GC)[15~17]、氣相色譜質(zhì)譜法(GC-MS)[13~16]、高效液相色譜法(HPLC)[17~20]和酶聯(lián)免疫分析方法[21],大多采用層析柱法,前處理方法繁瑣,檢測靈敏度低,難以滿足越來越嚴格的限量要求。因此建立水產(chǎn)品中擬除蟲菊酯類農(nóng)藥簡單、快速、準確的測定方法具有重要的現(xiàn)實意義,可為水產(chǎn)品中擬除蟲菊酯類農(nóng)藥殘留量的快速測定及其藥代動力學和風險評估研究提供技術(shù)支持。
基質(zhì)效應(yīng)主要指試樣中的非待測組分影響待測物濃度或質(zhì)量測定的準確度,引起待測物響應(yīng)值增加或減少的現(xiàn)象[22~24]。水產(chǎn)品中蛋白質(zhì)和脂肪等雜質(zhì)較復雜,容易引起基質(zhì)增強或基質(zhì)抑制效應(yīng)。研究表明樣品提取[25]、固相萃取凈化[26]、同位素標記[27,28]和去除基質(zhì)中磷脂等可以有效減少或者消除基質(zhì)效應(yīng)。目前農(nóng)藥殘留分析的基質(zhì)效應(yīng)研究大多在蔬菜、谷物和水果中[29~37],水產(chǎn)品中擬除蟲菊酯類農(nóng)藥殘留測定的基質(zhì)效應(yīng)的研究尚未見報道。為了確保水產(chǎn)品中菊酯類農(nóng)藥檢測的準確性,本研究擬建立氣相色譜法檢測水產(chǎn)品中9種擬除蟲菊酯的方法,并對其基質(zhì)效應(yīng)進行探討,為有效消除或補償農(nóng)藥殘留測定中的基質(zhì)效應(yīng)提供理論依據(jù),為擬除蟲菊酯類農(nóng)藥在水產(chǎn)品中的準確定量分析提供技術(shù)支持。
1.1 材料和試劑
擬除蟲菊酯類農(nóng)藥 9種,分別為:七氟菊酯(Tefluthrin)、三氟氯氰菊酯(Cyhalothrin)、聯(lián)苯菊酯(Bifenthrin)、氯菊酯(Permethrin)、氟氯氰菊酯(Cyfluthrin)、甲氰菊酯(Fenpropathrin)、氯氰菊酯(Cypermethrin)、氰戊菊酯(Fenvalerate)和溴氰菊酯(Deltamethrin),純度為 99.0%~99.8%,德國Dr.Ehrenstorfer公司;乙腈(色譜純)和正己烷(色譜純),韓國Honeywell Burdick & Jackson公司;無水硫酸鎂(分析純)和氯化鈉(分析純),國藥集團化學試劑有限公司;N-丙基乙二胺(PSA,40~60 μm)和中性氧化鋁(100~300目),天津博納艾杰爾科技公司;水產(chǎn)品基質(zhì)分別為:羅非魚(Oreochromis spp)、草魚(Ctenopharyngodon idellus)、鯽魚(Carassius auratus)、對蝦(Penaeus orientalis)和鰱魚(Hypophthalmichthys molitrix),購買于當?shù)厮a(chǎn)品市場,樣品購回后取肌肉組織勻漿-18 ℃保存待用。
1.2 儀器設(shè)備
氣相色譜儀(Agilent 7890A),配備63Ni-ECD檢測器,HP-5(5%苯基甲基聚硅氧烷)毛細管色譜柱(30 m×0.32 mm×0.25 μm),天平(XS5003SXDR),氮吹儀(N-EVAP-112,USA),離心機(TDL-5-A),漩渦振蕩器(MS3,IKA,Germany)及其他常規(guī)器皿等。
1.3 標準溶液的配制
分別準確稱取七氟菊酯、三氟氯氰菊酯、聯(lián)苯菊酯、氯菊酯、氟氯氰菊酯、甲氰菊酯、氯氰菊酯、氰戊菊酯和溴氰菊酯標準品 10.0 mg,用正己烷定容至10 mL,配制成1.0 mg/mL單標標準儲備液。分別移取100 μL 9種菊酯類農(nóng)藥單標標準儲備液于同一容量瓶中,用正己烷定容至10 mL配制成10 μg/mL混合標準溶液于-20 ℃避光保存。采用系列稀釋法將混合標準溶液配制成 2.5、5.0、10、50、100、200、500和750 ng/mL的系列工作溶液備用。
1.4 前處理方法
準確稱取混合均勻的基質(zhì)樣品5.0±0.1 g,加入10 mL乙腈、2.0 g無水硫酸鎂和1.0 g氯化鈉,渦旋振蕩提取1 min,以5000 r/min離心5 min,上層提取液轉(zhuǎn)入裝有PSA 200 mg、中性氧化鋁300 mg和無水硫酸鎂300 mg的離心管中,剩余殘渣再用5 mL乙腈提取一次,合并提取液,渦旋振蕩1 min,然后5000 r/min離心5 min,上層凈化液,轉(zhuǎn)移至50 mL玻璃指型管中,氮氣吹干,用1 mL正己烷定容,過0.22 μm微孔濾膜待氣相色譜儀檢測。
1.5 氣相色譜條件
氣相色譜儀7890A(Agilent),63Ni-ECD檢測器,色譜柱為 HP-5毛細管柱,(5%苯基甲基聚硅氧烷),30 m×0.32 mm×0.25 μm;載氣為99.999%高純氮氣,流速為1.5 mL/min。進樣口溫度為270 ℃,進樣量1 μL,不分流進樣;柱溫程序為初始溫度160 ℃,維持3 min,以30 ℃/min升至250 ℃,維持0 min,再以7.5 ℃/min升至 280 ℃,保持 5 min。柱流速為 2.5 mL/min (恒定流量)。檢測器溫度為300 ℃,尾吹氣流速為25 mL/min。
1.6 基質(zhì)效應(yīng)
采用基質(zhì)提取后加標法分析基質(zhì)種類、基質(zhì)濃度和目標分析物濃度對基質(zhì)效應(yīng)的影響,分別測定空白基質(zhì)提取液與純?nèi)軇┲型瑵舛饶繕宋锏捻憫?yīng)強度,通過二者峰面積的相對比值評價基質(zhì)效應(yīng)(Matrix effect,ME)[33],即ME=基質(zhì)中目標物峰面積/溶劑中目標物峰面積。如果ME大于1.0,說明基質(zhì)對目標化合物具有增強響應(yīng)強度的作用,如果ME小于1.0,說明基質(zhì)對目標化合物具有抑制其響應(yīng)強度的作用;如果ME等于1.0,則說明基質(zhì)對目標化合物無影響,即不存在基質(zhì)效應(yīng);ME偏離 1.0越大說明基質(zhì)效應(yīng)越強,ME越接近1.0,則表明基質(zhì)效應(yīng)越小[38~43]。
1.7 數(shù)據(jù)統(tǒng)計分析
