• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effects of compressibility and strength on penetration of long rod and jet

    2018-04-27 09:13:48WengjieSongXioweiChenPuChen
    Defence Technology 2018年2期

    Weng-jie Song,Xio-wei Chen,Pu Chen

    aDepartment of Mechanics and Engineering Science,College of Engineering,Peking University,Beijing 100871,China

    bCentre for Applied Physics and Technology(CAPT),Peking University,Beijing 100871,China

    cState Key Lab of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China

    1.Introduction

    Penetration byprojectile with velocityof a few km/s intovarious targets is an important problem.The representative projectiles are long rod penetrator and high explosive anti-tank warhead which uses the jet formed by shaped charge to penetrate target.

    The process of long rod or jet penetrating semi-in finite target is usually analyzed by incompressible hydrodynamic theory[1-5].The long rod is usually made of the material with high strength,high density and high bulk modulus.So in practical ordnance velocity,the volumetric strain of long rod is small and the relative theories about penetration by long rod treat it as incompressible material.Meanwhile the strength has a significant effect.However the research and development of kinetic-energy weapon never cease,such as the electromagnetic rail gun and new ultra highenergetic materials.The future long rod can reach higher velocity and the penetration is hypervelocity,in which the pressure at the rod/target interface is extremely high and so are the volumetric strains of the rod and target.Anderson and Orphal[6]conducted numerical simulations to examine the effect of compressibility at 1.5 km/s to 6 km/s and both the pressure and density at the rod/target interface deviate more from incompressible hydrodynamic theoryat higher impactvelocity.Thus,long rodcannot be treated as incompressible and the effect of compressibility on penetration by hypervelocity long rod has to be considered.On the other hand,the velocity of tip of the jet formed by ordinary military shaped charge is up to 8 km/s and even can be larger than 10 km/s for special design.In such hypervelocity penetration,the compressibility of the projectile and target cannot be really ignored.

    WHA(tungsten heavy alloy)is a common material for long rod and copper is the most frequently-used material for the liner of shaped charge,so it is necessary to study the effects of compressibility and strength on the hypervelocity penetration by WHA long rod and copper jet.In the present work,we use the approximate compressible model to study the effects of compressibility and strength on hypervelocity penetration by WHA long rod in detail and clarify howcompressibilityaffects the penetration efficiency by changing the stagnation pressures of the rod and target.For the hypervelocity copper jet,the effects of compressibility and penetration resistance of the target on penetration efficiency are also studied.In which,the virtual origin model is adopted,and the compressibility and strength are considered by the linear relation between the penetration velocity and impact velocity.

    2.Basic theory

    Birkhoff et al.[1]and Hill et al.[2]suggested a hydrodynamic theory of penetration(HTP)during WWII,respectively,invoking the incompressible Bernoulli equation

    where ρpand ρtstand for the projectile and target densities,respectively,and are assumed to be constants.V and U are the impact and penetration velocity,respectively.

    The penetration efficiency is de fined as the increment ratio of the penetration depth to the erosion length of rod

    where P is the penetration depth and l is the length of rod.For the hydrodynamic limit,according to Eq.(1)we can get

    For penetration by metallic jets,Eichelberger[3]considered the strengths of jet and target as constant initial pressures in the incompressible Bernoulli equation

    where Ypis the dynamic yield strength of the jet,Rtis the penetration resistance of the target and picis the pressure at the rod/target interface,i.e.,the stagnation pressure.The subscript ic represents the incompressible model with strength.According to the above equation,we can get complete compressible model firstly by adopting the compressible Bernoulli equation and treating the shockwave as the stationary wave.Then Flis and Chou[8]studied the effect of different EOS(equation of state).

    Osipenko and Simonov[9]applied the linear Hugoniot relation between the shockwave velocity and the particle velocity into both the treatment of shockwave and the Mie-Grüneisen EOS,and thus the model is completely self-consistent.Flis[10,11]extended the compressible model to a quadratic dependence of shockwave velocity on particle velocity and considered the strengths of projectile and target.Flis[10,11]also performed CTH code(the Eulerian shock physics analysis package developed by Sandia National Laboratory)simulations to compare with the compressible model.The results predicted by the compressible model were in good agreement with the CTH simulations,showing the validity of the model.Federov and Bayanova[12]adopted the Murnaghan EOS to simplify the compressible model.Flis[13]simplify the compressible model by ignoring the shockwave and using the Hugoniot curve to approximate the EOS.The compressible models described above contain many complex equations and have to be solved by numerical method.

    Song et al.[14,15]analyzed the effects of different factors in the compressible model,developed a simplified approximate model with an algebraic solution and analyzed the precision and applicable range of the approximate model.Unlike the complex models of other researchers,the simple solution of the approximate model can be easily used in the engineering problems without any numerical method.

    In the simplified approximate compressible model of Song et al.[15],the Murnaghan EOS is used

    where p0is the initial pressure,ρa(bǔ)nd ρ0are the density of compressed material and initial density,respectively.n=4λ-1,A=λis the slope of the linear relation between the shockwave velocity and the particle velocity and C0is the initial sound speed.The initial pressure p0is taken as Ypfor rod and Rtfor target,respectively.The equation of pressure-equilibrium across the projectile/target interface is

    where pcis the stagnation pressure in the approximate compressible model.The subscript c represents the approximate compress-

    However,in the case of hypervelocity penetration,the pressure at the rod/target interface is extremely high and the volumetric strain of rod or target is especially significant,so the incompressible assumption doesn't apply.Haugstad and Dullum[7]developed a ible model hereinafter.The solution of the above equation is assumed to be

    whereUcisthe penetration velocity in the approximate compressible model.This solution is essentially a modification to the incompressible model.Substitute Eq.(9)into the first order Taylor series expansion about U for Eq.(8)and rearrange the result to get

    3.High-velocity WHA long rod penetration

    3.1.Penetration efficiency

    We adopt the approximate compressible model to study the

    The solution of the approximate compressible model is based on the solution of the incompressible model and Taylor series expansion,so it is very convenient to evaluate the error of penetration efficiency due to the compressibility for the incompressible model.Combine Eq.(2)and Eq.(9)to get the error of penetration efficiency for the incompressible model

    Compared to the complete compressible model[11],the approximate compressible model of Song et al.[15]doesn't need numerical iteration and can be easily used in the engineering problems.With the velocitychange of 1.6times of theinitial sound speed for the projectile or target,the error of stagnation pressure for the approximate compressible modelis about 1%andthecorresponding errorofpenetrationefficiencyisabout0.5%.Forthecommonmetallic rod-target combinations,the approximate compressible model is applicable even at the impact velocity of 12 km/s.To the authors'knowledge,there is no experimental study on long-rod penetration upto 10 km/s.However Flis[10,11]performed CTH code simulations to compare with the compressible model up to 12 km/s.The results predicted by the compressible model were in good agreement with the CTH simulations,showing the validity of the model.In Ref.[15],results of the approximate compressible model were in great agreement with that of the complete compressible model[11].

