唐妍 張夢(mèng)梅 王菲 楊澤 韋祥耀 王元艷 柏玉舉
[摘要] 腫瘤微環(huán)境(TME)是一個(gè)極其復(fù)雜的內(nèi)環(huán)境網(wǎng)絡(luò),由癌癥相關(guān)成纖維細(xì)胞、神經(jīng)內(nèi)分泌細(xì)胞、脂肪細(xì)胞、免疫細(xì)胞、血管和淋巴管網(wǎng)絡(luò)、細(xì)胞外基質(zhì)和物理因素如pH值、乏氧、間質(zhì)液體壓力及其他因素等組成,與腫瘤起始、進(jìn)展、轉(zhuǎn)移中的每一步都緊密相關(guān)。本文基于現(xiàn)有的對(duì)腫瘤微環(huán)境細(xì)胞水平上的研究,針對(duì)腫瘤微環(huán)境中各細(xì)胞成分和各種因子水平的變化在腫瘤的起始、進(jìn)展、侵襲過程中所起的主要作用作一綜述,為腫瘤防治尋找新的靶點(diǎn)提供依據(jù)。
[關(guān)鍵詞] 腫瘤微環(huán)境;免疫逃逸;血管和淋巴管網(wǎng)絡(luò);乏氧
[中圖分類號(hào)] R730.3 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2018)02(c)-0039-05
Roles of various components in tumor microenvironment in the occurrence and development of tumor
TANG Yan ZHANG Mengmei WANG Fei YANG Ze WEI Xiangyao WANG Yuanyan BAI Yuju
Department of Oncology, Affiliated Hospital of Zunyi Medical University, Guizhou Province, Zunyi 563000, China
[Abstract] Tumor microenvironment (TME), which is an extremely complex network of the internal environment composed of cancer-associated fibroblasts, neuroendocrine cells, adipose cells, immunocytes, vascular and lymphatic network, extracellular matrix and physical factors such as pH value, hypoxia, interstitial fluid pressure, etc., is closely related to every step in the onset, progression and metastasis of tumors. Based on current researches on TME at the cellular level, this study summarizes the main roles of the changes in the levels of each cell component and various factors in the onset, progression and invasion of tumors, providing a basis for exploring novel targets for the prevention and treatment of tumors.
[Key words] Tumor microenvironment; Immune escape; Vascular and lymphatic network; Hypoxia