本文中實驗數(shù)據(jù)采用Excel 2016計算平均值、標準差和相對標準偏差等,并將每個處理6組數(shù)據(jù)進行加權(quán)平均后采用GraphPad Prism 5作折線圖和柱形圖比較分析。
2.1 線性范圍、檢測限和定量限
采用系列稀釋法配制不同濃度的擬除蟲菊酯混合標準溶液,按照本方法確定的色譜條件進行測定,以峰面積為縱坐標Y,濃度為橫坐標X建立標準曲線,獲得其線性方程及相關(guān)系數(shù)(表1)。在濃度為5.0~750 ng/mL范圍內(nèi)聯(lián)苯菊酯、甲氰菊酯、三氟氯氰菊酯、氟氯氰菊酯、氯氰菊酯、氰戊菊酯和溴氰菊酯線性良好,相關(guān)系數(shù)在0.9996~0.9998之間;在濃度為2.5~750 ng/mL范圍內(nèi)七氟菊酯線性良好,相關(guān)系數(shù)為0.9999;在濃度為10~750 ng/mL范圍內(nèi)氯菊酯線性良好,相關(guān)系數(shù)為0.9998。分別以性噪比(S/N)等于3和10計算方法中農(nóng)藥的檢出限(LOD)和定量限(LOQ)。聯(lián)苯菊酯、甲氰菊酯、三氟氯氰菊酯、氟氯氰菊酯、氯氰菊酯、氰戊菊酯和溴氰菊酯LOD和LOQ分別為1.0 μg/kg和3.0 μg/kg;七氟菊酯LOD和LOQ分別為0.5 μg/kg和2.0 μg/kg;氯菊酯LOD和LOQ分別為2.0 μg/kg 和 5.0 μg/kg。
表1 9種菊酯類農(nóng)藥線性方程、相關(guān)系數(shù)、檢測限和定量限Table 1 Linear equation, correlation coefficient, LOD and LOQ for 9 pyrethroid pesticides
2.2 回收率和精密度
采用基質(zhì)加標的方法分別考察了 5.0、50和100μg/kg三個濃度水平的加標回收率,每個水平設(shè)置 6次重復,并對其加標回收率及日內(nèi)精密度和日間精密度進行了測定,測定結(jié)果見表2和表3。由表2和表3可知,9種擬除蟲菊酯類農(nóng)藥在添加濃度為 5.0、50和100 μg/kg三個水平下,在5種水產(chǎn)品中平均加標回收率在80.1±2.95%~116±2.45%(n=6),日內(nèi)精密度和日間精密度分別為 0.272%~10.7%(n=6)和0.164%~12.8%(n=6)。其中低濃度水平下回收率明顯較高濃度水平高,可能是由于低濃度下存在較強的基質(zhì)增強效應(yīng)引起。該方法檢測水產(chǎn)品中9種菊酯類農(nóng)藥前處理操作簡單快捷,溶劑用量少,回收率和精密度較好,在儀器穩(wěn)定條件下該方法完全滿足國內(nèi)外對水產(chǎn)品中擬除蟲菊酯類農(nóng)藥殘留檢測的要求。
表2 9種擬除蟲菊酯類農(nóng)藥在5種水產(chǎn)品中日內(nèi)加標回收率和精密度Table 2 The intra-day recoveries and precisions of 9 pyrethroid pesticides in 5 aquatic products (n=6)
七氟菊酯50 88.9±4.63 5.21 96.3±3.43 3.56聯(lián)苯菊酯 106±4.00 3.78 84.9±3.64 4.29甲氰菊酯 101±3.57 3.53 83.7±3.77 4.51三氟氯氰菊酯 89.3±0.41 0.463 90.4±0.372 0.414氯菊酯 98.2±1.14 1.16 84.4±3.07 3.63氟氯氰菊酯 97.0±4.59 4.73 84.9±3.73 4.39氯氰菊酯 91.2±5.44 5.97 89.5±4.58 5.11氰戊菊酯 93.1±0.68 0.73 92.3±0.713 0.772溴氰菊酯 92.9±2.96 3.19 89.4±0.951 1.07七氟菊酯100 90.6±3.69 4.07 87.2±2.84 3.26聯(lián)苯菊酯 101±5.45 5.38 90.3±3.59 3.98甲氰菊酯 101±4.05 4.03 86.4±3.20 3.70三氟氯氰菊酯 90.4±1.04 1.15 83.1±1.55 1.87氯菊酯 96.4±2.46 2.55 85.3±2.36 2.77氟氯氰菊酯 97.2±2.96 3.05 84.8±1.20 1.42氯氰菊酯 89.6±1.96 2.18 85.1±2.08 2.45氰戊菊酯 92.9±0.853 0.913 84.4±2.60 3.09溴氰菊酯 92.9±2.06 2.22 91.4±2.46 2.69
表3 9種擬除蟲菊酯類農(nóng)藥在5種水產(chǎn)品中日間加標回收率和精密度Table 3 The inter-day recoveries and precisions of 9 pyrethroid pesticides in 5 aquatic products (n=6)
七氟菊酯100 92.7±3.04 3.28 97.7±4.41 4.51 86.0±2.50 2.01聯(lián)苯菊酯 99.2±2.42 2.42 95.9±3.71 3.87 105±2.12 1.36甲氰菊酯 93.5±3.64 3.89 94.3±2.98 3.16 94.1±1.28 4.85三氟氯氰菊酯 85.5±2.64 3.09 85.2±2.76 3.23 87.8±4.26 1.32氯菊酯 101±2.63 2.60 93.7±3.47 3.70 91.6±1.21 1.37氟氯氰菊酯 88.2±1.12 1.27 91.0±0.828 0.912 91.3±1.25 4.09氯氰菊酯 91.7±1.67 1.82 92.2±2.22 2.40 90.8±3.71 2.16氰戊菊酯 90.1±1.12 1.24 104±4.10 3.93 86.2±1.86 2.53溴氰菊酯 89.1±1.46 1.64 88.9±2.26 2.55 89.7±2.27 2.01化合物 添加濃度/(μg/kg) 羅非魚 對蝦回收率/% RSD/% 回收率/% RSD/%七氟菊酯5.0 112±10.3 9.23 95.7±2.57 2.68聯(lián)苯菊酯 113±7.62 6.77 88.4±7.11 8.04甲氰菊酯 105±4.29 4.10 97.7±1.17 1.20三氟氯氰菊酯 112±4.35 3.87 90.2±0.327 0.367氯菊酯 102±6.25 6.16 