    In the present work,we use the approximate compressible model[15]to study the effects of compressibility and strength on hypervelocity penetrations by WHA long rod and copper jet in detail and clarify how compressibility affects the penetration efficiency by changing the stagnation pressure of the projectile and target.For the hypervelocity penetration bycopper jet,according to the existing experiments and simulations[16-22],the linear relation between the penetration velocity and impact velocity is adopted in the virtual origin model,and the effects of compressibility and strength on the hypervelocity penetration by copper jet are also studied in detail.penetrations by WHA[23]long rod(Yp=2.0 GPa)into semiin finite 4340 Steel[23](Rt=4.5×0.792 GPa),6061-T6 Al[24](Rt=4.5×0.3 GPa)and PMMA[8](polymethyl methacrylate,Rt=4.5×0.07 GPa)at the impact velocity of 2 km/s<V<5 km/s.The material properties are shown in Table 1.

    The ratios ofpenetration efficiencies predicted by the compressible model and the incompressible model to the hydrodynamic limit are shown in Fig.1.The compressible model represents the approximate model of Song et al.[15]hereinafter.WHA is less compressible than the other three materials,so the penetration efficiencies predicted by the compressible model are lower than that predicted by the incompressible model.At V=5 km/s,we have(PEc-PEic)/PEh=0.964-0.979=-0.014 for 4340 Steel,(PEc-PEic)/PEh=0.984-1.019=-0.035 for 6061-T6 Al and(PEc-PEic)/PEh=0.944-1.099=-0.155 for PMMA.The deviation of red dashdot lines from the unit is attributed to the effect of strength.The strength has a measurable effect in the range of 2 km/s<V<5 km/s and the effect becomes weaker with increasing the impact velocity,just the same conclusion as the numerical simulations by Anderson et al.[25].With increasing the impact velocity,the results of the incompressible model approach the hydrodynamic limit but can not intersect.However the results of the compressible model intersect with the hydrodynamic limit with increasing the impact velocity in Fig.1(b)and(c).

    Applying Eq.(11)into these three cases,the error of penetration efficiency for the incompressible model is shown in Fig.2.The targets are all more compressible than WHA long rod.And the greater the difference between the compressibility of the rod and target is,the more the penetration efficiency of the compressible model decreases.PMMA is much more compressible than WHA,so the compressibility has a great effect on the penetration by WHA rod into PMMA.For WHA rod penetrating PMMA,with increasing the impact velocity,the error of penetration efficiency for the incompressible model decreases first and then increases,and the error is always higher than 10%.

    Table 1Material properties.

    3.2.Lower-limit critical velocity

    When the target has a greater effective strength than that of the rod,i.e.,Rt>Yp,there is a critical velocity Vminbelow which the rod cannot penetrate the target and the target stays rigid,i.e.,U=0.And rod's stagnation pressure equals to the penetration resistance of the target.Vminis the lower-limit critical velocity at which the target starts to deform and flow.For the incompressible model,Forthecompressiblemodel[15],combine U=0 and Eq.(8)to get

    where the approximately equal sign is suitable for (Rt-Yp)/Ap?1 due to the Taylor series expansion.

    On the other hand,when the rod has a greater effective strength than that of the target,i.e.,Rt<Yp,there is a critical velocity Vrigid,below which the rod penetrate the target rigidly(U=V).And target's stagnation pressure equals to the rod's strength.Vrigidis the lower-limit critical velocity at which the rod starts to deform.For the incompressible model,For the compressible model[15],combine U=V and Eq.(8)to get

    where the approximately equal sign is suitable for (Yp-Rt)/At?1 due to the Taylor series expansion.

    The region distributions of rod and target for WHA rod of strength Yp=2.0 GPa penetrating different targets of various strengths are shownin Fig.3,respectively.The strengthof WHA rod is fixed as Yp=2.0 GPa but the ratio Rt/Ypchanges.The regionbelow the left curve in the plots represents that the rod penetrates the target rigidly but the target flows.The region below the right curve represents that the target behaves rigidly but the rod flows.The region above both pairs of curves represents that both the rod and target flow hydrodynamically.

    When Rt/Yp>1,according to Eq.(12)the in fluence of compressibility on Vminis about (Rt-Yp)/(4npAp).And the initial bulk modulus of WHA is quite high(npAp=ρ0pC20p=302.1 GPa),so the curves of Vminpredicted by the incompressible model and the compressible model almost overlap each other.That means,the in fluence of compressibility on the lower-limit critical velocity,at which the target starts to flow,is negligible.

    When Rt/Yp<1,according to Eq.(13)the in fluence of compressibility on Vrigidis about (Yp-Rt)/(4ntAt).And the bulk moduli of both 4340 Steel and 6061-T6 Al are much higher than the strength of WHA,so the curves of Vrigidpredicted by the incompressible model and the compressible model in Fig.3(a)and(b)almost overlap each other,i.e.,similarly the in fluence of compressibility on the lower-limit critical velocity for rod's flowing is negligible.However,the bulk modulus of PMMA is just 8.9 GPa,which is inthesameorderofmagnitudecomparedtothestrengthof WHA,so the curves of Vrigidpredicted by the incompressible model and the compressible model in Fig.3(c)have a slight difference.

    Actually there isa transition zone between rigid and hydrodynamic penetration modes.The corresponding models and details can be found in Refs.[26-28].

    The effect of compressibility on the two lower-limit critical velocities Vminand Vrigidis in the order of ratio of strength difference to the bulk modulus of the rod andtarget,respectively.The strength difference between the rod and target is usually quite smaller than the bulk modulus.Therefore the effect of compressibility on the two lower-limit critical velocities is negligible.For WHA rod penetrating 4340 Steel and 6061-T6 Al at 2 km/s<V<5 km/s,the effect of compressibilityonpenetration efficiency is small.For WHA rod penetrating PMMA,the effect of compressibility on penetration efficiency is great due to the great difference between compressibility of the rod and target.

