• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of fatigue crack growth rate for smallsized CIET specimens based on low cycle fatigue properties

    2018-04-21 06:02:19ChenBAOLixunCAIKaikaiSHI
    CHINESE JOURNAL OF AERONAUTICS 2018年4期

    Chen BAO,Lixun CAI,Kaikai SHI

    Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province,School of Mechanics and Engineering,Southwest Jiaotong University,Chengdu 610031,China

    1.Introduction

    The fatigue crack propagation rate per cycle,da/dN,governed by the stress intensity factor range,ΔK,is commonly applied to represent the fracture behavior of a cracked body subjected to cyclic loading.Taking into account local cyclic plastic deformation around the crack tip,the fatigue crack growth behavior can be predicted by the low cycle fatigue property of a material in conjunction with a description of the stress and strain field ahead of the crack tip and an appropriate failure criterion.

    Different failure criteria such as critical stress,plastic strain ahead of the crack tip,1the magnitude of crack tip damage accumulation ahead of the crack tip,2–7and strain energy5–13have been used in past fatigue crack growth models.These energy-based criteria are mainly based on the critical level of energy dissipation within the material ahead of the crack tip,and it is found that they are more accurate than other failure criteria in predicting fatigue crack growth behaviors.An important fact generally observed in fatigue crack growth experiments is that the specimen geometry and load ratio can remarkably affect the fatigue crack growth law because of the crack closure effect.14–17Only Shi et al.7introduced an effective stress ratioUto quantify the crack closure effect in a fatigue crack growth model.Here,the used effective stress ratioUcan only eliminate the effect of the load ratio on the fatigue crack growth rate.For different specimen geometries,the transverseT-stress is another factor which may alter the cyclic plastic zone size and further affect the crack closure behavior.16,18Bao et al.19conducted a group of experiments on the fatigue crack growth rate of 5083-H112 aluminum alloy by using traditional Compact Tension(CT)and small-sized C-shaped Inside Edge-notched Tension(CIET)specimens,and the resulted fatigue crack growth curves showed an outstanding difference between two specimen geometries.

    The present work aims to predict the fatigue crack growth data reported in Ref.19,according to two types of energy-based fatigue crack growth models based on low cycle fatigue properties by introducing the effective stress ratioUdetermined by different methods.

    2.Fatigue crack growth models

    2.1.Cyclic stress and strain fields ahead of crack tip

    For a crack body subjected to a remote external load,the classical HRR20,21solution is commonly employed to describe the stress and strain fields in the vicinity of the crack tip under a plane stress condition.By introducing the plastic superposition principle,22the cyclic stress and strain fields ahead of the crack tip under small-scale yielding can be obtained from the HRR solution23as follows:

    whereEis elastic modulus,Δσ and Δε are the stress and strain ranges,respectively.ΔKis the stress intensity factor range,and(r,θ)are the polar coordinates centered at the crack tip.σycis the reference cyclic yield stress,αcis the cyclic strain hardening coefficient in the Ramberg-Osgood relationship,24andncis the cyclic strain hardening exponent but is the reciprocal of the exponent in the Ramberg-Osgood model.~σθ,~σr,andIncare dimensionless distribution functions only related toncand tabulated by Shih.25rcis the cyclic plastic zone under mode I loading considering the stress redistribution and the strain hardening effect,and its expression under the plane stress condition can be described as13

    2.2.Energy-based fatigue crack growth models

    In the research of low cycle fatigue behavior,the well-known Manson-Coff i n model is commonly applied to describe the relationship between the strain amplitude,Δε/2,and the number of reversals to failure,2Nf,in the following form:

    By taking into consideration the total ductility loss of a material within a cyclic plastic zone,Pandey and Chand12,13developed a fatigue crack growth model based on the low cycle fatigue property as follows:

    where ΔKthis the threshold stress intensity factor range.Here,the crack closure effect is not considered in the Pandey&Chand model.Similarly,Shi and Cai5proposed another energy-based fatigue crack growth model according to the equivalence of plastic strain energy within the cyclic plastic zone,and it will be hereafter referred to as the Shi&Cai model.This model is described as follows:

    where ρcis the cyclic plastic zone corresponding to ΔKth.To eliminate the effect of crack closure on the fatigue crack growth,Shi et al.7introduced an effective stress ratioUproposed by Antunes et al.26and Codrington et al.27into the Shi&Cai model,which is

    Here,the effective stress ratioUis deduced from a rigid perfectly plastic strip-yield model,and is only related by the load ratioR.According to the correction of crack closure using the effective stress ratioU,the Shi&Cai model can be amended by replacing the cyclic plastic zonesrcand ρcwith the effective cyclic plastic zonesreffand ρeffas shown in the following equation:

    Fig.1 configurations and dimensions of a straight round bar,a CIET specimen,and a CT specimen.