107±1.28 1.20氟氯氰菊酯 106±6.20 5.86 112±8.79 7.85氯氰菊酯 108±13.8 12.8 101±7.03 6.96氰戊菊酯 100±7.22 7.20 88.2±2.04 2.32溴氰菊酯 102±10.0 9.85 91.6±4.40 4.80七氟菊酯50 92.0±2.56 2.78 103±5.41 5.24聯(lián)苯菊酯 102±4.88 4.78 81.6±2.77 3.40甲氰菊酯 101±3.97 3.92 97.8±3.27 3.35三氟氯氰菊酯 90.2±2.50 2.77 87.0±2.13 2.44氯菊酯 100±3.80 3.79 80.1±2.95 3.69氟氯氰菊酯 96.8±1.43 1.47 92.0±0.248 0.272氯氰菊酯 98.6±7.60 7.71 94.2±6.93 7.36氰戊菊酯 93.6±0.704 0.751 92.2±0.799 0.871溴氰菊酯 92.7±2.34 2.52 86.1±1.90 2.21七氟菊酯100 91.1±2.20 2.42 89.0±3.06 3.43聯(lián)苯菊酯 101±3.92 3.86 92.2±1.93 2.10甲氰菊酯 100±3.12 3.11 93.7±8.48 9.05三氟氯氰菊酯 89.9±2.81 3.13 101±2.13 2.12氯菊酯 98.5±3.15 3.20 88.6±3.71 4.19氟氯氰菊酯 99.0±1.20 1.21 84.1±1.78 2.12氯氰菊酯 92.1±8.25 8.97 86.3±4.54 5.26氰戊菊酯 93.6±0.62 0.662 99.4±5.91 5.94溴氰菊酯 94.6±1.64 1.73 84.8±6.18 7.29
2.3 基質(zhì)效應(yīng)
2.3.1 基質(zhì)種類對基質(zhì)效應(yīng)的影響
比較同一目標物濃度(100 ng/mL)下9種菊酯類農(nóng)藥在草魚、鯽魚、鰱魚、羅非魚和對蝦5種水產(chǎn)品中的基質(zhì)效應(yīng),分析基質(zhì)種類對基質(zhì)效應(yīng)的影響。
本文采用基質(zhì)提取后加標法通過水產(chǎn)品空白基質(zhì)提取液與純?nèi)軇┲型瑵舛饶繕嘶衔锏捻憫?yīng)強度(峰面積)的比值來評價基質(zhì)效應(yīng)(ME),分析了基質(zhì)種類、基質(zhì)濃度和目標分析物內(nèi)濃度對基質(zhì)效應(yīng)的影響。同一濃度(100 ng/mL)的9種擬除蟲菊酯類農(nóng)藥在5種水產(chǎn)品中表現(xiàn)出不同的基質(zhì)效應(yīng),其中七氟菊酯受基質(zhì)種類的影響較小,在5種水產(chǎn)品中七氟菊酯基質(zhì)效應(yīng)在0.948~1.00之間,存在較弱的基質(zhì)抑制效應(yīng),在測定水產(chǎn)品中七氟菊酯時可適當忽略基質(zhì)效應(yīng)的影響。除七氟菊酯外,其他8種菊酯類農(nóng)藥均表現(xiàn)不同程度的基質(zhì)增強效應(yīng)。三氟氯氰菊酯的基質(zhì)效應(yīng)在1.05~1.21之間,表現(xiàn)為較弱的基質(zhì)增強效應(yīng),且基質(zhì)種類對其基質(zhì)效應(yīng)的影響較弱?;|(zhì)種類對聯(lián)苯菊酯、氯菊酯、氟氯氰菊酯和氯氰菊酯的基質(zhì)效應(yīng)影響較大,但草魚和鯽魚對9種菊酯類農(nóng)藥的基質(zhì)效應(yīng)影響不明顯,其基質(zhì)效應(yīng)在0.906~1.30之間在羅非魚基質(zhì)中氟氯氰菊酯基質(zhì)效應(yīng)最低為1.01,而氯菊酯基質(zhì)效應(yīng)則最大為1.86;對蝦中氯氰菊酯基質(zhì)效應(yīng)達到2.45,聯(lián)苯菊酯在鰱魚中基質(zhì)效應(yīng)達到1.88。因此建議在檢測水產(chǎn)品中擬除蟲菊酯類農(nóng)藥時,應(yīng)采用基質(zhì)匹配標準曲線法來減弱或消除基質(zhì)效應(yīng)對檢測結(jié)果的影響。
圖1 5種水產(chǎn)品基質(zhì)中9種擬除蟲菊酯類農(nóng)藥(100 ng/mL)的基質(zhì)效應(yīng)Fig.1 Matrix effects of 9 pyrethroid pesticides (100 ng/mL) in 5 aquatic products extracts
2.3.2 農(nóng)藥濃度對基質(zhì)效應(yīng)的影響
采用提取后加標法,比較分析了同一基質(zhì)中不同農(nóng)藥濃度(5.0、10、50、100、200、500和750 ng/mL)對基質(zhì)效應(yīng)的影響。結(jié)果表明,在5種不同水產(chǎn)品基質(zhì)中,菊酯類農(nóng)藥濃度對基質(zhì)效應(yīng)有較大影響。
據(jù)文獻報道,基質(zhì)效應(yīng)大小與基質(zhì)中目標分析物濃度有一定相關(guān)性,高濃度水平基質(zhì)效應(yīng)低于低濃度水平[44,45]。
圖2 農(nóng)藥濃度對基質(zhì)效應(yīng)的影響Fig.2 Matrix effects of 9 pesticides in different aquatic products of different pesticide concentrations
從5種基質(zhì)中不同農(nóng)藥濃度下的基質(zhì)效應(yīng)(圖2)可知基質(zhì)效應(yīng)隨農(nóng)藥濃度的增加而減弱,即低濃度下基質(zhì)增強或基質(zhì)抑制效應(yīng)較大,而高濃度下基質(zhì)效應(yīng)較小,本文結(jié)果與前人研究基本保持一致。但在鯽魚基質(zhì)中三氟氯氰,鰱魚中氰戊菊酯和溴氰菊酯以及對蝦中七氟菊酯的基質(zhì)效應(yīng)基本不受菊酯類農(nóng)藥濃度的影響,而羅非魚和鰱魚基質(zhì)中基質(zhì)效應(yīng)受農(nóng)藥濃度的影響最為顯著,低濃度下(5.0 ng/mL)在羅非魚基質(zhì)中9種菊酯類農(nóng)藥基質(zhì)效應(yīng)在2.13~3.89,鰱魚中基質(zhì)效應(yīng)在1.57~2.99,而在高濃度(750 ng/mL)下羅非魚中基質(zhì)效應(yīng)在 0.952~2.24,鰱魚中基質(zhì)效應(yīng)在0.891~2.43。在同種基質(zhì)中,當農(nóng)藥濃度大于 200 ng/mL時,一定濃度范圍內(nèi)(200~750 ng/mL)基質(zhì)效應(yīng)受濃度影響較小。