腫瘤的發(fā)生、發(fā)展是一個(gè)復(fù)雜、動(dòng)態(tài)的過程,包含起始、進(jìn)展及轉(zhuǎn)移3個(gè)階段[1]。長(zhǎng)期以來,腫瘤被認(rèn)為是孤立的腫塊,在器官特定的部位獨(dú)立存在。直到腫瘤學(xué)家發(fā)現(xiàn)腫瘤微環(huán)境,是一個(gè)包括各種細(xì)胞類型、周圍基質(zhì)、血管和淋巴管、分泌因子和腫瘤細(xì)胞及物理因素如pH值、乏氧、間質(zhì)液體壓力等組成的復(fù)雜內(nèi)環(huán)境網(wǎng)絡(luò)[2-4]。在這個(gè)網(wǎng)絡(luò)中,這些復(fù)雜的組成成分始終處于一種動(dòng)態(tài)的變化過程中,為腫瘤細(xì)胞的增殖、轉(zhuǎn)移提供良好的生長(zhǎng)環(huán)境及物質(zhì)條件,影響腫瘤起始、進(jìn)展、轉(zhuǎn)移中的每一步。當(dāng)生態(tài)治療策略被廣泛應(yīng)用于臨床后[5],人們一直致力于驗(yàn)證細(xì)胞和非細(xì)胞成分在腫瘤微環(huán)境中的作用。隨著腫瘤細(xì)胞學(xué)和分子生物學(xué)的進(jìn)一步研究,我們對(duì)腫瘤細(xì)胞及其周圍環(huán)境的關(guān)系有了更深入的認(rèn)識(shí),這將在腫瘤的防治和預(yù)后等方面有著重大意義。
1 在細(xì)胞水平方面
1.1 癌癥相關(guān)成纖維細(xì)胞(CAFs)
在癌變的創(chuàng)面中成纖維細(xì)胞亞群表達(dá)為纖維母細(xì)胞表型被稱為CAFs[6-7]。CAFs是組成腫瘤微環(huán)境中最主要的基質(zhì)細(xì)胞成分。當(dāng)癌組織受到損傷后,成纖維細(xì)胞可產(chǎn)生炎癥趨化因子,誘導(dǎo)損傷部位白細(xì)胞的募集[8],在損傷消退后成纖維細(xì)胞繼續(xù)激活,產(chǎn)生并分泌白細(xì)胞介素(IL)-6及IL-8等多種炎性因子及通過Erk和Ark途徑加速腫瘤的侵襲轉(zhuǎn)移[9]。在傷口的自然修復(fù)過程中,纖維母細(xì)胞只保持短暫的激活狀態(tài),相反,CAFs則以高表達(dá)的成纖維細(xì)胞活化蛋白(FAP)、α-平滑肌動(dòng)蛋白(α-SMA)及波形蛋白(Vimentin)等特異性標(biāo)志物為特征呈永久激活狀態(tài)[7]。而激活的成纖維細(xì)胞是啟動(dòng)下游信號(hào)轉(zhuǎn)導(dǎo)通路、促進(jìn)腫瘤細(xì)胞生長(zhǎng)所必須的。此外,激活的成纖維細(xì)胞還能通過重塑細(xì)胞外基質(zhì)、誘導(dǎo)新生血管生成、招募免疫細(xì)胞、分泌生長(zhǎng)因子等直接刺激癌細(xì)胞增殖,產(chǎn)生免疫抑制因子,發(fā)生上皮細(xì)胞-間充質(zhì)轉(zhuǎn)化(EMT),顯著地影響了癌癥的進(jìn)展[10]。腫瘤細(xì)胞-腫瘤相關(guān)的成纖維細(xì)胞在腫瘤微環(huán)境中發(fā)揮著協(xié)同作用,促進(jìn)腫瘤生長(zhǎng)、侵襲和轉(zhuǎn)移[11]。
1.2 免疫細(xì)胞
哺乳動(dòng)物免疫系統(tǒng)的主要作用是維持組織內(nèi)的穩(wěn)態(tài),防止病原體入侵或清除受損細(xì)胞[12]。然而與正常情況不同,免疫炎癥細(xì)胞會(huì)在慢性炎癥部位持續(xù)存在,引起組織病理學(xué)改變,誘導(dǎo)組織纖維化,刺激異常血管生成,最終導(dǎo)致原發(fā)腫瘤形成[12]。Dunn等[13]于2002年首次提出了腫瘤免疫編輯學(xué)說,分為免疫監(jiān)視和免疫逃逸兩部分,將癌癥的免疫編輯這一動(dòng)態(tài)過程分為3個(gè)階段:免疫清除、免疫平衡和免疫逃逸階段。這3個(gè)階段可以用來解釋免疫系統(tǒng)在癌癥起始、進(jìn)展、侵襲過程中所發(fā)揮的作用。他指出在癌癥的起始階段,免疫系統(tǒng)可以通過不同的免疫細(xì)胞[13]和信號(hào)傳導(dǎo)分子擊敗剛剛形成的腫瘤細(xì)胞,而一旦癌細(xì)胞被完全清除,這些活性因子和免疫細(xì)胞就會(huì)產(chǎn)生一個(gè)額外的“免疫編輯”作用[14]。當(dāng)進(jìn)入到免疫平衡階段,癌細(xì)胞往往會(huì)發(fā)生一些表型的變化來逃避免疫監(jiān)視,如EMT[15]。這就意味著在這一階段腫瘤細(xì)胞的增長(zhǎng)只能被抑制但不能被完全清除。接下來這些具有選擇優(yōu)勢(shì)的腫瘤細(xì)胞,最終存活下來進(jìn)一步發(fā)展成為實(shí)體腫瘤。