    In fact,not only the load ratioRbut the specimen geometry characterized by the transverseT-stress may also affect the crack closure and further affect the fatigue crack growth behavior.In the work of Bao et al.,19the classical plastic induced crack closure model developed by Newman14,28has been applied to correct the fatigue crack growth curves of CT and CIET specimens with different specimen thicknesses and load ratiosR,and the effective stress ratio is expressed as

    where σopis the crack opening stress,and σmaxis the maximum stress.In order to facilitate the convenience of application,the crack opening stress σophas been simplified as29

    Here,the effective reference cyclic stressis corrected by using theT-stress to consider the effect of the specimen configuration on the fatigue crack growth as follows:

    whereT-stress is defined as

    in which σxxand σyyare the stress components in thexandydirections applied on the crack face,respectively.TheT-stress for both CT and CIET specimens can be expressed by Ref.19as follows:

    Fig.2 Evolution of stress amplitude Δσ/2 with an increasing normalized number of reversals N/Nf.

    Fig.3 Hysteresis loops of stress σ vs strain ε at different strain amplitudes.

    Fig.4 Comparison between stress–strain constitutive curves under uniaxial and cyclic loadings for 5083-H112 aluminum alloy.

    where σyis the uniaxial reference yield stress,andWis the specimen width.

    Fig.5 Curves of Δε/2 vs 2Nffor 5083-H112 aluminum alloy.

    Fig.6 Experimental da/dN–ΔK curves of CIET and CT specimens for 5083-H112 aluminum alloy.

    Fig.7 Prediction of da/dN–ΔK curves of CIET specimens according to Pandey&Chand model with different effective stress ratios.

    Fig.8 Prediction of da/dN–ΔK curves of CT specimens according to Pandey&Chand model with different effective stress ratios.

    The above-discussed energy-based fatigue crack growth models,the Pandey&Chand model and the Shi&Cai model,will be applied to predict the fatigue crack growth curves of CIET and CT specimens based on low cycle fatigue properties.Simultaneously,the correction of crack closure with different effective stress ratios given by Newman’s method(Eqs.(11)–(16))and Codrington’s method(Eq.(9))will be compared in the prediction of fatigue crack growth curves in detail.

    3.Materials and experimental procedure

    Fig.9 Prediction of da/dN–ΔK curves of CIET specimens according to Shi&Cai model with different effective stress ratios.

    A typical aluminum alloy 5083-H112 was employed to carry out the tests of low cycle fatigue and fatigue crack growth rate in this study.Its chemical composition is:Si+Fe,0.45%;Cu,0.1%;Mn,0.1%;Mg,2.2%–2.8%;Cr,0.15%–0.35%;Zn,0.1%;in weight.The mechanical properties of this alloy are:elastic modulusE=86.6 GPa,yield stress σs=141 MPa,ultimate strength σb=297 MPa,and elongation after fracture δ=15%.As shown in Fig.1,a group of straight round bars with a diameter of 5 mm was used for low cycle fatigue tests at room temperature,and traditional CT and small-sized CIET specimens with different thicknesses were applied in the tests of fatigue crack growth rate under load ratiosR=0.1,0.3,0.5 at room temperature,respectively.The thicknesses of the used CT specimens areB=5,10 mm,and those of CIET specimens areB=5,7.85 mm.The other dimensions of these three types of specimens are given in Fig.1.

    All the tests were conducted on an electromechanical test machine MTS 809 with a load frame of 25 kN capacity under tension.A standard Crack Opening Displacement(COD)extensometer MTS632.02F-20 with a gage length of 5 mm and a full range of 4 mm was used to measure the CODs of CT and CIET specimens. A strain extensometer MTS632.54F-14 with a gage length of 12 mm and a full range of±10%was applied to measure the strain of a straight round bar.The low cycle fatigue test was controlled by the strain of the work zone of a straight round bar at a strain rate of 0.006 s-1under different levels of strain amplitude,and the load ratio was-1.The compliance technique as indicated in Ref.19was applied to measure the real-time crack lengths of CIET and CT specimens in the fatigue crack growth rate tests.

    4.Results and discussion

    4.1.Experimental results of low cycle fatigue and fatigue crack growth rate

    Fig.2 gives the change of the stress amplitude,Δσ/2,with an increasing number of reversals normalized by the number of reversals to failure,N/Nf,at different controlling strain amplitudes,Δε/2.At the beginning of the number of reversals,the stress amplitude increases sharply,and then almost keeps constant.It is indicated that the used 5083-H112 aluminum alloy is cyclically steady in the behavior of low cycle fatigue.By extracting the records of strain and stress at the steady phase of the stress amplitude evolution in Fig.2 for each specimen,the hysteresis loops of stress σ versus strain ε at different strain amplitudes are shown in Fig.3.

    By extracting the upper vertex of the stable stress-strain hysteresis loop at different levels of controlling strain amplitude,a cyclic stress-strain curve can be obtained,as shown in Fig.4.Additionally,this cyclic stress-strain curve can be described by using a power function as

    where αc=0.173,σyc=230 MPa,andnc=0.214.

    Fig.10 Prediction of da/dN–ΔK curves of CT specimens according to Shi&Cai model with different effective stress ratios.