2.3.3 基質(zhì)濃度對基質(zhì)效應(yīng)的影響
圖3 不同基質(zhì)濃度下9中菊酯類農(nóng)藥在5種水產(chǎn)品種的基質(zhì)效應(yīng)Fig.3 Matrix effects of 9 pyrethroid pesticides in 5 aquatic products with different matrix concentrations
比較分析了不同濃度基質(zhì)對基質(zhì)效應(yīng)的影響。按照上述前處理方法,分別以2.0、5.0和10 g樣品,提取凈化后用100 ng/mL混合標準溶液定容至1 mL,獲得基質(zhì)濃度分別為2.0、5.0和10 g/mL,農(nóng)藥濃度為100 ng/mL的基質(zhì)標準溶液,采用氣相色譜儀檢測分析。結(jié)果表明,基質(zhì)濃度對基質(zhì)效應(yīng)影響較大,在羅非魚中,基質(zhì)效應(yīng)隨基質(zhì)濃度增加有所增加,當基質(zhì)濃度為 2.0和 5.0 g/mL時 9種菊酯基質(zhì)效應(yīng)在0.940±0.041~1.220±0.011,當基質(zhì)濃度為10 g/mL 時,聯(lián)苯菊酯和七氟菊酯表現(xiàn)較強的基質(zhì)抑制效應(yīng),其基質(zhì)效應(yīng)分別為0.741±0.110和0.892±0.012,其他7種菊酯均表現(xiàn)為基質(zhì)增強效應(yīng),其中氯氰菊酯和氯菊酯基質(zhì)增強效應(yīng)較強分別為1.72±0.011和1.92±0.012。在鰱魚基質(zhì)中,除七氟菊酯表現(xiàn)為基質(zhì)抑制效應(yīng)外,其他均表現(xiàn)不同程度的基質(zhì)增強效應(yīng),聯(lián)苯菊酯、氯菊酯和氟氯氰菊酯在基質(zhì)低濃度(2.0 g/mL)和基質(zhì)高濃度(10 g/mL)均表現(xiàn)為較強的基質(zhì)增強效應(yīng),當基質(zhì)濃度為 10 g/mL時聯(lián)苯菊酯基質(zhì)增強效應(yīng)達到3.21±0.013。在鯽魚和草魚基質(zhì)中,基質(zhì)濃度對 9種菊酯農(nóng)藥的基質(zhì)效應(yīng)影響不大,且基質(zhì)效應(yīng)隨基質(zhì)濃度的變化較小。而在對蝦基質(zhì)中,聯(lián)苯菊酯、氟氯氰菊酯、氯氰菊酯和溴氰菊酯受基質(zhì)濃度的影響較大,氟氯氰菊酯在對蝦基質(zhì)濃度為2.0 g/mL時表現(xiàn)較強的基質(zhì)抑制效應(yīng),其基質(zhì)效應(yīng)為0.751±0.012,在基質(zhì)濃度為10 g/mL時均表現(xiàn)為基質(zhì)增強效應(yīng)。
3.1 本文采用氣相色譜法對5種水產(chǎn)品中9種擬除蟲菊酯類農(nóng)藥殘留量進行定量測定,樣品基質(zhì)經(jīng)乙腈提取,PSA和中性氧化鋁凈化,正己烷定容后氣相色譜儀測定,通過基質(zhì)匹配標準曲線法消除或減弱基質(zhì)效應(yīng)。聯(lián)苯菊酯、甲氰菊酯、三氟氯氰菊酯、氟氯氰菊酯、氯氰菊酯、氰戊菊酯和溴氰菊酯在5.0~750 ng/mL濃度范圍內(nèi)線性良好,相關(guān)系數(shù)在 0.9996~0.9998之間;在2.5~750 ng/mL范圍內(nèi)七氟菊酯線性良好,相關(guān)系數(shù)為 0.9999;而氯菊酯在濃度為 10~750 ng/mL范圍內(nèi)線性良好,相關(guān)系數(shù)為0.9998。聯(lián)苯菊酯、甲氰菊酯、三氟氯氰菊酯、氟氯氰菊酯、氯氰菊酯、氰戊菊酯和溴氰菊酯檢測限(LOD)和定量限(LOQ)分別為1.0 μg/kg和3.0 μg/kg;七氟菊酯LOD和LOQ分別為0.5 μg/kg和2.0 μg/kg;氯菊酯LOD和LOQ分別為2.0 μg/kg和5.0 μg/kg。9種擬除蟲菊酯類農(nóng)藥在添加濃度為5.0、50和100 μg/kg三個水平下的日內(nèi)平均回收率在80.7±1.72%~116±6.95%之間,日內(nèi)精密度為 0.272%~10.7%;日間加標回收率為80.1±2.95%~116±2.45% , 日 間 精 密 度 為0.164%~12.8%。
該方法檢出限(LOD)和定量限(LOQ)較低,日內(nèi)和日間加標回收率和精密度較好,完全滿足國內(nèi)外水產(chǎn)品中菊酯類農(nóng)藥殘留測定的要求。且該方法前處理簡單、易操作、分析時間短,溶劑用量少,可滿足簡便、快捷、準確且環(huán)境友好的要求,靈敏度、重復性和準確性較好,可用于水產(chǎn)品中9種擬除蟲菊酯類農(nóng)藥殘留量的測定。
3.2 采用氣相色譜法檢測水產(chǎn)品中擬除蟲菊酯類農(nóng)藥時,草魚、鯽魚、鰱魚、羅非魚和對蝦對9種菊酯類農(nóng)藥均存在不同程度的基質(zhì)效應(yīng),其中溴氰菊酯均存在較強的基質(zhì)增強效應(yīng);七氟菊酯存在較弱的基質(zhì)抑制效應(yīng),基質(zhì)效應(yīng)在0.948~1.00之間,在水產(chǎn)品中七氟菊酯檢測時可忽略其基質(zhì)效應(yīng)對檢測結(jié)果的影響?;|(zhì)種類、目標分析物濃度和基質(zhì)濃度對基質(zhì)效應(yīng)有一定影響,其中基質(zhì)種類和分析物濃度對基質(zhì)效應(yīng)影響較大。
