• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle simulation of grid system for krypton ion thrusters

    2018-04-21 06:02:08MolinCHENAnngSUNChongCHENGungqingXIA
    CHINESE JOURNAL OF AERONAUTICS 2018年4期

    Molin CHEN,Anng SUN,Chong CHEN,Gungqing XIA

    aScience and Technology on Combustion,Internal Flow and Thermo-Structure Laboratory,Northwestern Polytechnical University,Xi’an 710072,China

    bState Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University,Xi’an 710049,China

    cState Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,China

    1.Introduction

    In the last decade,ion thrusters have been widely used for various space missions,1–3in which xenon(Xe)is frequently used as the propellant.However,Xe is typically expensive and a cost-effective propellant is highly demanded,from the economy point of review.Recently,krypton(Kr)attracts more attentions as an alternative propellant for different electric thrusters,for example,Hall thrusters4and ion thrusters.5

    The performance of an ion thruster mainly depends on the acceleration process of the propellant in the grid system.Besides experimental diagnostics,numerical simulation provides a supplementary tool to investigate the transport process of the plasma in the grid system,and to estimate the performance and lifetime of the thruster.In the past,many simulations on the transport process of Xe plasmas in grid systems have been performed to explore the following aspects:the electric field distribution in a grid system,the motion trajectory of ion beam,the erosion on the grids,back-streaming,cut-off current and the ion extraction process.For instance,Wang et al.used a three-dimensional Particle In Cell(PIC)method to simulate the transport process of the Xe ion-beam in a single grid gate aperture.6Using particle methods,Peng et al.7and Sun et al.8examined the grid erosion and the effect of the deceleration grid for two-grid and three-grid systems,respectively.Wheelock et al.investigated the neutralization process in ion beam using PIC method.9Liu et al.investigated the characteristics of Charge EXchange(CEX)ions in ion thruster optical system with a two-dimensional axisymmetric numerical model.10,11Cao et al.conducted an in-depth study on the transport process of Xe ions in the grid system by combining PIC with the Immersed Finite Element(IFE)method.12Jia et al.analyzed the grid system performance of LIPS Xe ion thrusters.13However,most of the aforementioned simulations use Xe as the propellant(hereinafter referred to as Xe ion thrusters or Xe thrusters).In this paper,Kr is chosen as a novel propellant for ion thrusters(hereinafter referred to as Kr ion thrusters or Kr thrusters).The transport processes of Kr ions in the grid system at different acceleration voltages were simulated with PIC method.By analyzing the variations of the screen grid transparency,the accelerator grid current ratio and the divergence loss,the effects of acceleration voltage on the performance of Kr ion thruster were identified to guide the design of the grid system prototype of Kr ion thrusters.The results were also compared with Xe ion thrusters for the analyses of the advantage and disadvantage of different propellant choices.

    The paper is organized as follows.In Section 2,the physical model and simulation method are introduced.Simulation results including the screen grid transparency,accelerator grid current ratio,and divergence loss are described and discussed in Section 3.Finally,we summarize our results and draw main conclusions.

    2.Calculation model

    2.1.Physical model and simulation domain

    To avoid short-circuit induced by the grid system’s thermal deformation,the grid system in the classical NSTAR-30 ion thruster was used for the preliminary design and evaluations.

    Table.1 lists the specific structural parameters of this kind of grid structure.6

    Due to the symmetry of the grid structure,only a quarter of grid aperture was selected as the computational domain.14Asshown in Fig.1,(a)presents 3D structure of a complete grid aperture,(b)is the left view of grid aperture,(c)is the left view of the simulation domain,and(d)is the top view of the grid aperture.

    Table 1 Parameters of grid system.

    An equidistant grid was used on the computational region.Considering that the density of the plasma in the discharge chamber ranges from 1016m-3to 1017m-3,the spatial grid size was set as 5×10-5m and the grid number in calculation was set as 23×39×115,while the time step was set as 1.0×10-10s.

    2.2.PIC/MCC model

    PIC method is a kinetic method of simulating low temperature plasmas with the aim of tracking the motion of particles and the self-consistent electric field in a coupled way.15,16Monte Carlo Collision(MCC)method has been widely used for treating collisions between charged ions and neutral gas.17,18

    In general,the PIC code consists of a cycle in every time step as follows15:(A)weighting the charge of the ions and electrons to the mesh nodes;(B)calculating the electric potential and the electric field of the calculation domain;(C)weighting the electrostatic field back to the ions;(D)moving the ions according to the second Newton law method with the electric field forces obtained above.The flowchart of PIC simulation can be seen in Ref.11.

    In the model,the velocity and position of ions are calculated by the Newton-Lorentz law according to

    Fig.1 Illustration of computational domain.

    in whichmidenotes the mass of ion;edenotes the unit charge(since the ion considered in the model is monovalent,the carried charge is an element charge);v and x denote the velocity vector and position vector of ion respectively;E and B denote the electric field intensity and magnetic induction intensity respectively;tdenotes time.The magnetic field was neglected in calculations since it is very weak in grid system.Only the electric potential in the grid system was updated by solving the Poisson’s equation:

    where ε0is the permittivity of vacuum,and φ,niandnedenote the electric potential,ion number density and electron number density respectively.To accelerate the convergence of the calculation,the successive over-relaxation method is used to solve the Poisson’s equation.

