齊錦雯 吳源冰 王書瑤 唐 妮 李志瓊
(四川農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,成都 611130)
魚類通過攝食為自身機(jī)體提供營養(yǎng)和能量,促進(jìn)生長發(fā)育[1]。攝食調(diào)控復(fù)雜且精細(xì),各種外周食欲相關(guān)物理或化學(xué)信號通過神經(jīng)系統(tǒng)或體液傳遞途徑產(chǎn)生饑餓或飽腹信號到達(dá)中樞神經(jīng)系統(tǒng)調(diào)節(jié)攝食[2]。促皮質(zhì)激素釋放激素(corticotropin releasing factor,CRF)作為中樞調(diào)控的飽腹感信號因子(厭食欲因子),其成熟肽含有41個(gè)氨基酸,可激活下丘腦-垂體-腎上腺(hypothalamus-hypophysis-interrenal,HPI)軸,引起垂體釋放促腎上腺皮質(zhì)激素(adrenocorticotropic hormone,ATCH),影響動(dòng)物的攝食行為[3-4]。CRF已成為動(dòng)物攝食和能量代謝領(lǐng)域的研究熱點(diǎn)之一,目前在哺乳動(dòng)物上關(guān)于CRF的攝食調(diào)控有大量的研究報(bào)道,而魚類上較少。因此本文依據(jù)CRF在哺乳動(dòng)物和部分魚類中的研究現(xiàn)狀,闡述了CRF的發(fā)現(xiàn)歷史、分子結(jié)構(gòu)、對魚類攝食的調(diào)控作用及其機(jī)制,重點(diǎn)綜述了CRF作為外源多肽通過不同方式注射或作為內(nèi)源調(diào)節(jié)子通過不同方式處理對魚類攝食的影響,以及CRF與受體、皮質(zhì)醇和其他食欲因子之間的互作。這將為今后魚類攝食調(diào)控和生長的研究以及生產(chǎn)提供理論依據(jù)。
1955年Saffran等[5]體外培養(yǎng)大鼠垂體,通過下丘腦提取液刺激顯示ACTH的釋放增加,故此命名為CRF。直至1981年Vale等[4]從綿羊下丘腦處提取純化出含41個(gè)氨基酸殘基的CRF多肽。在此基礎(chǔ)上,1983年Furutani等[6]進(jìn)一步驗(yàn)證了CRF基因的結(jié)構(gòu)。CRF主要位于下丘腦處,可刺激垂體分泌ACTH。Vandenborne等[7]依據(jù)哺乳動(dòng)物和魚類的報(bào)道以及在家雞上的鑒定,總結(jié)了CRF基因結(jié)構(gòu),它含2個(gè)外顯子和1個(gè)內(nèi)含子,外顯子1含5′非編碼區(qū),外顯子2包含編碼區(qū)和3′非編碼區(qū)(圖1)。魚類上CRF基因cDNA長為0.9~1.0 kbp,編碼區(qū)一般為0.4~0.5 kbp。CRF編碼區(qū)編碼的氨基酸結(jié)構(gòu)包括了疏水信號肽,中間1段未證明功能的保守肽,以及C端含41個(gè)氨基酸殘基的成熟肽,激活C末端的2個(gè)位點(diǎn)(酰胺基團(tuán))可使CRF具有活性。在白亞口魚(Catostomuscommersonii)[8]、金魚(Carassiusauratus)[9]、紅大馬哈魚(Oncorhynchusnerka)[10]、虹鱒(Oncorhynchusmykiss)[11]和鯉魚(Cyprinuscarpio)[12]上發(fā)現(xiàn)CRF基因含2個(gè)亞型(CRF1和CRF2),而羅非魚(Oreochromismossambicus)[13]、比目魚(Platichthysflesus)[14]、斑馬魚(Barchydanioreriovar)[15]和齊口裂腹魚(Schizothoraxprenanti)[16]上CRF基因無亞型。
prohormone:激素原;Mature peptide:成熟肽;Exon 1:外顯子1;Exon 2:外顯子2;Intro:內(nèi)含子;5′URT:5′非編碼區(qū) 5′ noncoding region;3′URT:3′非編碼區(qū) 3′noncoding region;CDS:編碼區(qū)序列 coding sequence。
圖1CRF基因結(jié)構(gòu)
Fig.1 The structure ofCRFgene[7]
依據(jù)結(jié)構(gòu)和分布,CRF在魚類的食欲調(diào)控內(nèi)分泌系統(tǒng)中起著重要的調(diào)控作用。通過CRF作為外源多肽通過不同方式注射探討其對魚類攝食影響,或通過不同處理下魚類內(nèi)源CRF基因的表達(dá)水平和攝食的變化探究CRF的調(diào)控機(jī)制,結(jié)果顯示CRF可調(diào)控魚類攝食。