    4.Hypervelocity WHA long rod penetration

    For WHA rod penetrating 4340 Steel and 6061-T6 Al at 2 km/s<V<5 km/s,the effect of compressibility on penetration efficiency is small and ignored.In higher range of impact velocity 2 km/s<V<10 km/s,the ratios of penetration efficiencies predicted by the compressible model and the incompressible model to the hydrodynamic limit are shown in Fig.4.The solid lines with consideration of strength in the range of 2 km/s<V<5 km/s are just the same as Fig.1(a)and(b),respectively.The dash-dot line and dash line represent the results without consideration of strength,i.e.,Yp=Rt=0 GPa.The difference between the black solid line and black dash-dot line is attributed to the difference of strength in the compressible model.At lower impact velocity,the effectof strength is quitestrong.Howeverat higher impact velocity,the effect of strength becomes weaker.The trend is same for the incompressible model,i.e.,the effect of strength is strong at lower impact velocity and is weak at higher impact velocity.The difference between the black solid line and red solid line is attributed to the compressibility.The effect of compressibility is weak at lower impact velocity and strong at higher impact velocity,which is opposite to the trend of strength.For WHA rod penetrating 4340 Steel and 6061-T6 Al with consideration of strength at V=10 km/s,we have(PEc-PEic)/PEh=0.964-0.979=-0.036 and(PEc-PEic)/PEh=-0.076,respectively.

    In general,at lower impact velocity,the effect of strength is strong and the effect of compressibility is negligible.At higher impact velocity,the effect of strength is weak and the effect of compressibility becomes stronger.

    For the problem of penetration,the pressure equilibrium across the rod/target interface is an important condition.The relation between the stagnationpressure and change of velocity W is shown in Fig.5.For the rod and target,the changes of velocity are W=V-U and W=U,respectively.The abscissa is the ratio of change of velocity to the initial sound speed.The ordinates in Fig.5(a)and(b)are the stagnation pressure and ratio of stagnation pressure predicted by the compressible model to the incompressible model,respectively.The stagnationpressure predictedbythe compressible model is obviously higher than that predicted by the incompressible model.And at higher impact velocity,the pressure increment attributed to the compressibility is higher.As shown in the dimensionless plot of Fig.5(b),the proportional increments of stagnation pressure for different materials are similar.

    The compressibility has effect on both the stagnation pressure and penetration efficiency.Analogous to the graphic solution in planar impact,Fig.6 shows how compressibility affects the penetration efficiency by changing the stagnation pressures of the rod and target for 5-km/s WHA rod penetrating PMMA.For the incompressible model,the stagnation pressure curves of the WHA and PMMA intersect at Uic=4.07 km/s and Pic=10.12 GPa.With consideration of compressibility,the stagnation pressure curve of WHA changes little but the stagnation pressure curve of PMMA changes a lot.So the intersection point for the stagnation pressure curves moves towards the left to Uc=3.95 km/s and Pc=12.46 GPa.The stagnation pressure increases and penetration velocity decreases.According to Eq.(2),the penetration efficiency decreases.

    For PMMA target and WHA,we have W/C0=1.44 and W/C0=0.26,respectively.According to Fig.5(b),the proportional increment of stagnation pressure for PMMA is much higher than that for WHA,so the penetration efficiency obviously decreases,i.e.,(PEc-PEic)/PEh=-0.155.For 10-km/s WHA rod penetrating 4340 Steel and 6061-T6 Al,the pressure states are shown in Fig.7(a)and(b),respectively.

    For WHA rod penetrating 4340 Steel,we have Uc=5.97 km/s,W/C0=1.00 for the rod and W/C0=1.30 for the target,respectively.The dimensionless changes of velocity for the rod and target are comparative,so the reduction of penetration efficiency is small,i.e.,(PEc-PEic)/PEh=-0.036.

    For WHA rod penetrating 6061-T6 Al,we have Uc=7.10 km/s,W/C0=0.72 for the rod and W/C0=1.35 for the target.The difference between the dimensionless changes of velocity for the rod and target is intermediate between the above two cases and the reduction of penetration efficiency is also intermediate,i.e.,(PEc-PEic)/PEh=-0.076.

    5.Copper jet penetration

    For the jet formed by shaped charge,the velocity changes with position,so the jet cannot be treated as long rod.Allison and Bryan[29] firstly introduced the concept of virtual origin.Then Allison and Vitali[30]and Schwartz[31]developed the model with consideration of the velocity gradient and the stand-off distance between the virtual origin and the target surface for the penetration bycontinuous and particulated jets.In the virtual origin model,all of the jet elements are assumed to originate at a virtual origin,located a distance Z0in front of the target surface,and then move at their own velocities.The model doesn't take consideration of the strength and compressibility of the rod and target,and the penetration velocity is predicted by the HTP.

    Many experiments[16-21]showed that there is a linear relation between the penetration velocity U and impact velocity V for long-rod penetrations into brittle ceramic targets in a great velocity range.Clayton[32]discussed the results of these experiments.Besides,Orphal and Anderson[22]conducted numerical simulations of long-rod penetrations into ductile targets at 2 km/s<V<8 km/s and the results showed the clear linear relation between the penetration velocity U and impact velocity V.However the hypervelocity long-rod penetration and jet penetration share the same penetration mechanism,i.e.,both the projectile and target behave like fluid.So the experimental conclusions and the corresponding analytical models apply to both the hypervelocity longrod penetration and jet penetration no matter whether the target is ductile or brittle.The linear U-V relation is adopted in the jet penetration.For the hypervelocity copper jet,the virtual origin model is also adopted here,and the compressibility and strength are considered implictly by the linear relation between the penetration velocity and impact velocity.Thus we can study the effects of compressibility and penetration resistance of the target on penetration efficiency.

    5.1.The virtual origin model with considering the strength and compressibility

    The schematic diagram of the virtual origin model is shown in Fig.8,where Z0is the distance from the virtual origin point to the target surface,t is the penetration time,P(t)is the penetration depth at time t and V(t)is the impact velocity.

    Table 2Coefficients of linear fit for Cu rod penetrating different targets.

    According to the geometrical relationship,we have

    From the de finition of the penetration efficiency,i.e.,Eq.(2),we get

    The change of velocity for jet with length of dl is dV,so

    Substitute Eqs.(14)and(16)into Eq.(15)to get

    Experiments[16-21]and numerical simulation[22]showed the linear relation between the penetration velocity U and impact velocity V for long-rod penetration.However the long-rod penetration and jet penetration share the same penetration mechanism.So the linear U-V relation is also adopted in the jet penetration.

    where a and b are constants.This linear relation is the result of real strength and compressibility.Former researchers did not simultaneously consider both strength and compressibility in the virtual origin model.We substitute this linear relation into Eq.(17),i.e.,the effects of strength and compressibility are implicitly considered.Integrate the result to get the penetration depth

    where Vtipand Vtailare the velocities of tip and tail of the jet,respectively.The constants are evaluated by the compressible model with strength and compressibility.