    The number of ions injected into the simulation domain for each time step is decided by the ion number densitynat the inlet boundary.For the pre-sheath is set as the inlet boundary,the ion number densitynat the inlet boundary can calculated with equation:n=0.61n0,wheren0denotes the plasma number density in the discharge chamber and is varied with the beam current needs of different operation modes.

    The initial axial velocity of ions injected into the simulation domain is set as the Bohm velocity9:wherekis the Boltzmann constant,andTeis the electron temperature and set as 5.0 eV.6

    In the model,electrons are regarded as a fluid and their number density follows the Boltzmann distribution9:

    wherene,ref,φrefandTe.refdenote the number density,potential and electron temperature of the plasma at the reference point respectively.In the model,the reference point was set as the discharge chamber in the upstream of accelerator grid,and as the neutral plane of plume downstream in the downstream of accelerator grid.9

    The collisions between ions and background particles(Kr or Xe atoms)are described by MCC method.The background particles are assumed as a uniform distribution,with a temperature close to the discharge chamber wall(≈500 K),6and a number density equal to the neutral density upstream of the screen grid(≈1.5 × 1018m3).6Within a time step of Δt,the collision probability between the target particle and the background particle can be expressed as

    in whichntdenotes the number density of the background gas,vincdenotes the velocity of the target particle,σT(εinc)denotes the collision cross section between particles,and εincdenotes the energy of the target particle.The collision cross section data of Xe are taken from Ref.9,and the collision cross section data of Kr are taken from Ref.19.

    3.Simulation results and discussion

    3.1.Screen grid transparency

    The screen grid transparency ηsc=Ib/Ii,defined as the ratio of beam current,Ib,to the total ion current,Ii,from the discharge chamber that approaches the screen grid,1is an important parameter in assessing the efficiency of the grid system.Using the present model,the screen grid transparency corresponding to various beam currents was calculated under different acceleration voltagesVT.1Acceleration voltage means total voltage across accelerator gap,which is defined asVT=Vsc+|Vacc|and named total voltage too.Here,VscandVaccdenote the voltage of screen grid and accelerator grid respectively.In this paper,Vscwas set to different values,such as 600 V,800 V,1074 V,1400 V and 1800 V,butVaccwas set to a constant value of-180 V.So,different acceleration voltagesVTmean different screen grid voltagesVsc.

    The variation of the screen grid transparency as a function of beam current is presented in Fig.2.For comparison,simulations with Xe as a propellant were also performed,while the distribution of ion number density and electric potential for both Kr ion thrusters and Xe ion thrusters are presented.Fig.3 presents the distribution of ion number density under the conditions ofJb=0.16 mA(Jb=nivaxialAapertureis the single-aperture beam current, whereAaperturedenotes the single-aperture area of screen grid,andvaxialdenotes the average axial velocity of ions)with different acceleration voltages,and Fig.4 presents the distribution of electric potential under the same operation conditions.

    Fig.2 Screen grid transparency with beam current of Kr ion thrusters and Xe ion thrusters.

    Fig.3 Distribution of ion number densities under different acceleration voltages.

    In Fig.2,for both Kr ion thrusters and Xe ion thrusters,the curve of the screen grid transparency can divided into a smooth section and a fast descent section.The smooth section becomes larger at a higher acceleration voltage,and the screen grid transparency is higher too.The knee point of the curve represents the current threshold and corresponds to the extreme transparency when the grid structure and acceleration voltage are fixed.When the single-aperture beam currentJbis less than the current threshold,the screen grid transparency remains almost unchanged.WhenJbis greater than the threshold,the increasing plasma density compresses and weakens the sheath range and focusing effect,and some ions cannot be focused to enter into the screen grid aperture,leading to the decrease of the axial current intensity.

    On the other hand,at the same acceleration voltage,the screen grid transparency ηscof Kr ion thrusters is slightly greater than Xe ion thrusters.This is due to the fact that Kr+is smaller in mass.The smaller mass means Kr+has a larger axial velocityvaxialthan Xe+with the same acceleration voltage.When the single-aperture beam currentJbis fixed,the ion number densityniof Kr ion thrusters is obviously smaller than Xe ion thrusters in the sheath on the upper of screen grid,which can be seen in Fig.3.The ion number density at the inlet is equal to that of Kr ion thrusters and Xe ion thrusters,but near the screen grid,Kr+number density is smaller than Xe+number density.In other words,Kr ion thrusters have a greater variation in ion number density from pre-sheath to screen grid.This different ion number density distribution leads to different electric potential distribution and results in different sheath structure.At the same acceleration voltage,the greater ion number density results in larger sheath area in Kr ion thrusters,as shown in Fig.4.

    3.2.Analysis of accelerator grid current ratio

    During the ion thruster operating process,some ions deviate from the main beam and impact into the surface of the accelerator grid and form an electric current.This current is then referred to as the accelerator grid current,which can reflect the lifetime of the grid system.The greater the accelerator grid current is,the more erosion on the grid occurs and the shorter lifetime the grid system has.