    From Fig.4,5083-H112 aluminum alloy exhibits remarkable cyclic hardening compared with the uniaxial constitutive curve.Additionally,the maximum cyclic strain amplitude is only 0.006 which is extracted from test data,but it is now extended to 0.012 to meet the requirement of prediction of the fatigue crack growth rate via Eq.(16).Fig.5 presents the curves of the strain amplitude, Δε/2,versus the number of reversals to failure,2Nf.Here,the elastic part Δεe/2–2Nfcurve and the plastic part Δεp/2–2Nfcurve are also given in this figure.Definitely,the relationship between Δε/2 and 2Nfcan be described by the Manson-Coffin model given in Eq.(4),and the parameters of this model are:=770.6 MPa,=0.0752,b=-0.123,c=-0.488.

    Fig.11 Predictions of Pandey&Chand and Shi&Cai models with Newman’s U value for CIET specimens.

    As reported in Ref.19,the experimental curves of the fatigue crack growth rates of CT and CIET specimens with different load ratios and thicknesses are shown in Fig.6.It can be seen that the fatigue crack growth curves of both types of specimens are strongly influenced by the load ratio.This alloy presents better resistance to fatigue crack growth when specimens are subjected to a cyclic load with a smaller load ratio,and vice versa.The thickness of specimens has little effect on the fatigue crack growth curves of CIET specimens,but it quite affects the fatigue crack growth curves of CT specimens.Bao et al.19successfully eliminated the effects of the load ratio and thickness on the fatigue crack growth curves of both types of specimens by introducing crack closure correction based on Newman’s effective stress ratioU,and it will not be repeated here.

    4.2.Prediction of fatigue crack growth curves based on energy based predictive models

    According to the two above-mentioned energy-based fatigue crack growth models,the Pandey&Chand model and the Shi&Cai model,Figs.7–10 give the prediction of fatigue crack growth curves of all the CIET and CT specimens in consideration of crack closure correction with the effective stress ratioUresulted from Newman’s and Codrington’s methods,and without crack closure correction,respectively.

    As seen from Fig.7,the predicted results of the Pandey&Chand model without crack closure correction for CIET specimens with different load ratios are much closer to test data than the results predicted from this model with the other two means of crack closure correction.However,as seen in Fig.8,for CT specimens with different load ratios and specimen thicknesses,the predicted results of the Pandey&Chand model with and without crack closure correction are quite different from test data,except when the load ratio is 0.3 and the thickness is 5 mm,while the Pandey&Chand model without crack closure correction can match the lower rate part of the experimental da/dN–ΔKcurve.

    In Fig.9,the Shi&Cai model without crack closure correction loses the capacity of predicting fatigue crack growth rates of CIET specimens with different load ratios and thicknesses.As shown in Figs.9(a)and(b),the Shi&Cai model with two different means of determination of the effective stress ratioUgets consistent results,which match well with test data.When the load ratio is 0.5,the predicted curve from the model with the effective stress ratio developed by Newman agrees well with test data,but the predicted curve from the model by means of Codrington’s effective stress ratio is quite different from test results.

    As plotted in Fig.10,the Shi&Cai model with crack closure correction by means of Newman’s effective stress ratio shows more capable of predicting fatigue crack growths of CT specimens with different load ratios and thicknesses than the model with the other way of crack closure correction and without crack closure correction.

    Fig.12 Predictions of Pandey&Chand and Shi&Cai models with Newman’s U value for CT specimens.

    Figs.11 and 12 present a comparison between the da/dN–ΔKcurves predicted by the Pandey&Chand and Shi&Cai models by means of Newman’s crack closure correction for CIET and CT specimens,respectively.The results indicate that the predictions of the Shi&Cai model match well with test curves,but the predicted results of the Pandey&Chand model deviate from thetestdata.In comparison with thepredicted da/dN–ΔKcurves of CT specimens,the Shi&Cai model shows more accurate prediction of the curves of CIET specimens.

    5.Conclusions

    (1)Using the low cycle fatigue properties of 5083-H112 aluminum alloy,the Shi&Cai model with crack closure correction by means of Newman’s effective stress ratioUexhibits the best capacity of predicting the fatigue crack growth rates of CT and CIET specimens with different load ratios and specimen thicknesses,but the Pandey&Chand models with and without crack closure correction get unsatisfactory predicted results of da/dN–ΔKcurves.

    (2)In terms of effective stress ratio used in crack closure

    correction,Newman’s method considered the effects of the specimen configuration and load ratio on the crack closure issue,while Codrington provided an empirical expression of the effective stress ratio in which only the influence of the load ratio was under consideration.

    Acknowledgements

    This work was financially supported by the National Natural Science Foundation of China(Nos.11202174 and 11472228).

    1.Duggan TV.A theory for fatigue crack propagation.Eng Fract Mech1977;9(3):735–47.

    2.Glinka G,Robin C,Pluvinage G,Chehimi C.A cumulative model of fatigue crack growth and the crack closure effect.Int J Fatigue1984;6(1):37–47.

    3.Wu SX,Mai YW,Cotterell B.A model of fatigue crack growth based on dugdale model and damage accumulation.Int J Fract1992;57(3):253–67.