免疫系統(tǒng)發(fā)揮抗腫瘤作用的同時(shí)又對(duì)腫瘤細(xì)胞進(jìn)行免疫選擇,使弱免疫原性的腫瘤細(xì)胞發(fā)生免疫逃逸,幫助癌細(xì)胞選擇更具有優(yōu)勢(shì)的腫瘤細(xì)胞群體,使腫瘤細(xì)胞可以在有限的空間內(nèi)以最快的速率增長(zhǎng)[16]。此外,來源于骨髓的免疫細(xì)胞,包括巨噬細(xì)胞、中性粒細(xì)胞、肥大細(xì)胞等發(fā)揮協(xié)同作用釋放化學(xué)趨化因子、血管生長(zhǎng)因子、基質(zhì)降解酶等,形成更利于腫瘤細(xì)胞生長(zhǎng)和侵襲腫瘤的微環(huán)境[17]。
1.3 脂肪細(xì)胞
肥胖與腫瘤的發(fā)病率和病死率呈正相關(guān)[18-19]。肥胖患者體內(nèi)含有大量脂肪組織,脂肪組織分為白色脂肪組織與脂肪細(xì)胞。自1994年瘦素的發(fā)現(xiàn)以來,脂肪組織便被認(rèn)為是有功能的內(nèi)分泌器官,參與調(diào)節(jié)機(jī)體能量及代謝的平衡[18]。近幾年來腫瘤研究重點(diǎn)逐漸從對(duì)單一腫瘤細(xì)胞的孤立性研究轉(zhuǎn)變?yōu)槟[瘤細(xì)胞與所處腫瘤微環(huán)境之間相互作用的共同研究[20]。許多研究表明,脂肪組織的一些特征與腫瘤發(fā)生、發(fā)展密切相關(guān)。過多堆積的脂肪導(dǎo)致血液中雌激素含量增加,并使機(jī)體微環(huán)境處于一種持續(xù)低炎狀態(tài)[21]。在這種慢性炎癥刺激的狀態(tài)下,脂肪細(xì)胞能分泌50多種不同的細(xì)胞因子、趨化因子和激素樣因子[21],類似于IL-6、IL-8、IL-1β、腫瘤壞死因子α、血管內(nèi)皮生長(zhǎng)因子、趨化因子CCL2和CCL5等[22],共同發(fā)揮協(xié)同作用,促進(jìn)腫瘤發(fā)生、發(fā)展。此外,肥胖患者脂肪組織中前脂肪細(xì)胞含量較高,巨噬細(xì)胞與單核細(xì)胞的協(xié)同作用也隨之增強(qiáng)[23]。
1.4 神經(jīng)內(nèi)分泌細(xì)胞
在健康的生物體內(nèi),神經(jīng)內(nèi)分泌細(xì)胞存在于下丘腦、垂體前葉、松果體、甲狀腺(降鈣素分泌細(xì)胞)、胸腺、乳腺與胰島等組織中,在局部組織水平發(fā)揮復(fù)雜的調(diào)節(jié)作用[24]。腫瘤中神經(jīng)內(nèi)分泌細(xì)胞是由癌細(xì)胞轉(zhuǎn)化形成的,外觀雖然與正常的神經(jīng)內(nèi)分泌細(xì)胞相似,但功能上與癌細(xì)胞一樣呈無限增長(zhǎng)狀態(tài)。幾乎所有的惡性腫瘤中的神經(jīng)內(nèi)分泌細(xì)胞均具有促進(jìn)腫瘤增殖的特性[25]。惡性腫瘤中的神經(jīng)內(nèi)分泌細(xì)胞可通過產(chǎn)生并分泌多種神經(jīng)遞質(zhì)影響腫瘤的進(jìn)展,包括CgA、嗜鉻類多肽、血管活性多肽等[26]。如嗜鉻粒蛋白A(chromogranin A,CgA)是一種酸性分泌顆粒糖蛋白,廣泛存在于神經(jīng)系統(tǒng)和APUD系統(tǒng)中,具有調(diào)節(jié)激素分泌和促進(jìn)腫瘤生長(zhǎng)的作用[26-27],在甲狀旁腺瘤、小細(xì)胞肺癌中呈高表達(dá)狀態(tài)[27]。突觸素(synaptophysin,Syn)是一種位于突觸囊泡膜上的鈣結(jié)合蛋白,存在于中樞和外周神經(jīng)系統(tǒng)神經(jīng)末梢,也存在于NE細(xì)胞和發(fā)育異常的哺乳動(dòng)物腺體上皮細(xì)胞,主要參與突觸傳導(dǎo)及神經(jīng)遞質(zhì)釋放[28]。國(guó)內(nèi)外學(xué)者發(fā)現(xiàn),許多腫瘤細(xì)胞中都含有Syn,尤其在神經(jīng)母細(xì)胞瘤、嗜鉻細(xì)胞瘤中呈高表達(dá)狀態(tài)。除此之外,神經(jīng)內(nèi)分泌細(xì)胞還可以通過神經(jīng)遞質(zhì)調(diào)節(jié)NK細(xì)胞的遷移和細(xì)胞毒性,促進(jìn)腫瘤的進(jìn)展[27]。
2 血管和淋巴管網(wǎng)絡(luò)