    The accelerator grid currentJaand the beam current in the upstream of the accelerator gridJwere calculated.The ratio between these two factors is defined as the accelerator grid current ratio ηa,i.e.,ηa=Ja/J.Fig.5 presents the variation of ηawith differentJbat different acceleration voltages.

    Fig.4 Distribution of electric potential under different acceleration voltages.

    Fig.5 Variation of accelerator grid current ratio ηawith single-aperture beam current Jbof Kr ion thrusters and Xe ion thrusters.

    In Fig.5,for both Kr ion thrusters and Xe ion thrusters,as the single-aperture beam current increases,the accelerator grid current ratio first changes slowly and then rises rapidly.The abscissa value of the curve’s infection point is the cutoff current threshold of the grid system,which has limited the operating beam current range of ion thrusters.The acceleration grid also affects the operating beam current range.By comparing the accelerator grid current ratios ηaat different acceleration voltages,one can observe that,at a high acceleration voltage,the curve of the accelerator grid current ratio has a long smooth segment,i.e.,the cutoff current threshold of the grid system increases and ion thrusters can operate within a larger beam current range.For example,for Kr ion thrusters,the maximum beam current of the single grid aperture increases from 0.28 mA to 0.65 mA,if the screen grid voltage increases from 1074 V to 1800 V.

    On the other hand,the accelerator grid current ratio curve of Kr ion thrusters is significantly lower than that of Xe ion thrusters,and has a long smooth segment,at the same acceleration voltage.This is because the CEX collision cross section of Kr+smaller than Xe+,i.e.,fewer CEX ions were produced when Kr was used as the propellant,and low-energy CEX ions were the primary source of the accelerator grid current.The CEX collision rate,also called the CEX ion generating rate,was calculated in the model,and the distribution of CEX collision rate and current density on accelerator grid,under the conditions ofJb=0.16 mA andVsc=1074 V,are presented in Fig.6.In Fig.6,the CEX collision ratekCEXand current density on accelerator gridIerosionof Kr ion thruster are obviously smaller than Xe ion thruster.

    3.3.Divergence loss

    The momentum-weighted average plume divergence is defined in Eq.(6)as the ratio of the measured thrust component directed along the centerline of ion thrusters to the theoretical thrust achieved when all ions are traveling parallel to the centerline of ion thrusters.20in which θ denotes the divergence angle,˙mdenotes the ion mass flow rate,ˉvdenotes the average velocity of ions in plume,Iaxialdenotes the axial current,andIbeamdenotes the total current of plume.

    Fig.6 Distribution of CEX collision rate and current density on accelerator grid by CEX ion impact.

    So,the momentum losses associated with plume divergence,called divergence loss,may be calculated with knowledge of the input mass flow,measured thrust,and the mass-weighted average velocity,which is defined in Eq.(7).

    Fig.7 presents the variation of the thruster’s divergence loss withJbat different acceleration voltages.At different acceleration voltages,the beam’s focusing varies due to the variation of the ions’motion trajectories.

    Compared with the curves of the Xe ion thrusters,the curves of the divergence loss of the Kr ion thrusters have a right shift.This indicates that,when the same grid structures and acceleration voltages are given,greater operating beam currents are required to achieve the grid system’s focusing for Kr ion thrusters.The mass difference between Kr+and Xe+is the reason of such shifting.Kr+respond easily to the radial electric field due to its smaller mass,aggregate towards the axis and make the focus point shift towards the left side of the screen grid,giving rise to the appearance of over-focusing.To ensure that the focusing position is reasonable,greater operating beam current and ion number density are required to enhance the potential along the axis of grid aperture,and then to reduce the deviation of the ions in the downstream of accelerator grid.

    By combing the analyses of screen grid transparency,the accelerator grid current ratio and the divergence loss of Kr ion thrusters and Xe ion thrusters under different acceleration voltages,we can conclude that Kr ion thrusters have a larger operating beam current range and Kr is a suitable propellant for ion thrusters.

    Fig.7 Variation of divergence losses with Jbat different acceleration voltages of Kr ion thrusters and Xe ion thrusters.

    4.Conclusions

    Using a 3D PIC method,the plasma transport processes in the grid system of a Kr ion thruster at different acceleration voltages were investigated,and the results,including screen grid transparency,accelerator grid current ratio and divergence loss,were compared with those of Xe ion thrusters.Main conclusions are addressed as follows:

    (1)As the result of Xe ion thrusters,the screen grid transparency of Kr ion thrusters also decreases with the increase of acceleration voltage.But the screen grid transparency of Kr ion thrusters is slightly higher than that of Xe ion thrusters,which means a better propellant efficiency for ion thrusters.

    (2)At the same acceleration voltage,the accelerator grid current ratio curve of Kr ion thrusters is far below the curve of Xe ion thrusters.This means that fewer ions will impact the accelerator grid and the grid system will have a long lifetime.On the other hand,the cutoff current threshold of Kr ion thrusters is larger than that of Xe ion thrusters,which provides the advantage of a large operating current or a high operating power for ion thrusters.