    4.Chen L,Cai LX,Yao D.A new method to predict fatigue crack growth rate of materials based on average cyclic plasticity strain damage accumulation.Chin J Aeronaut2013;26(1):130–5.

    5.Shi KK,Cai LX,Chen L,Wu SX,Bao C.Prediction of fatigue crack growth based on low cycle fatigue properties.Int J Fatigue2014;61:220–5.

    6.Shi KK,Cai LX,Bao C,Wu SX,Chen L.Structural fatigue crack growth on a representative volume element under cyclic strain behavior.Int J Fatigue2015;74:1–6.

    7.Shi KK,Cai LX,Qi S,Bao C.A prediction model for fatigue crack growth using effective cyclic plastic zone and low cycle fatigue properties.Eng Fract Mech2016;158:209–19.

    8.Ellyin F,Kujawski D.Plastic strain energy in fatigue failure.J Press Vess–T1984;106(4):342–7.

    9.Ellyin F.Crack growth rate under cyclic loading and effect of different singularity fields.Eng Fract Mech1986;25(4):463–73.

    10.Kujawski D,Ellyin F.A fatigue crack growth model with load ratio effects.Eng Fract Mech1987;28(4):367–78.

    11.Li D,Nam W,Lee C.An improvement on prediction of fatigue crack growth from low cycle fatigue properties.Eng Fract Mech1998;60(4):397–406.

    12.Pandey K,Chand S.An energy based fatigue crack growth model.Int J Fatigue2003;25(8):771–8.

    13.Pandey K,Chand S.Fatigue crack growth model for constant amplitude loading.Fatigue Fract Eng M2004;27(6):459–72.

    14.Newman JJ.A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading.West Conshohocken:ASTM;1981.Report No.:ASTM STP748.

    15.McClung R.Finite element analysis of specimen geometry effects on fatigue crack closure.Fatigue Fract Eng M1994;17(8):861–72.

    16.Kim J,Lee S.Fatigue crack opening stress based on the strip-yield model.Theor Appl Fract Mech2000;34(1):73–84.

    17.Toribio J,Kharin V.Role of plasticity-induced crack closure in fatigue crack growth.Fract Struct Integrity2013;7(25):130–7.

    18.Hutar P,Seitl S,Knesl Z.quantification of the effect of specimen geometry on the fatigue crack growth response by two-parameter fracture mechanics.Mater Sci Eng A2004;387:491–4.

    19.Bao C,Cai LX,Dan C.Estimation of fatigue crack growth behavior for small-sized C-shaped inside edge-notched tension(CIET)specimen using compliance technique.Int J Fatigue2015;81:202–12.

    20.Hutchinson J.Singular behavior at the end of a tensile crack in a hardening material.J Mech Phys Solids1968;16(1):13–31.

    21.Rice J,Rosengren G.Plane strain deformation near a crack tip in a power-law hardening material.J Mech Phys Solids1968;16(1):1–12.

    22.Rice J.The mechanics of crack tip deformation and extension by fatigue.West Conshohocken:ASTM;1966.Report No.:ASTM STP415.

    23.Glinka G.A cumulative model of fatigue crack growth.Int J Fatigue1982;4(2):59–67.

    24.Ramberg W,Osgood WR.Description of stress-strain curves by three parameters.Tech Notes Nat Adv Comm Aeronaut1943;1943(902):1–13.

    25.Shih CF.Tables of Hutchinson-Rice-Rosengren singular field quantities[dissertation].Providence:Division ofEngineering,Brown University;1983.p.1–61.

    26.Antunes F,Chegini A,Branco R,Camas D.A numerical study of plasticity induced crack closure under plane strain conditions.Int J Fatigue2015;71:75–86.

    27.Codrington J,Kotousov A.A crack closure model of fatigue crack growth in plates of finite thickness under small-scale yielding conditions.Mech Mater2009;41(2):165–73.

    28.Newman JJ.A crack opening stress equation for fatigue crack growth.Int J Fract1984;24(4):R131–5.

    29.Vormwald M.Effect of cyclic plastic strain on fatigue crack growth.Int J Fatigue2016;82:80–8.