Folkman 1971年提出,惡性腫瘤生長(zhǎng)到一定階段必定伴隨血管生成,為其提供營(yíng)養(yǎng),并使腫瘤細(xì)胞進(jìn)入血液循環(huán)發(fā)生轉(zhuǎn)移成為可能[28-29]。和正常組織相似,腫瘤區(qū)域的血管和淋巴管網(wǎng)絡(luò)為癌組織提供氧氣,清除二氧化碳和代謝廢物,為腫瘤的生長(zhǎng)提供營(yíng)養(yǎng)支持[28-30]。在腫瘤發(fā)展的整個(gè)過程中,刺激血管生成的信號(hào)傳導(dǎo)通路幾乎總是處在激活的狀態(tài),導(dǎo)致新的血管持續(xù)生成[30]。腫瘤的新生血管因基底膜異常、周細(xì)胞連接疏松或缺失,表現(xiàn)為易滲漏、形態(tài)扭曲、管壁擴(kuò)張成囊狀改變等特點(diǎn)[29]。而新生的血管常常來自已經(jīng)存在的血管發(fā)出的分支,使血管和淋巴管網(wǎng)絡(luò)更加復(fù)雜扭曲且易發(fā)生交聯(lián)[31]。在腫瘤發(fā)展的整個(gè)階段,血管和淋巴管網(wǎng)絡(luò)扮演著不同的角色,主要通過以下兩種途徑幫助腫瘤細(xì)胞進(jìn)行逃避免疫:淋巴結(jié)微環(huán)境直接削弱或消除免疫細(xì)胞的正常功能[32-33];血管內(nèi)皮細(xì)胞的重塑則間接地影響免疫細(xì)胞進(jìn)入交通淋巴結(jié),例如,髓源性抑制細(xì)胞(MDSCs)和幼稚的樹突細(xì)胞DCs在前哨淋巴結(jié)中可以抑制T細(xì)胞的正常功能[31]。當(dāng)轉(zhuǎn)移的腫瘤細(xì)胞進(jìn)入到異常的環(huán)境,CD4+T和CD8+T細(xì)胞可以幫助腫瘤細(xì)胞逃避宿主免疫系統(tǒng)的監(jiān)視[32]。抑制腫瘤血管生成可以抑制腫瘤生長(zhǎng)和轉(zhuǎn)移,抗血管生成的靶向治療已經(jīng)成為腫瘤治療研究中的熱點(diǎn),且已經(jīng)取得很好的臨床療效。
3 腫瘤微環(huán)境中的細(xì)胞外基質(zhì)
細(xì)胞外基質(zhì)(ECM)這一特定的組織,由膠原、層粘連蛋白、纖維連接蛋白、蛋白多糖、透明質(zhì)酸等相互交聯(lián)構(gòu)成,維持了ECM的機(jī)械張力,參與調(diào)節(jié)各種細(xì)胞的活動(dòng)[34]。腫瘤ECM是一個(gè)動(dòng)態(tài)復(fù)雜的環(huán)境,其具備生物物理、生物化學(xué)的屬性,包含所有的細(xì)胞因子、生長(zhǎng)因子、趨化因子和由基質(zhì)細(xì)胞和腫瘤細(xì)胞所分泌的激素,這些因子都可與細(xì)胞膜表面受體結(jié)合激活細(xì)胞內(nèi)下游信號(hào)通路調(diào)控包括代謝在內(nèi)的各種細(xì)胞生物學(xué)行為,促進(jìn)腫瘤進(jìn)展[35-36]。研究表明,ECM異質(zhì)性對(duì)于控制細(xì)胞侵襲行為和決定轉(zhuǎn)移效率至關(guān)重要[37]。一旦ECM被蛋白酶水解,ECM被破壞并被重塑,其中基質(zhì)金屬蛋白酶(MMPs)發(fā)揮調(diào)節(jié)作用,參與生長(zhǎng)信號(hào)轉(zhuǎn)導(dǎo)、抑制細(xì)胞凋亡和新生血管生成、降解ECM等,促進(jìn)腫瘤的侵襲和轉(zhuǎn)移,形成適應(yīng)腫瘤生長(zhǎng)擴(kuò)散的微環(huán)境[37]。
4 物理因素
4.1 酸性pH
腫瘤細(xì)胞的生長(zhǎng)伴隨大量酸性代謝產(chǎn)物的形成[38]。即使在氧氣水平正常的情況下,腫瘤細(xì)胞通過有氧糖酵解途徑產(chǎn)生了大量的質(zhì)子將直接引起腫瘤微環(huán)境pH值降低[39-43]。在這個(gè)過程中,產(chǎn)生了豐富的代謝產(chǎn)物可以供腫瘤細(xì)胞合成生物大分子[43]。但不是所有的腫瘤細(xì)胞中都存在大量質(zhì)子,其中慢性缺氧和血管功能異常的組織相對(duì)缺乏足夠的質(zhì)子清除阻礙,其中慢性缺氧和血管功能異常的組織缺乏足夠的質(zhì)子清除途徑,從而創(chuàng)造一個(gè)pH值低于0.5的酸性微環(huán)境[41]。腫瘤微環(huán)境因有氧糖酵解和不良的血管灌注呈現(xiàn)典型的酸性環(huán)境,同時(shí)酸性環(huán)境使腫瘤細(xì)胞更具有生長(zhǎng)優(yōu)勢(shì)[39]。酸性pH值可以通過降低腫瘤細(xì)胞對(duì)化療藥物的攝取降低化療效果[42]。癌細(xì)胞擁有在酸性條件下維持細(xì)胞內(nèi)pH值所必需的所有酶體系[39,41],高濃度的酶在腫瘤細(xì)胞生長(zhǎng)、血管生成、侵襲和轉(zhuǎn)移中起關(guān)鍵作用[40]。