9種菊酯類農(nóng)藥在5種水產(chǎn)品中低濃度水平基質(zhì)效應(yīng)高于高濃度水平,當農(nóng)藥濃度大于200 ng/mL時,農(nóng)藥濃度在一定范圍內(nèi)變化(200~750 ng/mL)對各化合物在5種水產(chǎn)品中的基質(zhì)效應(yīng)沒有明顯影響?;|(zhì)濃度對其基質(zhì)效應(yīng)的所影響在羅非魚和鰱魚中最明顯,其中聯(lián)苯菊酯和氯菊酯受基質(zhì)濃度的影響較為突出;鯽魚和草魚基質(zhì)濃度對其基質(zhì)效應(yīng)影響不大,其中七氟菊酯、三氟氯氰菊酯、氯菊酯、氯氰菊酯和溴氰菊酯基本不受基質(zhì)濃度的影響。草魚和鯽魚中菊酯類農(nóng)藥殘留的檢測中可忽略基質(zhì)濃度對其基質(zhì)效應(yīng)的影響。在實際檢測工作中,對于基質(zhì)效應(yīng)較強的目標化合物,建議采用基質(zhì)匹配校準曲線法進行定量分析,可有效減少或消除基質(zhì)效應(yīng)的干擾,確保水產(chǎn)品中擬除蟲菊酯類農(nóng)藥殘留檢測結(jié)果的準確性。
[1]張征,李今,梁威,等.擬除蟲菊酯殺蟲劑對水生態(tài)系統(tǒng)的毒性作用[J].長江流域資源與環(huán)境,2006,15(1):125-129 ZHANG Zheng, LI Jin, LIANG Wei, et al. Toxic effects of pyrethroid pesticide on water ecosystem [J]. Resources and Environment in the Yangtze Basin, 2006, 15(1): 125-129
[2]李海屏.殺蟲劑新品種開發(fā)進展及特點[J].江蘇化工,2004,32(1):6-11 LI Hai-ping. Developing progresses and characteristic of novel insecticides [J]. Jiangsu Chemical Industry, 2004, 32(1):6-11
[3]劉淑娟.生物農(nóng)藥與生態(tài)環(huán)境保護[J].泰安師專學報,2002,24(6):74-75 LIU Shu-juan. Biological pesticide and ecological environment protection [J]. Journal of Taian Teachers College,2002, 24(6): 74-75
[4]Esteve-Turrillas F A, Pastor A, de la Guardia M. Comparison of different mass spectrometric detection techniques in the gas chromatographic analysis of pyrethroid insecticide residues in soil after microwave-assisted extraction [J].Analytical and Bioanalytical Chemistry, 2006, 384(3): 801-809
[5]葛志榮.食品中農(nóng)業(yè)化學品殘留限量(食品卷)[M].北京:中國標準出版社,2006 GE Zhi-rong. Maximum residue limits of agricultural chemicals in foods (Volume of Foods) [M]. Beijing:Standards Press of China, 2006
[6]中華人民共和國農(nóng)業(yè)部公告.動物性食品中獸藥最高殘留限量[Z].2002 Notice of the ministry of agriculture of the People's Republic of China. The maximum residue limits of veterinary drugs in animal products [Z].2002
[7]Caldas E D, Coelho R, Souza L C K R, et al. Organochlorine Pesticides in Water, Sediment, and Fish of Paranoá Lake of Brasilia, Brazil [J]. Bulletin of Environmental Contamination and Toxicology, 1999, 62(2): 199-206
[8]Omwenga M, Kanja L, Nguta J, et al. Assessment of organochlorine pesticide residues in farmed fish in Machakos and Kiambu Counties, Kenya [J]. Toxicology Letters, 2016,258: S176-S177
[9]Varol M, Sünbül M R. Organochlorine pesticide, antibiotic and heavy metal residues in mussel, crayfish and fish species from a reservoir on the Euphrates River, Turkey [J].Environmental Pollution, 2017, 230: 311-319
[10]Omwenga M, Kanja L, Nguta J, et al. Assessment of organochlorine pesticide residues in farmed fish in Machakos and Kiambu Counties, Kenya [J]. Toxicology Letters, 2016,258: S176-S177
[11]ayashree R, Vasudevan N. Organochlorine pesticide residues in ground water of Thiruvallur district, India [J].Environmental Monitoring & Assessment, 2007, 128(1-3):209-215
[12]Sankararamakrishnan N, Kumar S A, Sanghi R.Organochlorine and organophosphorous pesticide residues in ground water and surface waters of Kanpur, Uttar Pradesh,India [J]. Environment International, 2005, 31(1): 113-120