    (3)Kr ion thrusters have a better divergence loss characteristic than Xe ion thrusters for the divergence loss curve shift,which means that Kr ion thruster can operate with a large beam current left at the same acceleration voltage.

    (4)Kr ion thrusters have a larger operating beam current range and Kr is a suitable propellant for the design of high power ion thrusters.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China(No.11675040)and the Fundamental Research Funds for the Central Universities of China(Nos.3102014KYJD005 and 1191329723).

    1.Goebel DM,Katz I.Fundamentals of electric propulsion:ion and hall thrusters.New Jersey:John Wiley&Sons Inc;2008.

    2.Patterson MJ,Sovey JS.History of electric propulsion at NASA Glenn Research Center:1956 to present.Aerospace Eng2013;26(2):300–16.

    3.Yamamoto N,Tomita K,Yamasaki N,Tsuru T,Ezaki T,Kotni Y,et al.Measurements of electron density and temperature in a miniature microwave discharge ion thruster using laser Thomson scattering technique.PlasmaSourcSciTechnol2010;19(4):45009–15.

    4.Hause ML,Prince BD,Bemish RJ.Krypton charge exchange cross sections for Hall effect thruster models.Appl Phys2013;133(16):113–40.

    5.Rawlin VK,Williams J,Pin?ero LR,Roman RF.Status of ion engine development for high power,high specific impulse missions.Pasadena,USA;2001.Report No.:IEPC-01-096.

    6.Wang J,Polk J,Brophy J.Three-dimensional particle simulations of ion-optics plasma flow and grid erosion.Reston:AIAA;2002.Report No.:AIAA-2002-2193.

    7.Peng X,Ruyten WM,Friedly VJ,Keefer D.Particle simulation of ion optics and grid erosion for two-grid and three-grid systems.Rev Sci Instrum1994;65(6):1770–3.

    8.Sun AB,Mao GW,Yang J,Xia GQ,Chen ML,Huo C.Particle simulation of three-grid ECR ion thruster optics and erosion prediction.Plasma Sci Technol2010;12(2):240–7.

    9.Wheelock A,Cooke DL,Gatsonis N.Investigation of ion beam neutralization processes with 2D and 3D PIC simulations.Comput Phys Commun2004;164(1):336–43.

    10.Liu C,Tang HB,Gu Z,Jiang HC.Particle simulation of ion thruster optical systems using single linked lists.High Power Laser Particle Beams2006;18(7):1193–8.

    11.Zhong LW,Liu Y,Li J,Gu Z,Jiang HC,Wang HX,et al.Numerical simulation of characteristics of CEX ions in ion thrust eroptical system.ChinJAeronaut2010;13(1):15–21.

    12.Wang EM,Chu YC,Cao Y,Juan L.Numerical simulation of erosion mechanism for ion thruster accelerator grid aperture walls based on IFE-PIC and MCC methods.High Voltage Eng2013;39(7):1763–71[Chinese].

    13.Jia YH,Li ZM,Zhang TP,Li J.Effect analysis of plasma density on ion beam extracted by grid system.Chin Space Sci Technol2012;32(3):72–7.

    14.Chen ML,Xia GQ,Mao GW.Three-dimensional particle in cell simulation of multi-mode ion thruster optics system.Acta Phys Sin2014;63:182901[Chinese].

    15.Birdsall CK,Landon AB.Plasma physics via computer simulation.New York:McGraw-Hill;1985.p.11–3.

    16.Miyake Y,Usui H.Particle-in-cell modeling of spacecraft-plasma interaction effects on double-probe electric field measurements.Radio Sci2017;51(12):1905–22.

    17.Birdsall CK.Particle-in-cell charged-particle simulations,plus Monte Carlo collisions with neutral atoms,PIC-MCC.Plasma Sci IEEE Trans Plasma Sci1991;19(2):65–85.

    18.Sarikaya CK,Rafatov I,Kudryavtsev AA.PIC/MCC analysis of a photoresonance plasma sustained in a sodium vapor.Phys Plasmas2017;24(8):535–54.

    19.Johnson RE.Charge transger and f i ne structure transitions in Kr+(2Pj)+Kr and Xr+(2Pj)+Xe collision.Phys Soc Jpn1972;32(6):1612–4.

    20.Brown DL,Larson CW,Beal BE,Gallimore AD.Methodology and historical perspective of a hall thruster efficiency analysis.J Propul Power2009;25(6):1163–77.