4.2 乏氧
乏氧是腫瘤微環(huán)境的一個(gè)特征,有研究表明,腫瘤組織生存和生長(zhǎng)的基礎(chǔ)是對(duì)缺氧環(huán)境的適應(yīng)[44]。據(jù)估計(jì),50%~60%的實(shí)體腫瘤中包含乏氧區(qū)域,腫瘤組織的氧分壓較正常組織明顯降低,這是由于氧氣輸送和氧氣消耗過程之間的不平衡造成的[45]。在腫瘤微環(huán)境中,由于腫瘤血管結(jié)構(gòu)的異常,使氧氣在輸送過程中損失,膨脹的毛細(xì)血管造成血流緩慢更會(huì)導(dǎo)致氧氣供應(yīng)不足[46]。缺氧誘導(dǎo)因子(HIF)是腫瘤細(xì)胞在乏氧條件下調(diào)控基因表達(dá)的關(guān)鍵轉(zhuǎn)錄因子之一,通過激活下游靶基因協(xié)調(diào)控制細(xì)胞應(yīng)答使腫瘤細(xì)胞適應(yīng)缺氧環(huán)境,參與了腫瘤細(xì)胞代謝、腫瘤新生血管形成、紅細(xì)胞生成、腫瘤細(xì)胞分化、腫瘤細(xì)胞浸潤(rùn)等過程,最終導(dǎo)致腫瘤生長(zhǎng)增殖、侵襲轉(zhuǎn)移[47-48]。HIF-α亞基是功能性亞單位,在常氧條件下,脯氨酰羥化酶使用氧作為底物,羥化修飾HIF-1α和HIF-2α后與pVHL蛋白結(jié)合,經(jīng)泛素蛋白酶途徑降解[47]。而在缺氧條件下,PHD活性受到抑制,導(dǎo)致HIF-1α羥化受阻,穩(wěn)定并增多向核內(nèi)移動(dòng),與HIF-1β結(jié)合形成HIF-1二聚體[49],從而引起一系列靶基因如血管內(nèi)皮生長(zhǎng)因子(VEGF)、促紅細(xì)胞生成素(EPO)的表達(dá)增強(qiáng),促進(jìn)腫瘤的發(fā)生發(fā)展。有相關(guān)實(shí)驗(yàn)研究表明,腫瘤細(xì)胞中HIF的過度表達(dá)能促進(jìn)腫瘤轉(zhuǎn)移,而失活的HIF則可以降低腫瘤轉(zhuǎn)移的潛在風(fēng)險(xiǎn)[50]。臨床上,原發(fā)腫瘤的免疫組化結(jié)果顯示,HIF-1高表達(dá)與婦科腫瘤、胰腺癌、食管癌、肺癌和前列腺癌的轉(zhuǎn)移有關(guān)[51]。而原發(fā)腫瘤中HIF-2α的高表達(dá)也常常伴有小細(xì)胞肺癌和乳腺癌的遠(yuǎn)處轉(zhuǎn)移[45]。此外,增加HIF表達(dá)往往會(huì)導(dǎo)致癌癥患者病死率增加。乏氧條件下,已知HIF所調(diào)控的下游基因超過70種,其中大多與腫瘤的發(fā)生發(fā)展密切相關(guān),共同參與了腫瘤細(xì)胞的侵襲和遷移、內(nèi)滲和外滲、遠(yuǎn)處轉(zhuǎn)移部位微環(huán)境的建立等過程,從而影響遠(yuǎn)處轉(zhuǎn)移腫瘤細(xì)胞的存活和生長(zhǎng)[48,52]。
4.3 腫瘤組織間液壓力
在正常組織中,間質(zhì)液體壓力(interstitial fluid pressure,IFP)接近于0 mmHg(1 mmHg=0.133 kPa),而在人類和動(dòng)物腫瘤組織中IFP都有不同程度的升高,其主要原因是淋巴管和腫瘤血管功能的異常[53]。在有限的空間內(nèi),異常增生的腫瘤細(xì)胞對(duì)淋巴管和血管造成了機(jī)械性擠壓,致使淋巴液引流障礙及血液流動(dòng)受阻,造成有功能的淋巴管數(shù)量減少及血管結(jié)構(gòu)的異常[54]。正常淋巴網(wǎng)絡(luò)功能的維持依靠淋巴管對(duì)多余組織間液的引流,而在腫瘤組織中,有功能的淋巴管數(shù)量減少導(dǎo)致組織間隙內(nèi)多余的血漿蛋白和液體不能排出[55]。