    亚洲国产精品成人综合色| 少妇熟女aⅴ在线视频| 悠悠久久av| 久久婷婷人人爽人人干人人爱| 免费观看人在逋| 国产麻豆成人av免费视频| 天堂影院成人在线观看| 中文亚洲av片在线观看爽| 日韩成人在线观看一区二区三区| 久久人妻福利社区极品人妻图片| 桃色一区二区三区在线观看| 特级一级黄色大片| 国产在线观看jvid| 欧美日韩乱码在线| 成人三级做爰电影| 白带黄色成豆腐渣| av欧美777| 性色av乱码一区二区三区2| 亚洲人成电影免费在线| 天堂av国产一区二区熟女人妻 | cao死你这个sao货| 国产激情久久老熟女| 欧美绝顶高潮抽搐喷水| 18禁黄网站禁片免费观看直播| 国产精品精品国产色婷婷| 18禁黄网站禁片午夜丰满| 窝窝影院91人妻| 不卡一级毛片| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人成伊人成综合网2020| 女人爽到高潮嗷嗷叫在线视频| 国产三级中文精品| 久久人妻福利社区极品人妻图片| 性欧美人与动物交配| 国产熟女xx| 日韩精品青青久久久久久| 日韩三级视频一区二区三区| 国产成人一区二区三区免费视频网站| netflix在线观看网站| 国产精品综合久久久久久久免费| 国产亚洲欧美在线一区二区| 无人区码免费观看不卡| 精品高清国产在线一区| 亚洲乱码一区二区免费版| 一个人免费在线观看的高清视频| 操出白浆在线播放| 黑人操中国人逼视频| 好男人电影高清在线观看| 日韩三级视频一区二区三区| 欧美色欧美亚洲另类二区| 精品高清国产在线一区| 午夜福利18| 听说在线观看完整版免费高清| 国产麻豆成人av免费视频| 国产激情偷乱视频一区二区| 国产男靠女视频免费网站| 国产精品日韩av在线免费观看| 午夜精品久久久久久毛片777| 国内精品久久久久精免费| 亚洲精品在线美女| 国产精品日韩av在线免费观看| 免费在线观看黄色视频的| 国产精品野战在线观看| 久久欧美精品欧美久久欧美| 国产亚洲精品久久久久5区| 女人被狂操c到高潮| 亚洲专区字幕在线| 精华霜和精华液先用哪个| 51午夜福利影视在线观看| 欧美中文日本在线观看视频| 欧美精品亚洲一区二区| 黄色女人牲交| 亚洲一卡2卡3卡4卡5卡精品中文| 女人爽到高潮嗷嗷叫在线视频| 色在线成人网| 老鸭窝网址在线观看| 蜜桃久久精品国产亚洲av| 婷婷精品国产亚洲av| 他把我摸到了高潮在线观看| 国产av又大| 可以在线观看毛片的网站| 成人av一区二区三区在线看| 听说在线观看完整版免费高清| 国产区一区二久久| 白带黄色成豆腐渣| 亚洲国产欧洲综合997久久,| 最近在线观看免费完整版| 成人一区二区视频在线观看| 男女午夜视频在线观看| 国产成人精品无人区| 亚洲av电影不卡..在线观看| 国产精品1区2区在线观看.| 在线永久观看黄色视频| 两性夫妻黄色片| 人妻丰满熟妇av一区二区三区| 悠悠久久av| videosex国产| aaaaa片日本免费| 香蕉久久夜色| 国内揄拍国产精品人妻在线| 欧美人与性动交α欧美精品济南到| 精品久久蜜臀av无| 欧美性长视频在线观看| 午夜a级毛片| 九色成人免费人妻av| 操出白浆在线播放| 又黄又爽又免费观看的视频| 久久99热这里只有精品18| 免费在线观看影片大全网站| 久久中文字幕一级| 久久久久精品国产欧美久久久| 精品国产亚洲在线| videosex国产| 中出人妻视频一区二区| 精品一区二区三区视频在线观看免费| 亚洲狠狠婷婷综合久久图片| 国产精品久久电影中文字幕| 两个人的视频大全免费| 午夜福利免费观看在线| 国产激情久久老熟女| 亚洲成人免费电影在线观看| 中文字幕熟女人妻在线| 欧洲精品卡2卡3卡4卡5卡区| 悠悠久久av| 亚洲人成77777在线视频| 成人国语在线视频| 亚洲熟女毛片儿| 国产三级黄色录像| 欧美极品一区二区三区四区| 久久久久久免费高清国产稀缺| 99在线人妻在线中文字幕| 在线观看免费午夜福利视频| 欧美性长视频在线观看| 老汉色av国产亚洲站长工具| 国产精品亚洲av一区麻豆| 成人国产综合亚洲| 日韩三级视频一区二区三区| 成人三级做爰电影| 黄色 视频免费看| 欧美性猛交黑人性爽| 亚洲一区高清亚洲精品| 小说图片视频综合网站| АⅤ资源中文在线天堂| 成年免费大片在线观看| 在线a可以看的网站| 88av欧美| 狂野欧美激情性xxxx| 麻豆成人av在线观看| 国产私拍福利视频在线观看| 一进一出抽搐动态| 欧美不卡视频在线免费观看 | 国产1区2区3区精品| 