[13]Zhang Y, Zhang X, Jiao B. Determination of ten pyrethroids in various fruit juices: Comparison of dispersive liquid-liquid microextraction sample preparation and QuEChERS method combined with dispersive liquid-liquid microextraction [J].Food Chemistry, 2014, 159: 367-373
[14]陳劍剛,朱克先,張亦庸,等.固相萃取-氣相色譜-質(zhì)譜聯(lián)用測定水體中擬除蟲菊酯殘留[J].現(xiàn)代預防醫(yī)學,2005,32(6):648-650 CHEN Jian-gang, ZHU Ke-xian, ZHANG Yi-yong, et al.Determination of Pyrethroid pesticide residues in water by gas chromatography-mass spectrometry with sold phase extraction [J]. Modern Preventive Medicine, 2005, 32(6):648-650
[15]Raeppel C, Appenzeller B M, Millet M. Determination of seven pyrethroids biocides and their synergist in indoor air by thermal-desorption gas chromatography/mass spectrometry after sampling on Tenax TA? passive tubes [J]. Talanta, 2015,131: 309-314
[16]楊廣,劉新,鄢錚,等.4種擬除蟲菊酯農(nóng)藥的 GC-MS和GC-MS/MS檢測[J].福建農(nóng)業(yè)大學學報,2003,32(4):447-452 YANG Guang, LIU Xin, YAN Zheng, et al. Dtermination of 4 pyrethroids with GC-MS and GC-MS/MS [J]. Journal of Fujian Agriculture and Forestry University, 2003, 32(4):447-452
[17]Yu X, Yang H. Pyrethroid residue determination in organic and conventional vegetables using liquid-solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles [J]. Food Chemistry, 2017, 217: 303-310
[18]Bagheri H, Yamini Y, Safari M, et al. Simultaneous determination of pyrethroids residues in fruit and vegetable samples via supercritical fluid extraction coupled with magnetic solid phase extraction followed by HPLC-UV [J].The Journal of Supercritical Fluids, 2016, 107: 571-580
[19]羅曉燕,林玉娜,周洪偉,等.反相高效液相色譜法檢測水中五種擬除蟲菊酯農(nóng)藥殘留量[J].中國衛(wèi)生檢驗雜志,2011,6:1371-1372 LUO Xiao-yan, LIN Yu-na, ZHOU Hong-wei, et al.Determination of sorts pyrethroid pesticides residue in water by RP-HPLC [J]. Chinese Journal of Health Laboratory Technology, 2011, 6: 1371-1372
[20]Cheng J, Liu M, Yu Y, et al. Determination of pyrethroids in porcine tissues by matrix solid-phase dispersion extraction and high-performance liquid chromatography [J]. Meat Science, 2009, 82(4): 407-412
[21]駱愛蘭,余向陽,張存政,等.擬除蟲菊酯類農(nóng)藥多殘留酶免疫分析方法的建立[J].中國農(nóng)業(yè)科學,2005,38(2):308-312 LUO Ai-lan, YU Xiang-yang, ZHANG Cun-zheng, et al.Development of Enzyme Immunoassays for Pyrethriods [J].Scientia Agricultura Sinica, 2005, 38(2): 308-312
[22]Savant R H, Banerjee K, Utture S C, et al. Multiresidue analysis of 50 pesticides in grape, pomegranate, and mango by gas chromatography-ion trap mass spectrometry [J].Journal of Agricultural & Food Chemistry, 2010, 58(3):1447-1454
[23]Gonzálezrodríguez R M, Canchogrande B, Simalgándara J.Multiresidue determination of 11 new fungicides in grapes and wines by liquid-liquid extraction/clean-up and programmable temperature vaporization injection with analyte protectants/gas chromatography/ion trap mass spectrometry [J]. Journal of Chromatography A, 2009,1216(32): 6033-6042