血管結(jié)構(gòu)異常主要表現(xiàn)為血管通透性增高,分子產(chǎn)生無選擇性滲透,進(jìn)而導(dǎo)致血管內(nèi)的靜水壓及膠體滲透壓變得幾乎和血管外相等,其中透壁壓力差的減小降低了腫瘤血管間血流的對(duì)流作用[53]。腫瘤血管的高通透性還可導(dǎo)致微血管壓力(micro-vessel pressure,MVP)升高,造成腫瘤血管在上游和下游壓力差消失,從而使血流處于靜止?fàn)顟B(tài),影響化療藥物向腫瘤細(xì)胞的運(yùn)輸,大幅降低了化療藥物的抗腫瘤作用。腫瘤血管通透性增高,大量等滲離子流到組織間隙,增加了血細(xì)胞比容,使血液更黏稠,進(jìn)一步降低了血管灌注。同時(shí)腫瘤血管滲漏到正常組織的間質(zhì)液體能夠攜帶血管生成因子、淋巴管生成因子及腫瘤細(xì)胞,從而增加腫瘤的侵襲性[54]。因此,在大多數(shù)實(shí)體腫瘤中,IFP均有升高,然后在腫瘤周邊或周圍正常組織中急劇下降[56]。
5 結(jié)論
正常細(xì)胞與其周圍的組織環(huán)境之間存在動(dòng)態(tài)平衡,而腫瘤發(fā)生發(fā)展則是打破了這一平衡的結(jié)果。腫瘤細(xì)胞及其周圍環(huán)境的相互作用可促進(jìn)腫瘤的生長(zhǎng)、侵襲和轉(zhuǎn)移。筆者認(rèn)為在腫瘤發(fā)生、發(fā)展的過程中,腫瘤微環(huán)境中的細(xì)胞因子、蛋白酶或受體等的相互作用促進(jìn)腫瘤新生血管生成、腫瘤細(xì)胞免疫逃逸,均能影響腫瘤的侵襲和轉(zhuǎn)移。認(rèn)識(shí)腫瘤微環(huán)境中不同組成成分在腫瘤的侵襲、轉(zhuǎn)移中發(fā)揮的作用對(duì)腫瘤的防治至關(guān)重要。雖然目前基于腫瘤微環(huán)境中存在眾多靶點(diǎn),多種靶向治療的開展已獲得廣泛認(rèn)可,但針對(duì)多個(gè)微環(huán)境基質(zhì)細(xì)胞的協(xié)同治療和挑選出最關(guān)鍵的分子靶點(diǎn)可能是今后研究的方向。
[參考文獻(xiàn)]
[1] Hanahan D,Weinberg RA. Hallmarks of cancer:the next generation [J]. Cell,2011,144(5):646-674.
[2] Bo H. Upregulated long non-coding RNA AFAP1-AS1 exp?鄄ression is associated with progression and poor prognosis of nasopharyngeal carcinoma [J]. Oncotarget,2015,6(24):20404-20418.
[3] Karvonen HM. Lung cancer-associated myofibroblasts reveal distinctive ultrastructure and function [J]. Thorac Oncol,2014,9(5):664-674.
[4] Li Q. Yeast two-hybrid screening identified WDR77 as a novel interacting partner of TSC22D2 [J]. Tumour Biol,2016,37(9):12503-12512.
[5] Amend SR,Pienta KJ. Ecology meets cancer biology:the cancer swamp promotes the lethal cancer phenotype [J]. Oncotarget,2015,6(12):9669-9678.
[6] Yu J. Overexpression long non-coding RNA LINC00673 is associated with poor prognosis and promotes invasion and metastasis in tongue squamous cell carcinoma [J]. Oncotarget,2017,8(10):16621-16632.