国产精品影院久久| 嫁个100分男人电影在线观看| 精品久久久久久久久久免费视频| 国产野战对白在线观看| 青草久久国产| 免费在线观看视频国产中文字幕亚洲| 男女床上黄色一级片免费看| 精品午夜福利视频在线观看一区| 国产99白浆流出| 中文字幕熟女人妻在线| 最新美女视频免费是黄的| 天天躁夜夜躁狠狠躁躁| av超薄肉色丝袜交足视频| 99热这里只有是精品50| 亚洲电影在线观看av| 精品国产美女av久久久久小说| 欧美日韩乱码在线| 国产成人aa在线观看| 精品久久久久久久久久免费视频| 亚洲色图av天堂| 成人三级黄色视频| 色综合站精品国产| 久久九九热精品免费| 国内久久婷婷六月综合欲色啪| 搞女人的毛片| av中文乱码字幕在线| 90打野战视频偷拍视频| 成人av在线播放网站| 国产又黄又爽又无遮挡在线| 欧美日韩精品网址| 欧美黑人精品巨大| 免费人成视频x8x8入口观看| 熟女少妇亚洲综合色aaa.| 又黄又粗又硬又大视频| 国产乱人伦免费视频| 精品第一国产精品| 国产视频一区二区在线看| 欧美午夜高清在线| 一级片免费观看大全| 少妇的丰满在线观看| 久久精品亚洲精品国产色婷小说| 悠悠久久av| 久久久久久久久久黄片| 中国美女看黄片| 在线播放国产精品三级| 国产精品99久久99久久久不卡| 久久亚洲精品不卡| 两个人视频免费观看高清| 久久久久性生活片| 啦啦啦观看免费观看视频高清| 国产精品一区二区精品视频观看| av在线播放免费不卡| av视频在线观看入口| 最新在线观看一区二区三区| 久久久久免费精品人妻一区二区| 无遮挡黄片免费观看| 亚洲五月天丁香| 欧美成人免费av一区二区三区| 欧美性长视频在线观看| 国产又色又爽无遮挡免费看| 亚洲国产欧洲综合997久久,| 一边摸一边做爽爽视频免费| 国产成人系列免费观看| 国产三级黄色录像| 久久性视频一级片| 日本三级黄在线观看| 国产精品乱码一区二三区的特点| 国产精品影院久久| 亚洲,欧美精品.| 日韩大码丰满熟妇| 中文字幕最新亚洲高清| 国产亚洲av高清不卡| 深夜精品福利| 日本一二三区视频观看| 最近最新中文字幕大全电影3| 国产视频一区二区在线看| 日韩欧美三级三区| 欧美成狂野欧美在线观看| 两个人看的免费小视频| 日韩中文字幕欧美一区二区| 国产精品久久久久久精品电影| 日韩大码丰满熟妇| 脱女人内裤的视频| 亚洲成人国产一区在线观看| 午夜福利成人在线免费观看| 欧美又色又爽又黄视频| 国产熟女午夜一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲av成人av| 国产日本99.免费观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一及| 可以在线观看的亚洲视频| 亚洲精品一卡2卡三卡4卡5卡| 天天添夜夜摸| 两个人看的免费小视频| 日韩欧美精品v在线| 麻豆成人午夜福利视频| 黄色成人免费大全| 久久精品国产亚洲av高清一级| 国产av麻豆久久久久久久| 国产蜜桃级精品一区二区三区| 成人手机av| 看片在线看免费视频| 亚洲 欧美一区二区三区| 国产片内射在线| 天天一区二区日本电影三级| 国产精品影院久久| 51午夜福利影视在线观看| 中文在线观看免费www的网站 | 日本 av在线| 日本一二三区视频观看| 三级男女做爰猛烈吃奶摸视频| 亚洲性夜色夜夜综合| 国产在线精品亚洲第一网站| av国产免费在线观看| bbb黄色大片| 一区二区三区激情视频| 国模一区二区三区四区视频 | 日韩成人在线观看一区二区三区| 国产欧美日韩一区二区精品| 老司机在亚洲福利影院| 国产成人精品无人区| 精品久久久久久久人妻蜜臀av| 91麻豆精品激情在线观看国产| 老司机午夜福利在线观看视频| 国产爱豆传媒在线观看 | 亚洲精品在线观看二区| 国产麻豆成人av免费视频| 亚洲电影在线观看av| 啪啪无遮挡十八禁网站| 亚洲一区二区三区不卡视频| 国产精品自产拍在线观看55亚洲| 国产精品野战在线观看| 久久久水蜜桃国产精品网| 欧美国产日韩亚洲一区| 男女下面进入的视频免费午夜| e午夜精品久久久久久久| 午夜福利高清视频| 麻豆国产av国片精品| 又紧又爽又黄一区二区| 18美女黄网站色大片免费观看| 不卡av一区二区三区| 淫秽高清视频在线观看| 精品久久久久久久人妻蜜臀av| 国产成年人精品一区二区| 美女扒开内裤让男人捅视频| 在线观看一区二区三区| 成熟少妇高潮喷水视频| 五月伊人婷婷丁香| 成熟少妇高潮喷水视频| 