[24]Matuszewski B K, Constanzer M L, Chavezeng C M. Matrix effect in quantitative LC/MS/MS analyses of biological fluids:a method for determination of finasteride in human plasma at picogram per milliliter concentrations [J]. Analytical Chemistry, 1998, 70(5): 882
[25]Yadav M, Trivedi V, Upadhyay V, et al. Comparison of extraction procedures for assessment of matrix effect for selective and reliable determination of atazanavir in human plasma by LC-ESI-MS/MS [J]. Journal of Chromatography B, 2012, 885-886(5): 138-149
[26]王鵬,蔣學華,王凌.LC-MSn應(yīng)用于生物樣品檢測中基質(zhì)效應(yīng)的評價[J].中國新藥雜志,2011,20:1953-1956 WANG Peng, JIANG Xue-hua, WANG Ling. Assessment of matrix effect in quantitative bioanalytical methods based on LC-MSn[J]. Chinese Journal of New Drugs, 2011, 20:1953-1956
[27]Matuszewski B K, Constanzer M L, Chavezeng C M.Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS [J].Analytical Chemistry, 2003, 75(13): 3019-3030
[28]陳躍,朱軍,于忠山,等.超高效液相色譜-串聯(lián)質(zhì)譜法檢測唾液中3種毒品及其代謝物[J].色譜,2012,30(11):1148-1152 CHEN Yue, ZHU Jun, YU Zhong-shan, et al. determination of three drugs and their metabolites in saliva by ultra-performance piquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2012,30(11): 1148-1152
[29]羅俊霞,符建偉,李德瑜,等.14種有機磷農(nóng)藥在9種蔬菜中的基質(zhì)效應(yīng)研究[J].湖北農(nóng)業(yè)科學,2013,23:5858-5862 LUO Jun-xia, FU Jian-wei, LI De-yu, et al. Matrix effects of 14 organophosphorus pesticides on 9 kinds of vegetables [J].Hubei Agricultural Sciences, 2013, 23: 5858-5862
[30]李淑娟,于杰,高玉生,等.HPLC-MSMS測定果蔬中有機磷類農(nóng)藥的基質(zhì)效應(yīng)[J].食品工業(yè)科技,2017,38(6):49-53 LI Shu-juan, YU Jie, GAO Yu-sheng, et al. Matrix effects of multiple organophosphorus pesticide residues in fruits and vegetables by HPLC-MS/MS [J]. Science and Technology of Food Industry, 2017, 38(6): 49-53
[31]戚向陽.果蔬中 6種殺真菌劑殘留的固相分散氣相色譜檢測及基質(zhì)效應(yīng)[J].中國食品學報,2012,12(7):178-185 QI Xiang-yang. Matrix solid-phase dispersion and gas chromatographic analysis and matrix effects in determination of 6 fungicides residues in fruits and vegetables [J]. Journal of Chinese Institute of Food Science and Technology, 2012,12(7): 178-185
[32]張利強,程盛華,李琪,等.氣相色譜法測定谷物中 9種有機磷農(nóng)藥殘留量的基質(zhì)效應(yīng)[J].理化檢驗(化學分冊),2016,52(2):136-140 ZHANG Li-qiang, CHENG Sheng-hua, LI Qi, et al. Matrix Effect on GC Determinnation of 9 Organophosphorus Pesticides in Grains [J]. Physical Testing and Chemical Analysis Part B: Chemical Analgsis, 2016, 52(2): 136-140
[33]de Sousa F A, Guido Costa A I, de Queiroz M E L R, et al.Evaluation of matrix effect on the GC response of eleven pesticides by PCA [J]. Food Chemistry, 2012, 135(1): 179-185