2.1.1 中樞注射CRF調(diào)控魚類攝食
對哺乳動(dòng)物中樞(腦室)注射CRF探究其攝食量的變化有研究報(bào)道,結(jié)果均證明CRF通過中樞注射可抑制哺乳動(dòng)物攝食[17-18]。在魚類上,中樞注射CRF引起的攝食調(diào)控作用目前僅限金魚。De Pedro等[19]對金魚饑餓處理24 h后中樞注射CRF,注射后2 h攝食量減少,提示CRF可能通過中樞系統(tǒng)抑制金魚攝食。Berinier等[20]在金魚上證實(shí)CRF受體拮抗劑αh-CRF(9-41)預(yù)處理可使CRF注射效果逆轉(zhuǎn)。綜上,中樞注射CRF對金魚有抑制攝食的作用,而通過αh-CRF(9-41)預(yù)處理可使中樞CRF的作用效果逆轉(zhuǎn)。
2.1.2 外周注射CRF調(diào)控魚類攝食
現(xiàn)有少量研究表明在哺乳動(dòng)物和魚類上,外周注射CRF攝食量無顯著變化,但是有下降趨勢[19,21]。在魚類上,De Pedro等[19]對金魚腹腔注射CRF,攝食量呈下降趨勢,提示腹腔注射CRF可能影響金魚的攝食量。以上試驗(yàn)為只持續(xù)1 d的單次外周注射,無長期外周注射的報(bào)道,無法明確長期外周注射CRF對魚類攝食是否抑制。
雖然外周注射CRF對攝食調(diào)控的報(bào)道極少,但是外周CRF及CRF相關(guān)肽分布于嚙齒動(dòng)物的胃腸道系統(tǒng)中有報(bào)道,報(bào)道顯示CRF及CRF相關(guān)肽少量分布于外周組織中[22-23]。Taché等[24]認(rèn)為通過對嚙齒動(dòng)物的胃腸道直接或間接刺激,可使其外周CRF及CRF相關(guān)肽的水平上升,從而抑制嚙齒動(dòng)物攝食,提示嚙齒動(dòng)物上的外周CRF及CRF相關(guān)肽在應(yīng)激引起相關(guān)腸動(dòng)力改變過程中有重要的調(diào)控作用。在魚類上,Pepels等[25]檢測出應(yīng)激處理的尼羅羅非魚(Oreochromisniloticus)的血液中存在CRF,提示CRF可能也存在于魚類機(jī)體外周組織中。
2.2.1 不同攝食狀況對CRF的調(diào)控
在嚙齒動(dòng)物上,禁食后CRF基因表達(dá)水平降低[26]。而在魚類上目前報(bào)道僅限于金魚和齊口裂腹魚。Maruyama等[27]對金魚分3組試驗(yàn)7 d,結(jié)果顯示與正常投喂組相比,禁食組的腦CRF基因的表達(dá)水平呈下降趨勢,但差異不顯著,而過量投喂組則顯著上升。Wang等[16]對齊口裂腹魚短期(1 d)禁食處理,顯示下丘腦CRF基因表達(dá)水平無顯著變化,而長期(7 d)禁食后,下丘腦CRF基因表達(dá)水平顯著下降,復(fù)投喂第9天則回升。綜上,長期禁食可使魚類CRF作為厭食欲因子抑制魚類攝食。
2.2.2 環(huán)境因子對CRF的調(diào)控
影響魚類生長發(fā)育的所棲息的環(huán)境因子主要包括氧飽和度、氨氣含量和滲透性能。氧氣飽和程度越低、氨氣增多以及滲透壓上升可抑制魚類攝食,CRF基因表達(dá)水平上升,提示CRF在不同外界環(huán)境處理下可作為厭食欲因子調(diào)控魚類攝食。
短期缺氧下可使CRF在魚類上發(fā)揮厭食欲因子的作用,而長期缺氧下,CRF的厭食欲調(diào)節(jié)作用降低。Bernier等[28]使虹鱒處于50%或35%氧飽和度下24 h,結(jié)果顯示前腦CRF基因表達(dá)水平和攝食量均下降,并與缺氧處理程度呈正相關(guān),進(jìn)一步在長期(72 h)缺氧處理后,前腦CRF基因表達(dá)水平下降幅度及其厭食欲調(diào)節(jié)作用呈降低的趨勢。
在氨氣處理中,盡管Wood[29]認(rèn)為低水平的外源性氨氣對魚類攝食無顯著影響,但是Ortega等[30]長期增加水中的氨氣可引起虹鱒攝食量呈劑量依賴性減少,CRF基因表達(dá)水平增加。Craig等[31]發(fā)現(xiàn)和淡水區(qū)域的相比,海水區(qū)域的虹鱒腦CRF表達(dá)水平的上升,攝食量下降,提示滲透壓上升CRF可作為厭食欲因子。
CRF調(diào)控動(dòng)物包括魚類的攝食作用機(jī)制復(fù)雜,主要包括以下3種:1)CRF與受體結(jié)合發(fā)揮食欲調(diào)控作用;2)CRF通過HPI軸激活下游皮質(zhì)醇的釋放調(diào)控?cái)z食;3)CRF通過和其他食欲調(diào)節(jié)子結(jié)合直接或間接調(diào)控?cái)z食(圖2)。這3種機(jī)制之間也可相互作用共同影響CRF。