亚洲国产看品久久| 精品日产1卡2卡| 伊人久久大香线蕉亚洲五| 好男人在线观看高清免费视频| 国产精品免费视频内射| 欧美黑人巨大hd| 天天一区二区日本电影三级| 18禁美女被吸乳视频| 色综合婷婷激情| 黄色视频不卡| 啦啦啦韩国在线观看视频| 亚洲av美国av| 99热这里只有是精品50| 精品乱码久久久久久99久播| 久久国产精品人妻蜜桃| 免费电影在线观看免费观看| 正在播放国产对白刺激| 在线永久观看黄色视频| 亚洲天堂国产精品一区在线| 国产一区二区在线av高清观看| 成年免费大片在线观看| 亚洲自拍偷在线| 免费在线观看成人毛片| 男人舔奶头视频| 亚洲成人久久爱视频| 亚洲成人久久性| 91国产中文字幕| 熟女电影av网| 一本久久中文字幕| 久久香蕉精品热| 久久天躁狠狠躁夜夜2o2o| 久久久久国产精品人妻aⅴ院| 亚洲九九香蕉| 久久精品亚洲精品国产色婷小说| 黄频高清免费视频| 不卡av一区二区三区| 精品国产乱码久久久久久男人| 亚洲中文日韩欧美视频| 国产精品精品国产色婷婷| 久久久久久久久中文| 久久精品综合一区二区三区| 亚洲午夜理论影院| 亚洲九九香蕉| 少妇熟女aⅴ在线视频| 性色av乱码一区二区三区2| 国产伦在线观看视频一区| 嫩草影院精品99| 黑人操中国人逼视频| 亚洲人成77777在线视频| 久久久久久久久中文| 欧美性猛交黑人性爽| 国产激情偷乱视频一区二区| 露出奶头的视频| 波多野结衣巨乳人妻| 久久精品综合一区二区三区| 国产亚洲精品av在线| 午夜福利免费观看在线| 香蕉久久夜色| 岛国在线免费视频观看| 国产乱人伦免费视频| 老鸭窝网址在线观看| 欧美精品亚洲一区二区| 黄片大片在线免费观看| 老司机靠b影院| 亚洲一卡2卡3卡4卡5卡精品中文| 97碰自拍视频| 女人被狂操c到高潮| 精品人妻1区二区| 亚洲成a人片在线一区二区| av天堂在线播放| 在线看三级毛片| 男女午夜视频在线观看| 色综合欧美亚洲国产小说| 中文字幕人成人乱码亚洲影| 国产成人啪精品午夜网站| 一区福利在线观看| 成人18禁高潮啪啪吃奶动态图| 99热只有精品国产| 日日爽夜夜爽网站| 淫秽高清视频在线观看| 特级一级黄色大片| 夜夜爽天天搞| 中文亚洲av片在线观看爽| 日本一二三区视频观看| 国产爱豆传媒在线观看 | 欧美黑人精品巨大| 九色国产91popny在线| 在线免费观看的www视频| 久久久久久久久免费视频了| 99在线人妻在线中文字幕| 亚洲av中文字字幕乱码综合| 舔av片在线| 韩国av一区二区三区四区| 国产精品精品国产色婷婷| 熟妇人妻久久中文字幕3abv| 99国产精品一区二区蜜桃av| av福利片在线观看| 一本一本综合久久| 18禁观看日本| e午夜精品久久久久久久| 欧美av亚洲av综合av国产av| 欧美日韩亚洲国产一区二区在线观看| 91麻豆精品激情在线观看国产| 国产精品一区二区免费欧美| 日韩三级视频一区二区三区| 韩国av一区二区三区四区| 国产伦人伦偷精品视频| 免费无遮挡裸体视频| 国产精品 国内视频| 久久香蕉精品热| 精品欧美国产一区二区三| 免费在线观看影片大全网站| 三级毛片av免费| 人人妻人人澡欧美一区二区| 精品午夜福利视频在线观看一区| 国产欧美日韩一区二区三| 久久国产精品人妻蜜桃| 久久精品综合一区二区三区| 欧美 亚洲 国产 日韩一| 狠狠狠狠99中文字幕| 婷婷精品国产亚洲av| 亚洲五月婷婷丁香| 97碰自拍视频| 成人三级做爰电影| 99热只有精品国产| 在线国产一区二区在线| 国产亚洲精品久久久久5区| 成年版毛片免费区| tocl精华| 欧美又色又爽又黄视频| 99精品在免费线老司机午夜| 91成年电影在线观看| 欧美乱色亚洲激情| 亚洲av熟女| 亚洲专区国产一区二区| 好男人在线观看高清免费视频| www.自偷自拍.com| 精品欧美一区二区三区在线| 国产免费av片在线观看野外av| 91老司机精品| 淫秽高清视频在线观看| 欧美激情久久久久久爽电影| 青草久久国产| 亚洲真实伦在线观看| 人妻久久中文字幕网| 国产精品,欧美在线| 免费在线观看日本一区| 国产精品精品国产色婷婷| 亚洲一区中文字幕在线| 亚洲成av人片免费观看| 女人高潮潮喷娇喘18禁视频| 国产97色在线日韩免费| 国产99久久九九免费精品| 国产亚洲精品久久久久久毛片| 99久久无色码亚洲精品果冻| 一本大道久久a久久精品| 黄色视频不卡| 九色国产91popny在线| 男人舔女人下体高潮全视频| 女人被狂操c到高潮| av天堂在线播放| 