    真实男女啪啪啪动态图| 精品不卡国产一区二区三区| 国内久久婷婷六月综合欲色啪| 亚洲成a人片在线一区二区| 亚洲精品久久国产高清桃花| 亚洲aⅴ乱码一区二区在线播放| 日本免费a在线| 91在线精品国自产拍蜜月 | 在线国产一区二区在线| 脱女人内裤的视频| 窝窝影院91人妻| 亚洲不卡免费看| 观看免费一级毛片| 久久久久久久亚洲中文字幕 | 看片在线看免费视频| 中文在线观看免费www的网站| 尤物成人国产欧美一区二区三区| 精品久久久久久成人av| 日韩欧美在线二视频| 精品人妻一区二区三区麻豆 | 亚洲av不卡在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久电影中文字幕| 亚洲第一电影网av| 国产成人a区在线观看| 免费人成在线观看视频色| 午夜视频国产福利| 搡老熟女国产l中国老女人| 中文字幕av在线有码专区| 欧美+日韩+精品| 国产毛片a区久久久久| 国产精品1区2区在线观看.| 三级男女做爰猛烈吃奶摸视频| 国产精品1区2区在线观看.| 又紧又爽又黄一区二区| 欧美日本视频| 欧美绝顶高潮抽搐喷水| 亚洲成av人片在线播放无| 91九色精品人成在线观看| 特级一级黄色大片| 岛国在线观看网站| 精品不卡国产一区二区三区| 成人性生交大片免费视频hd| 禁无遮挡网站| 国产精品美女特级片免费视频播放器| xxxwww97欧美| 亚洲av不卡在线观看| 欧洲精品卡2卡3卡4卡5卡区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99国产精品一区二区蜜桃av| 日韩高清综合在线| 最后的刺客免费高清国语| 国产欧美日韩一区二区精品| 午夜激情福利司机影院| 桃色一区二区三区在线观看| 亚洲av电影不卡..在线观看| 国产综合懂色| 99久久精品一区二区三区| 欧美绝顶高潮抽搐喷水| 欧美区成人在线视频| 日韩免费av在线播放| 午夜影院日韩av| 国产蜜桃级精品一区二区三区| 欧美黑人欧美精品刺激| 久久久久久大精品| 国产高清有码在线观看视频| 日韩高清综合在线| 狂野欧美白嫩少妇大欣赏| 国产v大片淫在线免费观看| 久久久久精品国产欧美久久久| 真实男女啪啪啪动态图| 国内精品久久久久精免费| 国产精品电影一区二区三区| 波多野结衣巨乳人妻| 国产探花极品一区二区| 欧美日韩瑟瑟在线播放| 国产99白浆流出| 午夜福利在线在线| 色噜噜av男人的天堂激情| 长腿黑丝高跟| 51午夜福利影视在线观看| 在线观看午夜福利视频| 日韩有码中文字幕| 亚洲第一欧美日韩一区二区三区| 亚洲天堂国产精品一区在线| 波多野结衣巨乳人妻| 欧美日韩精品网址| 国产精品久久久久久久电影 | 性色avwww在线观看| 最近在线观看免费完整版| 日本黄色片子视频| 亚洲国产日韩欧美精品在线观看 | 制服丝袜大香蕉在线| 一边摸一边抽搐一进一小说| 狂野欧美白嫩少妇大欣赏| 午夜福利成人在线免费观看| av黄色大香蕉| 日日摸夜夜添夜夜添小说| 国产午夜精品论理片| 亚洲专区国产一区二区| 悠悠久久av| 亚洲成人精品中文字幕电影| 亚洲激情在线av| 亚洲美女视频黄频| 啦啦啦免费观看视频1| 在线观看一区二区三区| 国产精品,欧美在线| 国产精品日韩av在线免费观看| 国产精品女同一区二区软件 | 亚洲中文字幕日韩| 中文字幕av成人在线电影| 亚洲自拍偷在线| 岛国视频午夜一区免费看| 偷拍熟女少妇极品色| 男插女下体视频免费在线播放| 国产日本99.免费观看| 天堂影院成人在线观看| 欧美高清成人免费视频www| 一级黄色大片毛片| 日韩免费av在线播放| 国产免费av片在线观看野外av| 九九热线精品视视频播放| 日本 欧美在线| aaaaa片日本免费| 最近最新中文字幕大全电影3| 国产亚洲精品一区二区www| 在线天堂最新版资源| 国产成人系列免费观看| 老汉色av国产亚洲站长工具| а√天堂www在线а√下载| 国产精品嫩草影院av在线观看 | 国产男靠女视频免费网站| 香蕉av资源在线| 淫秽高清视频在线观看| 一个人观看的视频www高清免费观看| 国产欧美日韩一区二区精品| 亚洲欧美精品综合久久99| 淫妇啪啪啪对白视频| 又黄又粗又硬又大视频| 欧美区成人在线视频| 日本五十路高清| 丰满的人妻完整版| 久久精品综合一区二区三区| 叶爱在线成人免费视频播放| 99久久无色码亚洲精品果冻| 欧美日韩福利视频一区二区| 欧美另类亚洲清纯唯美| a级一级毛片免费在线观看| 国产精品99久久久久久久久| 午夜两性在线视频| 亚洲美女黄片视频| 国产精品免费一区二区三区在线| 欧美性猛交╳xxx乱大交人| 亚洲五月婷婷丁香| 国产麻豆成人av免费视频| 亚洲av电影不卡..