    For the hydrodynamic limit,i.e.,the strength and compressibility are not considered,the penetration velocity is U=kV/(k+1)and substitute it into Eq.(17)to get the penetration depth

    Substitute the hydrodynamic limit of U=kV/(k+1),i.e.,ah=0 and bh=k/(k+1),into Eq.(19)and the result can degenerate to the hydrodynamic result Eq.(20).

    Combining Eq.(19)and Eq.(20),we can get the ratio of penetration depth with consideration of strength and compressibility to the hydrodynamic penetration depth

    5.2.Cases

    We adopt the above virtual origin model with considering strength and compressibility to study the penetration by copper jet[8](Yp=0 GPa)into 4340 Steel[23](Rt=4.5×0.792 GPa),6061-T6Al[24](Rt=4.5×0.3 GPa)and PMMA[8](Rt=4.5×0.07 GPa).The material properties are shown in Table 1.

    In order to use the virtual origin model,we must get the U-V relation,i.e.,a and b,for copper jet-target intersections.The penetration velocity U for copper jet with impact velocity V is assumed to be equal to the penetration velocity for the copper rod with same impact velocity.With consideration of strength and compressibility,the penetration velocitiespredicted by the compressible model for copper jet penetrating different targets are shown in Fig.9.The effect of strength on the penetration velocity is measurable at lower impact velocity and becomes weak at higher impact velocity.We conduct the linear fitting between the penetration velocity and impact velocity and the corresponding coefficients are listed in Table 2.The last column is the hydrodynamic limit bh=k/(k+1).For strengthless 4340 Steel and 6061-T6 Al,the slopes of the linear relation are quite similar to the hydrodynamic limit and the intercepts are also very small.

    We fix the tail velocity of copper jet at Vtail=2 km/s and change the tip velocity in the range of 3 km/s< Vtip<8 km/s.For example Vtip=5 km/s presents the copper jet with tail velocity of 2 km/s and tip velocity of 5 km/s and linear velocity distribution among the jet.

    Substitute the coefficients in Table 2 into Eq.(21)to get the ratio of penetration depth Pcwith consideration of strength and compressibility to the hydrodynamic penetration depth Phand the results are shown in Fig.10.The solid line and dash-dot line with same color represent the results with and without strength,respectively.The comparison between the solid line,dash-dot line and unit 1.0 decouples the effects of strength and compressibility.Three couples of solid line and dash-dot line all keep distinct gap in the range of 3 km/s< Vtip<8 km/s.

    Firstly,the difference between the dash-dot line and unit 1.0 is attributed to the difference between the compressibility of the rod and target.At Vtip=3 km/s,the ratios Pc/Phare very close to unit for copper jets penetrating various strengthless targets.With increasing the tip velocity,the effect of compressibility becomes stronger.At Vtip=8 km/s,the ratios Pc/Phare 1.0065,0.9686 and 0.7470 for copper jet penetrating strengthless 4030 Steel,6061-T6 Al and PMMA,respectively,and the corresponding change(Pc-Ph)/Phare 0.0065,-0.0314 and-0.2530,respectively.However,for copper jet penetrating 4030 Steel and 6061-T6 Al in the velocity range of 3 km/s<Vtip<8 km/s,the effect of compressibility is weak.But,for copper jet penetrating PMMA,the effect of compressibility is much stronger due to the huge difference between compressibility of copper and PMMA.

    Secondly,the target resistance has a significant effect on penetration by copper jet in the whole range of 3 km/s<Vtip<8 km/s.At Vtip=3 km/s,the ratios Pc/Phare 1.001,1.003 and 0.983 for copper jet penetrating strengthless 4030 Steel,6061-T6 Al and PMMA,respectively,and the corresponding ratios Pc/Phare 0.749,0.799 and 0.883 for the corresponding targets with strength,respectively.The difference is attributed to the target resistance and the differencesΔPc/Phare 0.252,0.204 and 0.100,respectively.Accordingly,at Vtip=8 km/s,the differenceΔPc/Phattributed to the target resistance are 0.207,0.198 and 0.088.In summary,the differences ΔPc/Phattributed to the target resistance are about 20%,20%and 10%in the whole range of 3 km/s < Vtip<8 km/s for copper jet penetrating 4030 Steel,6061-T6 Al and PMMA,respectively.

    The velocity in the long rod is distributed uniformly but there is some velocity distribution among the jet.There is a portion of jet with lower velocity even for the hypervelocity jet and strength has a significant effect on penetration with lower impact velocity,so strength always has a significant effect on penetration by copper jet.On the other hand,for hypervelocity copper jet penetrating PMMA,the front portion of jet has hypervelocity and the huge difference between the compressibility of copper and PMMA reduces the penetration velocity.Accordingly the penetration depth reduces.Besides,the reduction of the penetration depth of the front portion of jet will restrain the stretch of jet,which will reduce the penetration depth of the rear portion of jet.So the compressibility has a significant effect on the penetration by the hypervelocity copper jet into PMMA.

    6.Conclusions

    The simple approximate compressible model is adopted to study the effects of strength and compressibility on the penetration by WHA long rod and copper jet into semi-in finite target in detail.

    For WHA rod penetrating PMMA at 2 km/s<V<5 km/s,the huge difference between compressibility of WHA and PMMA has a significant effect on the penetration efficiency.Taking the penetration by 5-km/s WHA rod into PMMA as example,we clarify how compressibility affects the penetration efficiency by changing the stagnation pressures of the rod and target.For WHA rod penetrating 4340 Steel and 6061-T6 Al at 2 km/s<V<10 km/s,the effect of strength is strong and the effect of compressibility is negligible at lower impact velocity,whilst the effect of strength is weak and the effect of compressibility becomes stronger at higher impact velocity.

    The existing researches showed the linear relation between the penetration velocity U and impact velocity V.For the copper jet penetrating 4030 Steel,6061-T6 Al and PMMA,the virtual origin model is adopted,and the compressibility and strength are implicitly considered by the linear relation between the penetrationvelocityand impact velocity.Thus the effects of compressibility and penetration resistance of the target on penetration efficiency are studied.The tail velocity of copper jet is fixed at Vtail=2 km/s and the tip velocity changes in the range of 3 km/s< Vtip<8 km/s.The results show that the target resistance has a significant effect in the whole range of 3 km/s<Vtip<8 km/s.For copper jet penetrating 4030 Steel and 6061-T6 Al,the effect of compressibility is weak.However PMMA is much more compressible than copper and the huge difference of compressibility has a significant effect on the penetration by hypervelocity copper jet into PMMA.