成熟少妇高潮喷水视频| 五月玫瑰六月丁香| 欧美高清成人免费视频www| а√天堂www在线а√下载| 国产亚洲av高清不卡| 免费在线观看黄色视频的| 一进一出抽搐gif免费好疼| 一本一本综合久久| 桃色一区二区三区在线观看| 国产亚洲av高清不卡| 大型av网站在线播放| 波多野结衣巨乳人妻| 黄色视频不卡| 丁香六月欧美| 一二三四社区在线视频社区8| 中文在线观看免费www的网站 | 亚洲精华国产精华精| 又黄又粗又硬又大视频| 舔av片在线| 99久久99久久久精品蜜桃| 99热只有精品国产| 国产av一区在线观看免费| 97人妻精品一区二区三区麻豆| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久亚洲av鲁大| 国产亚洲欧美98| 日韩精品免费视频一区二区三区| 亚洲第一电影网av| 亚洲精品色激情综合| 淫妇啪啪啪对白视频| 国产精品,欧美在线| 黄色a级毛片大全视频| 18禁国产床啪视频网站| 日本三级黄在线观看| 国产一区在线观看成人免费| www国产在线视频色| 国产又色又爽无遮挡免费看| 久久久精品大字幕| 性色av乱码一区二区三区2| 国产亚洲精品久久久久久毛片| 美女 人体艺术 gogo| 美女午夜性视频免费| 亚洲欧美日韩高清在线视频| 我要搜黄色片| 熟女电影av网| 最新在线观看一区二区三区| 丰满的人妻完整版| 一区二区三区国产精品乱码| 人成视频在线观看免费观看| 12—13女人毛片做爰片一| 女人被狂操c到高潮| 在线免费观看的www视频| 韩国av一区二区三区四区| 亚洲精品久久国产高清桃花| 此物有八面人人有两片| 亚洲欧洲精品一区二区精品久久久| 中文字幕人妻丝袜一区二区| 丁香六月欧美| 久久久国产精品麻豆| 久久久久久大精品| 久久热在线av| 亚洲成人国产一区在线观看| 成人18禁在线播放| 日韩欧美一区二区三区在线观看| 午夜成年电影在线免费观看| 男女做爰动态图高潮gif福利片| 99精品在免费线老司机午夜| 国产成人精品久久二区二区91| 亚洲一区二区三区色噜噜| 狂野欧美激情性xxxx| 中文字幕人妻丝袜一区二区| 亚洲va日本ⅴa欧美va伊人久久| 制服诱惑二区| 搡老岳熟女国产| 怎么达到女性高潮| cao死你这个sao货| 好男人电影高清在线观看| 久久伊人香网站| 精品久久久久久久毛片微露脸| 麻豆成人av在线观看| 97超级碰碰碰精品色视频在线观看| 国产私拍福利视频在线观看| 欧美日韩国产亚洲二区| 禁无遮挡网站| 日韩欧美精品v在线| 午夜精品一区二区三区免费看| а√天堂www在线а√下载| 人妻夜夜爽99麻豆av| 欧美极品一区二区三区四区| 国产一区二区激情短视频| 亚洲一区中文字幕在线| 女警被强在线播放| 精品国产美女av久久久久小说| 91九色精品人成在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲乱码一区二区免费版| 黄色a级毛片大全视频| 成人午夜高清在线视频| 男人舔女人的私密视频| 日本三级黄在线观看| 舔av片在线| 精品国产亚洲在线| 成人三级做爰电影| 欧美性猛交黑人性爽| 国产亚洲精品久久久久久毛片| 女人被狂操c到高潮| 长腿黑丝高跟| 婷婷精品国产亚洲av| 亚洲成a人片在线一区二区| 岛国视频午夜一区免费看| 亚洲最大成人中文| 99久久国产精品久久久| 1024香蕉在线观看| 99国产精品一区二区三区| 亚洲人成电影免费在线| 丰满的人妻完整版| 国产免费男女视频| 久9热在线精品视频| 草草在线视频免费看| 亚洲av成人一区二区三| 久久九九热精品免费| 在线观看一区二区三区| 欧美高清成人免费视频www| 青草久久国产| 国产精品香港三级国产av潘金莲| 人人妻人人看人人澡| 高清毛片免费观看视频网站| 国产在线观看jvid| 精品久久久久久久人妻蜜臀av| 日韩高清综合在线| 国产精品久久久av美女十八| 啦啦啦韩国在线观看视频| 中国美女看黄片| 美女大奶头视频| 男男h啪啪无遮挡| 99riav亚洲国产免费| 国产真人三级小视频在线观看| 中文字幕av在线有码专区| 给我免费播放毛片高清在线观看| 一区福利在线观看| 好看av亚洲va欧美ⅴa在| 99精品久久久久人妻精品| 亚洲激情在线av| 亚洲va日本ⅴa欧美va伊人久久| 黄色片一级片一级黄色片| 亚洲av美国av| 亚洲色图av天堂| 国产精品亚洲av一区麻豆| 国产一区二区激情短视频| 亚洲 欧美 日韩 在线 免费| 校园春色视频在线观看|