在线观看| 夜夜躁狠狠躁天天躁| 激情在线观看视频在线高清| 91久久精品电影网| 亚洲国产精品999在线| 久久精品影院6| 色精品久久人妻99蜜桃| 成年免费大片在线观看| 一级毛片女人18水好多| 亚洲色图av天堂| 女人高潮潮喷娇喘18禁视频| www.999成人在线观看| 女人十人毛片免费观看3o分钟| 亚洲人成伊人成综合网2020| xxx96com| 激情在线观看视频在线高清| 成人高潮视频无遮挡免费网站| 好男人电影高清在线观看| 亚洲精品色激情综合| 夜夜爽天天搞| 国产亚洲欧美98| 国产激情欧美一区二区| 亚洲中文字幕日韩| 久久亚洲精品不卡| 国产精品女同一区二区软件 | 国产欧美日韩一区二区三| а√天堂www在线а√下载| 久99久视频精品免费| 国产精品永久免费网站| 9191精品国产免费久久| 成年女人看的毛片在线观看| av天堂在线播放| 国产91精品成人一区二区三区| 午夜两性在线视频| 国产免费男女视频| 欧美在线一区亚洲| 国产av在哪里看| 少妇高潮的动态图| 两人在一起打扑克的视频| 国产精品98久久久久久宅男小说| 国产精品一区二区免费欧美| 男女那种视频在线观看| 日韩欧美国产在线观看| 国产精品久久视频播放| 欧美一区二区亚洲| 岛国在线免费视频观看| 超碰av人人做人人爽久久 | 99在线视频只有这里精品首页| 亚洲熟妇熟女久久| 亚洲成人免费电影在线观看| 精品久久久久久成人av| 老司机午夜福利在线观看视频| 国产欧美日韩一区二区精品| 亚洲国产色片| 1024手机看黄色片| 18禁裸乳无遮挡免费网站照片| 亚洲av日韩精品久久久久久密| 国产99白浆流出| 少妇的逼水好多| 亚洲欧美日韩高清在线视频| 国产高清有码在线观看视频| 亚洲色图av天堂| 窝窝影院91人妻| 特级一级黄色大片| 精品国产超薄肉色丝袜足j| 麻豆久久精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 欧美中文日本在线观看视频| 国产v大片淫在线免费观看| 美女 人体艺术 gogo| 一区二区三区免费毛片| 亚洲欧美日韩卡通动漫| 男女床上黄色一级片免费看| 国产午夜精品久久久久久一区二区三区 | 在线播放国产精品三级| 亚洲成人精品中文字幕电影| 国产精品影院久久| 99久久九九国产精品国产免费| 色尼玛亚洲综合影院| 97超级碰碰碰精品色视频在线观看| 国产欧美日韩一区二区精品| 久久久久国内视频| 日本五十路高清| 欧美性猛交黑人性爽| 99国产精品一区二区蜜桃av| 他把我摸到了高潮在线观看| 丝袜美腿在线中文| 99久久综合精品五月天人人| 国产欧美日韩精品一区二区| 午夜福利高清视频| 一夜夜www| 尤物成人国产欧美一区二区三区| 老熟妇仑乱视频hdxx| 亚洲国产欧美人成| 亚洲国产色片| 日日摸夜夜添夜夜添小说| 成人国产一区最新在线观看| 露出奶头的视频| 一进一出抽搐动态| 久久久久久久久中文| 美女大奶头视频| 色精品久久人妻99蜜桃| 一本精品99久久精品77| 中文字幕av成人在线电影| 最近视频中文字幕2019在线8| 很黄的视频免费| 国产成+人综合+亚洲专区| 99国产极品粉嫩在线观看| 天美传媒精品一区二区| 在线免费观看不下载黄p国产 | 国产成人系列免费观看| 国产成年人精品一区二区| 青草久久国产| aaaaa片日本免费| 国产精品久久久久久久久免 | 婷婷精品国产亚洲av| 欧美日韩精品网址| 3wmmmm亚洲av在线观看| 乱人视频在线观看| 欧美日韩福利视频一区二区| 亚洲在线自拍视频| 欧美乱色亚洲激情| 国产精品免费一区二区三区在线| 久99久视频精品免费| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久久精品电影| av女优亚洲男人天堂| 特级一级黄色大片| 欧美午夜高清在线| 久久性视频一级片| 小蜜桃在线观看免费完整版高清| av国产免费在线观看| 国产精品久久久久久人妻精品电影| 国产精品久久电影中文字幕| 91九色精品人成在线观看| 午夜福利在线在线| 国产黄a三级三级三级人| 色哟哟哟哟哟哟| tocl精华| 夜夜躁狠狠躁天天躁| av天堂中文字幕网| netflix在线观看网站| 午夜福利高清视频| 亚洲国产色片| 一级毛片高清免费大全| 国产乱人视频| 在线观看美女被高潮喷水网站 | 12—13女人毛片做爰片一| 国产一区二区在线观看日韩 | 亚洲最大成人手机在线| 午夜久久久久精精品| 97碰自拍视频| 欧美激情在线99| 成人欧美大片| 在线观看一区二区三区| 免费人成视频x8x8入口观看| 国产久久久一区二区三区| 一区二区三区激情视频| 亚洲,欧美精品.