[7] Jia CC. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion [J]. PLoS One,2013,8(5):63243.
[8] Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases [J]. Pathol,2003,200(4):500-503.
[9] Kim SH. Human lung cancer-associated fibroblasts enhance motility of non-small cell lung cancer cells in co-culture [J]. Anticancer Res,2013,33(5):2001-2009.
[10] Dvorankova B. Cancer-associated fibroblasts are not for?鄄med from cancer cells by epithelial-to-mesenchymal transition in nu/nu mice [J]. Histochem Cell Biol,2015, 143(5):463-469.
[11] Chen M. A whole-cell tumor vaccine modified to express fibroblast activation protein induces antitumor immunity against both tumor cells and cancer-associated fibroblasts [J]. Sci Rep,2015,5:e14421.
[12] Orimo A. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion [J]. Cell,2005,121(3):335-348.
[13] Dunn GP,Old LJ,Schreiber RD. The three Es of cancer immunoediting [J]. Annu Rev Immunol,2004,22:329-360.
[14] Mittal D,Gubin MM,Schreiber RD,et al. New insights into cancer immunoediting and its three component phases——elimination,equilibrium and escape [J]. Curr Opin Imm?鄄unol,2014,27:16-25.
[15] Ricciardi M. Epithelial-to-mesenchymal transition(EMT)induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells [J]. Br J Cancer,2015,112(6):1067-1075.
[16] Bronkhorst IH. Detection of M2-macrophages in uveal melanoma and relation with survival [J]. Invest Ophthalmol Vis Sci,2011,52(2):643-650.
[17] Karnevi E,Andersson R,Rosendahl AH. Tumour-educated macrophages display a mixed polarisation and enhance pancreatic cancer cell invasion [J]. Immunol Cell Biol,2014,92(6):543-552.
[18] Tao M. Inflammatory stimuli promote growth and invasion of pancreatic cancer cells through NF-kappa B path?鄄way dependent repression of PP2Ac [J]. Cell Cycle,2016, 15(3):381-393.
[19] Hu MB. Obesity affects the biopsy-mediated detection of prostate cancer,particularly high-grade prostate cancer:a dose-response meta-analysis of 29,464 patients [J]. PLoS One,2014,9(9):e106677.
[20] Hanahan D,Coussens LM. Accessories to the crime:functions of cells recruited to the tumor microenvironment [J]. Cancer Cell,2012,21(3):309-322.
[21] Donohoe CL. The role of obesity in gastrointestinal cancer:evidence and opinion [J]. Therap Adv Gastroenterol,2014,7(1):38-50.
[22] Goodwin PJ,Stambolic V. Impact of the obesity epidemic on cancer [J]. Annu Rev Med,2015,66:281-296.
[23] Joshi RK,Lee SA. Obesity related adipokines and colorectal cancer:a review and meta-analysis [J]. Asian Pac J Cancer Prev,2014,15(1):397-405.
[24] Gunawardene AR,Corfe BM,Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract [J]. Int J Exp Pathol,2011,92(4):219-231.
[25] Epstein JI. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation [J]. Am J Surg Pathol,2014,38(6):756-767.
[26] Jobling P. Nerve-Cancer Cell Cross-talk:A Novel Promoter of Tumor Progression [J]. Cancer Res,2015,75(9):1777-1781.
[27] Capdevila J. Molecular biology of neuroendocrine tumors:from pathways to biomarkers and targets [J]. Cancer Met?鄄astasis Rev,2014,33(1):345-351.
[28] DeBock K,Cauwenberghs S,Carmeliet P. Vessel abnormalization:another hallmark of cancer? Molecular mechanisms and therapeutic implications [J]. Curr Opin Genet Dev,2011,21(1): 73-79.
[29] Liu Y. NOK/STYK1 promotes the genesis and remodeling of blood and lymphatic vessels during tumor progression [J]. Biochem Biophys Res Commun,2016,478(1):254-259.
[30] Padera TP,Meijer EF,Munn LL. The Lymphatic System in Disease Processes and Cancer Progression [J]. Annu Rev Biomed Eng,2016,18:125-158.
[31] Chovatiya R,Medzhitov R. Stress,inflammation,and defense of homeostasis [J]. Mol Cell,2014,4(2):281-288.
[32] Pereira ER,Jones D,Jung K,et al. The lymph node microenvironment and its role in the progression of metastatic cancer [J]. Semin Cell Dev Biol,2015,38:98-105.