    Acknowledgements

    This work was supported by the National Outstanding Young Scientist Foundation of China(11225213)and the Key Subject“Computational solid mechanics”of China Academy of Engineering Physics.

    [1]Birkhoff G,MacDougall DP,Pugh EM,Taylor G.Explosives with lined cavities.J Appl Phys 1948;19:563-82.

    [2]Hill R,Mott NF,Pack DC.Theoretical research report No.2/44,Jan.1944 and 13/44.UK Armament Research Department;Mar.1944.

    [3]Eichelberger RJ.Experimental test of the theory of penetration by metallic jets.J Appl Phys 1956;27(1):63-8.

    [4]Alekseevskii VP.Penetration of a rod into target at high velocity.Combust Explo Shock+1956;2(2):63-6.

    [5]Tate A.A theory for the deceleration of long rods after impact.J Mech Phys Solid 1967;15(6):387-99.

    [6]Anderson CE,Orphal DL.An examination of deviations from hydrodynamic penetration theory.Int J Impact Eng 2008;35:1386-92.

    [7]Haugstad BS,Dullum OS.Finite compressibility in shaped charge jet and long rod penetration-the effect of shocks.J Appl Phys 1981;52(8):5066-71.

    [8]Flis WJ,Chou PC.Penetration of compressible materials by shaped-charge jets.In:7th int symp ballistics;1983.The Hague,The Netherlands.

    [9]Osipenko KY,Simonov IV.On the jet collision:general model and reduction to the Mie-Grüneisen state equation.Mech Solid 2009;44(4):639-48.

    [10]Flis WJ.A model of compressible jet penetration.In:Proc 26th int symp ballistics;2011.Miami,FL.

    [11]Flis WJ.A jet penetration model incorporating effects of compressibility and target strength.Process Eng 2013;58:204-13.

    [12]Fedorov SV,Bayanova YM.Hydrodynamic model for penetration of extended projectiles with consideration of material compressibility.In:Proc 25th int symp ballistics;2010.Beijing,China.

    [13]Flis WJ.A simplified approximate model of compressible jet penetration.In:Proc 27th int symp ballistics;2013.Freiburg,Germany.

    [14]Song WJ,Chen XW,Chen P.Effect of compressibility on the hypervelocity penetration.Acta Mech Sin 2017.https://doi.org/10.1007/s10409-017-0688-1.

    [15]Song WJ,Chen XW,Chen P.A simplified approximate model of compressible hypervelocity penetration.Acta Mech Sin 2017(under review).

    [16]Subramanian R,Bless S.Penetration of semi-in finite AD995 alumina targets by tungsten long rod penetrators from 1.5 to 3.5 km/s.Int J Impact Eng 1995;17(4-6):807-16.

    [17]Subramanian R,Bless S,Czamias J,et al.Reverse impact experiments against tungsten rods and results for aluminum penetration between 1.5 and 4.2 km/s.Int J Impact Eng 1995;17(4):817-24.

    [18]Orphal D,Franzen R,Piekutowski A,et al.Penetration of con fined aluminum nitride targets by tungsten long rods at 1.5-4.5 km/s.Int J Impact Eng 1996;18(4):355-68.

    [19]Orphal D,Franzen R.Penetration of con fined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s.Int J Impact Eng 1997;19(1):1-13.

    [20]Orphal D,Franzen R,Charters A,et al.Penetration of con fined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s.Int J Impact Eng 1997;19(1):15-29.

    [21]Behner T,Orphal D,Hohler V,et al.Hypervelocity penetration of gold rods into SiC-N for impact velocities from 2.0 to 6.2 km/s.Int J Impact Eng 2006;33(1):68-79.

    [22]Orphal D,Anderson C.The dependence of penetration velocity on impact velocity.Int J Impact Eng 2006;33(1):546-54.

    [23]Steinberg DJ.Equation of state and strength properties of selected materials.Lawrence Livermore National Laboratory;1996.UCRL-MA-106439.

    [24]Corbett BM.Numerical simulations of target hole diameters for hypervelocity impacts into elevated and room temperature bumpers.Int J Impact Eng 2006;33(1):431-40.

    [25]Anderson CE,Orphal DL,Franzen RR,Walker JD.On the hydrodynamic approximation for long-rod penetration.Int J Impact Eng 1999;22(1):23-43.

    [26]Chen XW,Li QM.Transition from non-deformable projectile penetration to semi-hydrodynamic penetration.J Eng Mech 2004;130(1):123-7.

    [27]Segletes SB.The erosion transition of tungsten-alloy long rods into aluminum targets.Int J Solid Struct 2007;44:2168-91.

    [28]Lou JF,Zhang YG,Wang Z,Hong T,Zhang XL,Zhang SD.Long-rod penetration:the transition zone between rigid and hydrodynamic penetration modes.Defence Technol 2014;10:239-44.

    [29]Allison FE,Bryan GM.Cratering by a train of hypervelocity fragments.Proc 2nd Hypervelocity Impact Effects Symp 1957;1:81.

    [30]Allison FE,Vitali R.A new method of computing penetration variables for shaped charge jets.Ballistic Research Laboratories Internal Report.BRL;1963.

    [31]Schwartz W.Modified SDM model for the calculation of shaped charge hole pro files.Propell Explos Pyrot 1994;19(4):192-201.

    [32]Clayton JD.Dimensional analysis and extended hydrodynamic theory applied to long-rod penetration of ceramics.Defence Technol 2016;12:334-42.