| 好男人在线观看高清免费视频| 中文字幕av在线有码专区| 一级a爱片免费观看的视频| 亚洲精华国产精华精| 日韩欧美在线二视频| 久久香蕉精品热| 日韩欧美国产一区二区入口| av福利片在线观看| 精品不卡国产一区二区三区| 欧美在线黄色| 精品欧美国产一区二区三| 两性午夜刺激爽爽歪歪视频在线观看| 久久亚洲精品不卡| 成人午夜高清在线视频| 日本一本二区三区精品| 99国产极品粉嫩在线观看| av视频在线观看入口| 国产aⅴ精品一区二区三区波| 亚洲欧美日韩东京热| 国内揄拍国产精品人妻在线| 国产私拍福利视频在线观看| 少妇人妻精品综合一区二区 | 亚洲色图av天堂| 欧美日韩黄片免| 成人特级av手机在线观看| 天天躁日日操中文字幕| 久久久精品大字幕| 中文亚洲av片在线观看爽| www日本黄色视频网| 亚洲av日韩精品久久久久久密| 三级毛片av免费| 欧美日本视频| 国产一区在线观看成人免费| 国产精品日韩av在线免费观看| 免费看美女性在线毛片视频| 国产精品1区2区在线观看.| 亚洲专区中文字幕在线| 色综合亚洲欧美另类图片| 精品一区二区三区视频在线 | 久久久久免费精品人妻一区二区| 日韩精品青青久久久久久| 99国产综合亚洲精品| 欧美3d第一页| 欧美乱码精品一区二区三区| 不卡一级毛片| 日韩人妻高清精品专区| 内地一区二区视频在线| 丁香六月欧美| 悠悠久久av| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩高清专用| 国产av一区在线观看免费| xxx96com| 叶爱在线成人免费视频播放| 日本免费a在线| 日韩欧美免费精品| 一进一出抽搐动态| 国产伦在线观看视频一区| 日韩成人在线观看一区二区三区| 色播亚洲综合网| 国产在线精品亚洲第一网站| 夜夜看夜夜爽夜夜摸| 国产精品精品国产色婷婷| 一本精品99久久精品77| 男女午夜视频在线观看| 99国产精品一区二区蜜桃av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 最后的刺客免费高清国语| netflix在线观看网站| 88av欧美| 老司机福利观看| 日韩中文字幕欧美一区二区| 午夜亚洲福利在线播放| 脱女人内裤的视频| 亚洲真实伦在线观看| 18禁在线播放成人免费| 首页视频小说图片口味搜索| 欧美成人免费av一区二区三区| 免费大片18禁| 99久久成人亚洲精品观看| 在线天堂最新版资源| 免费看美女性在线毛片视频| 国产美女午夜福利| 欧美精品啪啪一区二区三区| 天堂动漫精品| 欧美中文日本在线观看视频| 亚洲一区二区三区色噜噜| 一个人免费在线观看的高清视频| 特大巨黑吊av在线直播| 国产精品亚洲美女久久久| 亚洲,欧美精品.| 一级作爱视频免费观看| 国产亚洲精品一区二区www| 欧美黑人欧美精品刺激| 色综合欧美亚洲国产小说| 国产免费男女视频| 色综合亚洲欧美另类图片| 51国产日韩欧美| 免费看光身美女| 深夜精品福利| 国产精品久久久久久久久免 | 老司机福利观看| 我的老师免费观看完整版| 久久久久久久精品吃奶| 久久精品亚洲精品国产色婷小说| 亚洲国产欧洲综合997久久,| 婷婷丁香在线五月| 男人舔奶头视频| 青草久久国产| 欧美最新免费一区二区三区 | 色在线成人网| 国产淫片久久久久久久久 | 一区二区三区国产精品乱码| 精品国产美女av久久久久小说| 18禁黄网站禁片午夜丰满| 亚洲精品乱码久久久v下载方式 | 亚洲欧美精品综合久久99| 亚洲国产高清在线一区二区三| 免费看美女性在线毛片视频| 首页视频小说图片口味搜索| 一进一出抽搐gif免费好疼| 女人十人毛片免费观看3o分钟| 欧美激情久久久久久爽电影| 国产在视频线在精品| 久久久久久人人人人人| 午夜福利视频1000在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久6这里有精品| 日韩欧美在线乱码| 丰满人妻一区二区三区视频av | 日本精品一区二区三区蜜桃| 啦啦啦免费观看视频1| 母亲3免费完整高清在线观看| 人人妻人人看人人澡| 久久中文看片网| 午夜福利成人在线免费观看| 国产三级中文精品| 青草久久国产| 老熟妇乱子伦视频在线观看| 久久精品综合一区二区三区| 日韩欧美在线二视频| 精华霜和精华液先用哪个| 亚洲人成伊人成综合网2020| 悠悠久久av| 一边摸一边抽搐一进一小说| 国产精品亚洲美女久久久| 亚洲av电影在线进入| 成人一区二区视频在线观看| 亚洲激情在线av| 熟女少妇亚洲综合色aaa.