[34]Chatterjee N S, Utture S, Banerjee K, et al. Multiresidue analysis of multiclass pesticides and polyaromatic hydrocarbons in fatty fish by gas chromatography tandem mass spectrometry and evaluation of matrix effect [J]. Food Chemistry, 2016, 196: 1-8
[35]Guedes J A C, Silva R D O, Lima C G, et al. Matrix effect in guava multiresidue analysis by QuEChERS method and gas chromatography coupled to quadrupole mass spectrometry[J]. Food Chemistry, 2016,199: 380-386
[36]Kruve A, Künnapas A, Herodes K, et al. Matrix effects in pesticide multi-residue analysis by liquid chromatography-mass spectrometry [J]. Journal of Chromatography A,2008,1187(1-2): 58-66
[37]Caldas S S, Rombaldi C, de Oliveira Arias J L, et al.Multi-residue method for determination of 58 pesticides,pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatographytandem mass spectrometry [J]. Talanta, 2016, 146: 676-688
[38]Matuszewski B K, Constanzer M L, Chavez-Eng C M.Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS [J].Analytical Chemistry, 2003, 75(13): 3019-3030
[39]王立琦,曾振靈,束建花,等.液相色譜-電噴霧串聯(lián)質(zhì)譜測定豬組織中β-興奮劑殘留的基質(zhì)效應(yīng)[J].分析化學,2012,40(9):1445-1449 WANG Li-qi, ZENG Zhen-ling, SHU Jian-hua, et al. Matrix effect in analysis of agonist residue in swine tissues with liquid chromatography-tandem mass spectrometry [J].Analytical Chemistry, 2012, 40(9): 1445-1449
[40]Garrido F A, Martinez V J, Fernandez M J, et al.Compensation for matrix effects in gas chromatographytandem mass spectrometry using a single point standard addition [J]. J Chromatogr A, 2009, 1216(23): 4798-4808
[41]Li Y, Chen X, Fan C, et al. Compensation for matrix effects in the gas chromatography-mass spectrometry analysis of 186 pesticides in tea matrices using analyte protectants [J]. J Chromatogr A, 2012, 1266: 131-142
[42]Stahnke H, Reemtsma T, Alder L. Compensation of matrix effects by postcolumn infusion of a monitor substance in multiresidue analysis with LC-MS/MS [J]. Anal. Chem.,2009, 81(6): 2185-2192
[43]Gergov M, Nenonen T, Ojanpera I, et al. Compensation of matrix effects in a standard addition method for metformin in postmortem blood using liquid chromatography- electrospray-tandem mass spectrometry [J]. J Anal. Toxicol., 2015, 39(5):359-364
[44]平新亮,林媚,王燕斌,等.添加13種有機磷農(nóng)藥在4種果蔬中的回收率和基質(zhì)效應(yīng)[J].江西植保,2009,32(3):120-122 PING Xin-liang, LIN Mei, WANG Yan-bin, et al. The recovery and matrix effect of 13 kinds of organophosphorus pesticide by added to 4 kinds of fruit and vegetables [J].Jiangxi Plant Protection, 2009, 32(3): 120-122
[45]江燕玲,成秀娟,魏燕秋,等.有機磷農(nóng)藥殘留量檢測過程中基質(zhì)效應(yīng)研究[J].農(nóng)藥科學與管理,2012,33(2):25-29 JIANG Yan-ling, CHENG Xiu-juan, WEI Yan-qiu,et al.Matrix effect of organic phosphorus pesticide residues detection in vegetables [J]. Pesticide Science and Administration, 2009, 33(2): 25-29