    在线观看av片永久免费下载| 99热这里只有是精品50| 国产一区二区在线观看日韩| 国产精品.久久久| 日本撒尿小便嘘嘘汇集6| а√天堂www在线а√下载| 中文字幕av成人在线电影| 精品久久久久久久久久免费视频| 午夜激情欧美在线| 久久精品91蜜桃| 老女人水多毛片| 国产真实乱freesex| 黄色视频,在线免费观看| 亚洲欧洲国产日韩| 高清午夜精品一区二区三区 | 色尼玛亚洲综合影院| 高清毛片免费观看视频网站| 亚洲av.av天堂| 国产精品一区二区性色av| 日韩在线高清观看一区二区三区| 午夜免费激情av| 久久久久久久久久久免费av| 人妻久久中文字幕网| 午夜福利高清视频| 男女那种视频在线观看| 老司机影院成人| 一个人观看的视频www高清免费观看| 欧美日本亚洲视频在线播放| 日韩成人伦理影院| 一进一出抽搐动态| www日本黄色视频网| av专区在线播放| 亚洲精品456在线播放app| 欧美一区二区亚洲| 精品一区二区三区人妻视频| 晚上一个人看的免费电影| 校园人妻丝袜中文字幕| 久久国产乱子免费精品| 亚洲中文字幕日韩| 亚洲成av人片在线播放无| 亚洲天堂国产精品一区在线| 51国产日韩欧美| 国产精品久久久久久av不卡| 国产一区二区亚洲精品在线观看| 26uuu在线亚洲综合色| 我的老师免费观看完整版| 少妇熟女aⅴ在线视频| 日韩大尺度精品在线看网址| 国产高清三级在线| 桃色一区二区三区在线观看| 嫩草影院精品99| 国产成人91sexporn| 国产亚洲5aaaaa淫片| 国产亚洲精品久久久久久毛片| 亚洲精华国产精华液的使用体验 | 成人毛片a级毛片在线播放| 国产精品乱码一区二三区的特点| 中文字幕免费在线视频6| 欧美在线一区亚洲| 国产成年人精品一区二区| 麻豆久久精品国产亚洲av| 国产成人精品一,二区 | 亚洲无线观看免费| 十八禁国产超污无遮挡网站| 久久综合国产亚洲精品| 26uuu在线亚洲综合色| 亚洲欧美精品自产自拍| 婷婷精品国产亚洲av| 中出人妻视频一区二区| 国产老妇伦熟女老妇高清| 九色成人免费人妻av| 国产精品综合久久久久久久免费| 黄色日韩在线| 看片在线看免费视频| 国产成人aa在线观看| 久久韩国三级中文字幕| 亚洲欧洲日产国产| 国产极品天堂在线| 久久久久久久久中文| 久久精品国产亚洲av天美| 中文精品一卡2卡3卡4更新| 悠悠久久av| 女的被弄到高潮叫床怎么办| 干丝袜人妻中文字幕| 最近2019中文字幕mv第一页| 国产成人精品婷婷| 亚洲自拍偷在线| 国产成人一区二区在线| 特大巨黑吊av在线直播| 好男人视频免费观看在线| 亚洲七黄色美女视频| 我要搜黄色片| 久久精品国产亚洲av香蕉五月| 国产午夜精品一二区理论片| 99在线视频只有这里精品首页| 男女视频在线观看网站免费| avwww免费| 亚洲精品乱码久久久久久按摩| 少妇高潮的动态图| 国产伦理片在线播放av一区 | 国产精品电影一区二区三区| 老女人水多毛片| 亚洲不卡免费看| 狠狠狠狠99中文字幕| 国产av在哪里看| 一区二区三区高清视频在线| 成人欧美大片| 男人狂女人下面高潮的视频| 国产视频首页在线观看| 免费不卡的大黄色大毛片视频在线观看 | 婷婷色av中文字幕| 国产高清有码在线观看视频| 久久这里只有精品中国| 亚洲人成网站在线播放欧美日韩| 岛国毛片在线播放| 亚洲av二区三区四区| 美女被艹到高潮喷水动态| 国产精品永久免费网站| 午夜精品在线福利| 免费搜索国产男女视频| 狠狠狠狠99中文字幕| 超碰av人人做人人爽久久| 亚洲av成人av| 亚洲欧洲日产国产| av天堂在线播放| 老熟妇乱子伦视频在线观看| 在线观看免费视频日本深夜| 人妻久久中文字幕网| 日韩 亚洲 欧美在线| 天堂√8在线中文| 国产精品一区二区三区四区久久| 此物有八面人人有两片| 2022亚洲国产成人精品| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美在线乱码| 一本精品99久久精品77| 国产精品蜜桃在线观看 | 亚洲av不卡在线观看| 99久久人妻综合| 一本精品99久久精品77| 直男gayav资源| 久久久色成人| 男插女下体视频免费在线播放| 一区二区三区四区激情视频 | 免费看av在线观看网站| 1024手机看黄色片| 精品久久久久久久末码| 校园人妻丝袜中文字幕| 听说在线观看完整版免费高清| 国产一区二区在线av高清观看| 深夜精品福利| 久久久久久久久大av| 在线观看一区二区三区| 亚洲精品自拍成人| 一进一出抽搐gif免费好疼| 国产成人精品久久久久久| ponron亚洲| 麻豆成人av视频| 大又大粗又爽又黄少妇毛片口| 国产成人午夜福利电影在线观看| 亚洲成人久久爱视频| 能在线免费看毛片的网站| 日韩av在线大香蕉| 99国产精品一区二区蜜桃av| 一级二级三级毛片免费看| 少妇人妻一区二区三区视频| 亚洲中文字幕一区二区三区有码在线看| 国产精品1区2区在线观看.| 小说图片视频综合网站| 成人亚洲欧美一区二区av| 亚洲人成网站在线观看播放| 麻豆一二三区av精品| 乱码一卡2卡4卡精品| 亚洲国产精品久久男人天堂| 99久久成人亚洲精品观看| 乱码一卡2卡4卡精品| 51国产日韩欧美| 少妇熟女欧美另类| 韩国av在线不卡| 国产亚洲欧美98| 99热这里只有是精品在线观看| 韩国av在线不卡| 国产69精品久久久久777片| 又爽又黄无遮挡网站| 精品无人区乱码1区二区| 热99re8久久精品国产| 三级毛片av免费| 麻豆精品久久久久久蜜桃| 日本黄色片子视频| 91精品国产九色| 九九爱精品视频在线观看| 国产乱人偷精品视频| 成人美女网站在线观看视频| 成人综合一区亚洲| 久久久欧美国产精品| 国产成人freesex在线| 欧美日韩综合久久久久久| 精品熟女少妇av免费看| 日本黄大片高清| 欧美又色又爽又黄视频| 亚洲最大成人中文| 国产伦一二天堂av在线观看| 九草在线视频观看| 日本免费一区二区三区高清不卡| 在线天堂最新版资源| av在线亚洲专区| 