| 亚洲专区中文字幕在线| 桃红色精品国产亚洲av| 久久亚洲精品不卡| 亚洲成人久久爱视频| 好男人电影高清在线观看| 一级黄片播放器| 99久久久亚洲精品蜜臀av| 嫁个100分男人电影在线观看| 欧美不卡视频在线免费观看| 国产精品爽爽va在线观看网站| 国产又黄又爽又无遮挡在线| 色噜噜av男人的天堂激情| 日本黄色片子视频| 亚洲精品亚洲一区二区| 无人区码免费观看不卡| 精品人妻偷拍中文字幕| 欧美乱妇无乱码| 亚洲专区国产一区二区| 极品教师在线免费播放| 精品久久久久久久人妻蜜臀av| 欧美黄色片欧美黄色片| 蜜桃久久精品国产亚洲av| 国产野战对白在线观看| 18禁黄网站禁片午夜丰满| 12—13女人毛片做爰片一| 亚洲av免费高清在线观看| 免费av不卡在线播放| 色播亚洲综合网| 99久久九九国产精品国产免费| 亚洲狠狠婷婷综合久久图片| bbb黄色大片| 国产69精品久久久久777片| 国产一级毛片七仙女欲春2| 色精品久久人妻99蜜桃| www日本在线高清视频| 舔av片在线| 成人永久免费在线观看视频| 天堂动漫精品| 亚洲欧美日韩高清在线视频| 久久久久久久久大av| 国产久久久一区二区三区| 男人舔女人下体高潮全视频| 国产精品三级大全| 免费电影在线观看免费观看| 色av中文字幕| 女人高潮潮喷娇喘18禁视频| 成人av在线播放网站| 一级黄色大片毛片| 欧美黄色片欧美黄色片| 欧美日韩一级在线毛片| 人妻夜夜爽99麻豆av| 99riav亚洲国产免费| 熟女电影av网| 99riav亚洲国产免费| 午夜福利在线观看免费完整高清在 | 日韩欧美三级三区| 国产aⅴ精品一区二区三区波| 亚洲精品美女久久久久99蜜臀| 美女被艹到高潮喷水动态| 成年女人永久免费观看视频| 在线观看舔阴道视频| 日韩欧美三级三区| 尤物成人国产欧美一区二区三区| 深夜精品福利| 精品久久久久久久人妻蜜臀av| 免费看美女性在线毛片视频| 亚洲va日本ⅴa欧美va伊人久久| 老鸭窝网址在线观看| av福利片在线观看| www.www免费av| 九九在线视频观看精品| 日韩亚洲欧美综合| 此物有八面人人有两片| 美女高潮的动态| www日本黄色视频网| 亚洲国产中文字幕在线视频| 真实男女啪啪啪动态图| 国产老妇女一区| 亚洲精品久久国产高清桃花| 亚洲色图av天堂| 一边摸一边抽搐一进一小说| 一进一出抽搐gif免费好疼| 色视频www国产| 久久亚洲精品不卡| 观看免费一级毛片| 长腿黑丝高跟| 可以在线观看毛片的网站| 久久香蕉国产精品| 又黄又粗又硬又大视频| 啪啪无遮挡十八禁网站| 九九在线视频观看精品| 国产精华一区二区三区| 亚洲专区中文字幕在线| 国产v大片淫在线免费观看| 久久久成人免费电影| 99热这里只有是精品50| 国产国拍精品亚洲av在线观看 | 国产伦一二天堂av在线观看| 日韩欧美免费精品| 国产精品1区2区在线观看.| 国产欧美日韩一区二区精品| 国产精品影院久久| 亚洲欧美精品综合久久99| 国产蜜桃级精品一区二区三区| 九色国产91popny在线| 国产精品免费一区二区三区在线| xxx96com| 露出奶头的视频| 国内精品一区二区在线观看| 一本久久中文字幕| 亚洲专区中文字幕在线| 国产亚洲欧美98| 一级a爱片免费观看的视频| 国产精品 欧美亚洲| 一进一出好大好爽视频| 亚洲国产欧洲综合997久久,| 18禁黄网站禁片午夜丰满| 伊人久久大香线蕉亚洲五| 首页视频小说图片口味搜索| 国产主播在线观看一区二区| 国产av一区在线观看免费| www.999成人在线观看| 色综合婷婷激情| 中文字幕熟女人妻在线| 岛国在线观看网站| 精品久久久久久久末码| 999久久久精品免费观看国产| 久久久国产成人免费| 国产av在哪里看| 99热这里只有精品一区| 久久这里只有精品中国| 老司机午夜福利在线观看视频| 久久这里只有精品中国| 最新美女视频免费是黄的| 国产成人福利小说| 9191精品国产免费久久| 免费人成视频x8x8入口观看| 日韩中文字幕欧美一区二区| 一本一本综合久久| 成人鲁丝片一二三区免费| 国产极品精品免费视频能看的| 日韩高清综合在线| 亚洲欧美日韩东京热| 亚洲av熟女| 欧美最新免费一区二区三区 | 丁香六月欧美| 国产一区二区三区在线臀色熟女| 特级一级黄色大片| 中亚洲国语对白在线视频| 国产毛片a区久久久久| 丝袜美腿在线中文|