[33] Topalian SL,Drake CG,Pardoll DM. Targeting the PD-1/B7-H1(PD-L1)pathway to activate anti-tumor immunity [J]. Curr Opin Immunol,2012,4(2):207-212.
[34] Monboisse JC. Matrikines from basement membrane collagens:a new anti-cancer strategy [J]. Biochim Biophys Acta,2014,840(8):2589-2598.
[35] Pickup MW,Mouw JK,Weaver VM. The extracellular matrix modulates the hallmarks of cancer [J]. EMBO Rep,2014,5(12):1243-1253.
[36] Wang M. Role of tumor microenvironment in tumorigenesis [J]. J Cancer,2017,(5):761-773.
[37] Zhu J,Liang L,Jiao Y,et al. Enhanced invasion of meta?鄄static cancer cells via extracellular matrix interface [J]. PLoS One,2015,10(2):e0118058.
[38] Yu X,Yang X,Horte S,et al. A pH and thermosensitive choline phosphate-based delivery platform targeted to the acidic tumor microenvironment [J]. Biomaterials,2014, 5(1):278-286.
[39] Pavlova NN,Thompson CB. The Emerging Hallmarks of Cancer Metabolism [J]. Cell Metab,2016,3(1):27-47.
[40] Estrella V. Acidity generated by the tumor microenvironment drives local invasion [J]. Cancer Res,2013,3(5):1524-1535.
[41] Webb BA,Chimenti M,Jacobson MP,et al. Dysregulated pH:a perfect storm for cancer progression [J]. Nat Rev Cancer,2011,11(9):671-677.
[42] Riemann A,Schneider B,Gündel D,et al. Acidosis Promotes Metastasis Formation by Enhancing Tumor Cell Motility [J]. Adv Exp Med Biol,2016,876:215-220.
[43] Wiedmann RM. The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the Rho-GTPase Rac1 [J]. Cancer Res,2012,2(22):5976-5987.
[44] Casazza A. Tumor stroma:a complexity dictated by the hypoxic tumor microenvironment [J]. Oncogene,2014,33(14):1743-1754.
[45] Huang D,Li C,Zhang H. Hypoxia and cancer cell met?鄄abolism [J]. Acta Biochim Biophys Sin(Shanghai),2014, 6(3):214-219.
[46] Wang Z,Dabrosin C,Yin X,et al. Broad targeting of angiogenesis for cancer prevention and therapy [J]. Semin Cancer Biol,2015,35 Suppl:S224-S243.
[47] Semenza GL. Hypoxia-inducible factors in physiology and medicine [J]. Cell,2012,148(3):399-408.
[48] Lin A,Maity A. Molecular Pathways:A Novel Approach to Targeting Hypoxia and Improving Radiotherapy Efficacy via Reduction in Oxygen Demand [J]. Clin Cancer Res,2015,21(9):1995-2000.
[49] Schodel J. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq [J]. Blood,2011,117(23):e207-e217.
[50] Xue M,Li X,Chen W. Hypoxia regulates the expression and localization of CCAAT/enhancer binding protein alpha by hypoxia inducible factor-1alpha in bladder transitional carcinoma cells [J]. Mol Med Rep,2015,12(2):2121-2127.
[51] Jin Y. Clinicopathological characteristics of gynecological cancer associated with hypoxia-inducible factor 1alpha expression:a meta-analysis including 6,612 subjects [J]. PLoS One,2015,10(5):e0127229.
[52] Jonckheere N,Van Seuningen I. Comment on:Functional MUC4 suppress epithelial-mesenchymal transition in lung adenocarcinoma metastasis [J]. Tumour Biol,2014, 35(4):3941-3942.
[53] Rofstad EK,Galappathi K,Mathiesen BS,et al. Tumor interstitial fluid pressure-a link between tumor hypoxia,microvascular density,and lymph node metastasis [J]. Neoplasia,2014,16(7):586-594.
[54] Yu T. High interstitial fluid pressure promotes tumor progression through inducing lymphatic metastasis-related protein expressions in oral squamous cell carcinoma [J]. Clin Transl Oncol,2014,16(6):539-547.
[55] Ozsun O. Non-invasive mapping of interstitial fluid pressure in microscale tissues [J]. Integr Biol(Camb),2014, 6(10):979-987.
[56] Yu T. High interstitial fluid pressure promotes tumor cell proliferation and invasion in oral squamous cell carcinoma [J]. Int J Mol Med,2013,32(5):1093-1100.
(收稿日期:2017-10-24 本文編輯:張瑜杰)
中國(guó)醫(yī)藥導(dǎo)報(bào)2018年6期