男女那种视频在线观看| 看片在线看免费视频| 亚洲色图av天堂| 91麻豆精品激情在线观看国产| 久久精品夜夜夜夜夜久久蜜豆| 男女做爰动态图高潮gif福利片| 波多野结衣高清作品| 综合色av麻豆| 亚洲精品久久国产高清桃花| 精品无人区乱码1区二区| 国产91av在线免费观看| 亚洲成av人片在线播放无| 亚洲第一区二区三区不卡| 神马国产精品三级电影在线观看| 国产不卡一卡二| 久久亚洲精品不卡| av免费在线看不卡| 变态另类丝袜制服| 观看美女的网站| 两个人视频免费观看高清| 亚洲精品久久国产高清桃花| 国产亚洲欧美98| 免费看日本二区| 91精品国产九色| 观看免费一级毛片| 18+在线观看网站| 人妻制服诱惑在线中文字幕| 国产熟女欧美一区二区| 此物有八面人人有两片| 日韩精品有码人妻一区| 91aial.com中文字幕在线观看| 日韩欧美一区二区三区在线观看| av又黄又爽大尺度在线免费看 | 欧美日韩国产亚洲二区| 免费无遮挡裸体视频| 国产高潮美女av| 91av网一区二区| 亚洲18禁久久av| 舔av片在线| 岛国在线免费视频观看| 欧美一区二区国产精品久久精品| 69av精品久久久久久| 国产中年淑女户外野战色| 成人二区视频| 成人亚洲精品av一区二区| 免费人成在线观看视频色| 国产伦精品一区二区三区四那| 精品不卡国产一区二区三区| 欧美日韩在线观看h| 中文精品一卡2卡3卡4更新| av卡一久久| 99久国产av精品国产电影| 成人二区视频| 亚洲在线观看片| 午夜免费男女啪啪视频观看| 少妇高潮的动态图| 午夜福利高清视频| avwww免费| 久久精品综合一区二区三区| 欧美zozozo另类| 亚洲四区av| 午夜福利成人在线免费观看| 亚洲在线自拍视频| 国产免费男女视频| 三级国产精品欧美在线观看| 在线免费观看的www视频| 亚洲精品影视一区二区三区av| 欧美xxxx黑人xx丫x性爽| 麻豆精品久久久久久蜜桃| 国产av一区在线观看免费| 尤物成人国产欧美一区二区三区| 少妇熟女aⅴ在线视频| 国产爱豆传媒在线观看| 亚洲av中文av极速乱| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区在线av高清观看| 少妇猛男粗大的猛烈进出视频 | 卡戴珊不雅视频在线播放| 性欧美人与动物交配| 亚洲精华国产精华液的使用体验 | 欧美性猛交╳xxx乱大交人| 综合色av麻豆| 在线观看午夜福利视频| 人妻系列 视频| 日韩一区二区视频免费看| 成人高潮视频无遮挡免费网站| 精品一区二区三区人妻视频| 亚洲成人中文字幕在线播放| 99在线人妻在线中文字幕| 精品久久久久久久末码| 狂野欧美白嫩少妇大欣赏| 亚洲不卡免费看| 国产成人一区二区在线| 边亲边吃奶的免费视频| 国产精品av视频在线免费观看| 狂野欧美激情性xxxx在线观看| 亚洲精品影视一区二区三区av| 国产精品久久久久久精品电影小说 | 亚洲精品456在线播放app| 免费观看精品视频网站| 白带黄色成豆腐渣| 自拍偷自拍亚洲精品老妇| 菩萨蛮人人尽说江南好唐韦庄 | 1000部很黄的大片| 日韩欧美一区二区三区在线观看| 在线观看美女被高潮喷水网站| 国产乱人偷精品视频| 日韩欧美国产在线观看| 国产午夜精品论理片| 免费观看在线日韩| 色综合亚洲欧美另类图片| 中国美女看黄片| 99热6这里只有精品| av黄色大香蕉| 看免费成人av毛片| 小说图片视频综合网站| eeuss影院久久| 成年女人永久免费观看视频| 美女xxoo啪啪120秒动态图| 日日摸夜夜添夜夜爱| 国产精品美女特级片免费视频播放器| 麻豆av噜噜一区二区三区| 亚洲人成网站在线观看播放| 日韩欧美 国产精品| 九九久久精品国产亚洲av麻豆| 欧美激情在线99| 色尼玛亚洲综合影院| 可以在线观看毛片的网站| 色5月婷婷丁香| 寂寞人妻少妇视频99o| 精品一区二区免费观看| 毛片一级片免费看久久久久| 99久久人妻综合| 小说图片视频综合网站| 国内揄拍国产精品人妻在线| 国产亚洲91精品色在线| 亚洲va在线va天堂va国产| 色尼玛亚洲综合影院| 亚洲av二区三区四区| 永久网站在线| 国产成年人精品一区二区| 国产精品久久久久久av不卡| 午夜精品国产一区二区电影 | 91在线精品国自产拍蜜月| 日韩亚洲欧美综合| 国产成人精品一,二区 | 天美传媒精品一区二区| 夜夜爽天天搞| 精品99又大又爽又粗少妇毛片| 婷婷精品国产亚洲av| 22中文网久久字幕| 欧美精品国产亚洲| 亚洲人与动物交配视频| 国产色婷婷99| 搞女人的毛片| 国产极品天堂在线| 天美传媒精品一区二区| 老司机福利观看| 成人永久免费在线观看视频| 精品不卡国产一区二区三区| 26uuu在线亚洲综合色| 亚洲精品粉嫩美女一区| 麻豆成人午夜福利视频| 欧美高清性xxxxhd video| 国产亚洲精品av在线| 日本五十路高清| 美女xxoo啪啪120秒动态图| 麻豆av噜噜一区二区三区| 亚洲性久久影院| 亚洲国产精品sss在线观看| 国产一区二区三区在线臀色熟女| 精品无人区乱码1区二区| 小蜜桃在线观看免费完整版高清| 男人舔奶头视频| 嫩草影院精品99| 日本黄色片子视频| 天天一区二区日本电影三级| 看非洲黑人一级黄片| 天天躁日日操中文字幕| 国产乱人偷精品视频| 成人亚洲欧美一区二区av| 高清日韩中文字幕在线| 久久国内精品自在自线图片| 久久久精品大字幕| 成人毛片60女人毛片免费| 久久人人爽人人爽人人片va| av女优亚洲男人天堂| 亚洲av中文字字幕乱码综合| 亚洲激情五月婷婷啪啪| 成人漫画全彩无遮挡| 夜夜夜夜夜久久久久| 天天一区二区日本电影三级| 国产蜜桃级精品一区二区三区| 亚洲国产精品成人综合色| 99久久人妻综合| 日本黄色视频三级网站网址| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产av麻豆久久久久久久| 三级男女做爰猛烈吃奶摸视频| 亚洲av免费在线观看| 国产片特级美女逼逼视频| 联通29元200g的流量卡| 在线天堂最新版资源| 国产精品一及| 国产亚洲av嫩草精品影院| 亚洲欧美日韩高清在线视频| 只有这里有精品99| 亚洲高清免费不卡视频| 性欧美人与动物交配| 亚洲经典国产精华液单| 变态另类丝袜制服| 午夜爱爱视频在线播放| 人人妻人人看人人澡| 国产亚洲5aaaaa淫片| 一区二区三区免费毛片| 赤兔流量卡办理| 日韩精品有码人妻一区| 日日摸夜夜添夜夜爱| 在线播放国产精品三级| 午夜福利在线观看免费完整高清在 | 淫秽高清视频在线观看| 嘟嘟电影网在线观看| 变态另类成人亚洲欧美熟女| 亚洲一级一片aⅴ在线观看| 1024手机看黄色片| 中国美白少妇内射xxxbb| 少妇丰满av| 一本一本综合久久| 亚洲精品乱码久久久v下载方式| 精品久久久久久久人妻蜜臀av| 日韩欧美精品v在线| 国产精品久久视频播放| 中文字幕久久专区| 国产精品无大码| 日韩欧美精品免费久久| 99久久精品一区二区三区| 亚洲乱码一区二区免费版| 99久久无色码亚洲精品果冻| 国产日韩欧美在线精品| 又粗又爽又猛毛片免费看| 两个人视频免费观看高清| 又黄又爽又刺激的免费视频.| 波多野结衣高清无吗| 一个人观看的视频www高清免费观看| 一夜夜www| 好男人视频免费观看在线| 天堂av国产一区二区熟女人妻| 国产不卡一卡二| 国产亚洲av嫩草精品影院| 国产伦理片在线播放av一区 | a级毛片a级免费在线| 久久精品国产亚洲av天美| 两个人的视频大全免费| 亚洲婷婷狠狠爱综合网| 久久久久免费精品人妻一区二区| 国产一区亚洲一区在线观看| 国产亚洲欧美98| 欧美三级亚洲精品| 一个人免费在线观看电影| 国产成人a区在线观看| 国产亚洲5aaaaa淫片| 一个人观看的视频www高清免费观看| 亚洲欧美日韩高清在线视频| 久久国产乱子免费精品| 亚洲最大成人手机在线| 黄色一级大片看看| 精品久久国产蜜桃| 免费黄网站久久成人精品| 欧美日韩一区二区视频在线观看视频在线 | 男人狂女人下面高潮的视频| 九九在线视频观看精品| 国产精品三级大全| 99热这里只有精品一区| 欧美+亚洲+日韩+国产| 最后的刺客免费高清国语| 国产免费男女视频| 国产视频首页在线观看| 国产亚洲av片在线观看秒播厂 | 亚洲内射少妇av| 老司机福利观看| 国产爱豆传媒在线观看| 两个人视频免费观看高清| 在线播放国产精品三级| 欧美精品一区二区大全| 日日摸夜夜添夜夜爱| 天堂av国产一区二区熟女人妻| 久久亚洲精品不卡| 夜夜夜夜夜久久久久| 成人毛片60女人毛片免费| 亚洲精品久久国产高清桃花| 久久久久免费精品人妻一区二区| 爱豆传媒免费全集在线观看| 嘟嘟电影网在线观看| 亚洲精品自拍成人| 男人的好看免费观看在线视频| 亚洲国产日韩欧美精品在线观看| 国产成年人精品一区二区| 亚洲人成网站在线播| 日产精品乱码卡一卡2卡三| 精品欧美国产一区二区三| h日本视频在线播放| 成人漫画全彩无遮挡| 天堂影院成人在线观看| 91aial.com中文字幕在线观看| 1024手机看黄色片| 看十八女毛片水多多多| 舔av片在线| 亚洲欧美日韩高清在线视频| 五月伊人婷婷丁香| 午夜激情福利司机影院| 全区人妻精品视频| 69av精品久久久久久| 亚洲欧美成人精品一区二区| 国产一区亚洲一区在线观看| 成年av动漫网址| 免费看a级黄色片| 老司机影院成人| 国产高清不卡午夜福利| 日韩成人av中文字幕在线观看| 国产av麻豆久久久久久久| 国产伦精品一区二区三区视频9| 国产亚洲欧美98| 男的添女的下面高潮视频| 一级毛片我不卡| 国产精品国产高清国产av| 久久久精品94久久精品| 国产成人a区在线观看| 久久精品国产亚洲av香蕉五月| 女人被狂操c到高潮| 中文字幕av成人在线电影| 性色avwww在线观看| 亚洲国产精品合色在线| 青春草亚洲视频在线观看| 成人综合一区亚洲| 亚洲av.av天堂| 成年av动漫网址| 深夜a级毛片| 秋霞在线观看毛片| 91久久精品电影网| 亚洲精品国产av成人精品| 国产精品.久久久| 一个人免费在线观看电影| 18+在线观看网站| 色哟哟·www| 成人综合一区亚洲| 国产成人91sexporn| 午夜精品国产一区二区电影 | 欧美激情国产日韩精品一区| 免费看美女性在线毛片视频| 国产激情偷乱视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 男人狂女人下面高潮的视频| 亚洲精品久久久久久婷婷小说 | 哪里可以看免费的av片| 天堂网av新在线| 国产男人的电影天堂91| 国产在线精品亚洲第一网站| 国产私拍福利视频在线观看| 国产久久久一区二区三区| 免费观看a级毛片全部| 国产69精品久久久久777片| 欧美日本亚洲视频在线播放| 中文字幕精品亚洲无线码一区| 精品一区二区三区人妻视频| 午夜精品在线福利| 国产免费一级a男人的天堂| 久久久色成人| 国产极品精品免费视频能看的| 大又大粗又爽又黄少妇毛片口| 在线观看一区二区三区| 国产精品伦人一区二区| 久久国产乱子免费精品| 国产一级毛片在线| 少妇人妻一区二区三区视频| 久久草成人影院| 美女大奶头视频| 国产单亲对白刺激| av免费观看日本| 极品教师在线视频| 亚洲精品成人久久久久久| 国产亚洲欧美98| 日本与韩国留学比较| 在线免费观看不下载黄p国产| 91午夜精品亚洲一区二区三区| 久99久视频精品免费| 欧美精品一区二区大全| 久久午夜亚洲精品久久| 国产成人精品久久久久久| 禁无遮挡网站| 国产一级毛片七仙女欲春2| 久久九九热精品免费| 美女脱内裤让男人舔精品视频 | 国产亚洲欧美98| 国产午夜精品久久久久久一区二区三区| 桃色一区二区三区在线观看| 久久欧美精品欧美久久欧美| 一级黄片播放器| 2021天堂中文幕一二区在线观| 国产视频内射| 国产精品无大码| 亚洲国产精品国产精品| 日韩欧美一区二区三区在线观看| 国产日韩欧美在线精品| 久久精品影院6| 99久久精品一区二区三区| 丰满乱子伦码专区| 中文资源天堂在线| 最近中文字幕高清免费大全6| 国产精品国产高清国产av|