CRF:促皮質(zhì)激素釋放激素 corticoliberin;CRFR1:促皮質(zhì)激素釋放激素受體1 corticoliberin receptor 1;CRFR2:促皮質(zhì)激素釋放激素受體2 corticoliberin receptor;POMC:阿黑皮素原 proopiomelanocortin;CART:可卡因和安非他明調(diào)節(jié)轉(zhuǎn)錄子 Cocaine and amphetamine regulation transcripton;NPY:神經(jīng)肽Y neuropeptide Y;AgRP:刺鼠相關(guān)蛋白 agouti-related protein;α-MSH:α-促黑激素 α melanocyte stimulaing hormone;MC4R:黑皮素4受體 melanocortin 4 receptor;Ghrelin:饑餓素;Food intake:采食。實(shí)線箭頭表示促進(jìn)作用 solid arrow indicated promotion effect;虛線箭頭表示抑制作用 dashed arrow indicated inhibition effect。
圖2CRF調(diào)控?cái)z食機(jī)制
Fig.2 The mechanisms of CRF regulation on the feeding
哺乳動(dòng)物上,CRF可直接和CRF受體2(CRFR2)結(jié)合發(fā)揮食欲抑制作用,但是與CRF受體1(CRFR1)結(jié)合對攝食調(diào)控?zé)o影響。而魚類上,CRF系統(tǒng)可能存在不同通路調(diào)控魚類攝食。Vaughan等[32]報(bào)道CRF相關(guān)肽硬骨魚緊張肽Ⅰ(urotensin Ⅰ,UⅠ)和CRF均可與CRFR2親和發(fā)揮抑制攝食的作用,并且親和力度同等。Bernier等[33]認(rèn)為金魚上中樞注射UⅠ,和中樞注射CRF組相比,更有效地減少機(jī)體攝食量,提示了在魚類上CRF和UⅠ無選擇性親和CRFR2發(fā)揮厭食欲作用,或者CRF可能與CRFR1或CRFR2親和調(diào)節(jié)魚類攝食。
CRF與受體結(jié)合的區(qū)域主要位于下丘腦視前核(NPO)和結(jié)節(jié)外側(cè)核(NLT)[34]。而Arai等[35]在鯰魚(Silurusasotus)腦干中也發(fā)現(xiàn)CRFR1少量存在,提示中樞系統(tǒng)CRF可通過參與調(diào)節(jié)胃腸運(yùn)動(dòng)的腦干神經(jīng)元回路影響攝食。Cardoso等[36]在河豚(Fugurubripes)腸道發(fā)現(xiàn)微量CRFR1,Martínez等[37]對小鼠外周注射CRF,均證明胃腸道系統(tǒng)存在微量CRF受體,并與CRF結(jié)合刺激腸動(dòng)力變化調(diào)控機(jī)體攝食。
在HPI軸上,由下丘腦釋放的CRF刺激垂體釋放ACTH,進(jìn)一步激活腎上腺的糖皮質(zhì)激素皮質(zhì)醇直接調(diào)控魚類攝食,或通過和其他內(nèi)分泌調(diào)節(jié)途徑互作以及胃腸道營養(yǎng)吸收間接調(diào)節(jié)魚類攝食。
一些研究報(bào)道皮質(zhì)醇作為糖皮質(zhì)激素可抑制攝食。Gregory等[38]研究表明升高虹鱒血漿皮質(zhì)醇水平,可抑制其攝食量。而皮質(zhì)醇的增多可負(fù)反饋于CRF,使CRF引起的厭食欲的效果減小。進(jìn)一步有研究報(bào)道顯示,CRF可通過和其他內(nèi)分泌途徑互作調(diào)控皮質(zhì)醇對攝食的影響。Bernier等[39]在金魚上進(jìn)行適量且慢性增加血漿皮質(zhì)醇處理時(shí),可使攝食量增加,前腦CRF基因表達(dá)水平降低,神經(jīng)肽Y(NPY)基因表達(dá)水平升高,進(jìn)一步增加皮質(zhì)醇濃度的分解可使CRF基因表達(dá)水平降低,而對NPY基因表達(dá)無影響,攝食量有下降趨勢。CRF引起糖皮質(zhì)激素皮質(zhì)醇的釋放,可間接通過腸道營養(yǎng)吸收來影響攝食。Ducouret等[40]研究表明,糖皮質(zhì)激素受體在魚類胃腸道中存在,Vllette等[41]發(fā)現(xiàn)皮質(zhì)醇對腸道鈉/鉀-ATP酶活性有提高作用。
CRF與受體結(jié)合后可通過和中樞食欲調(diào)控神經(jīng)系統(tǒng)互作,或通過血液循環(huán)和外周食欲調(diào)節(jié)因子互作傳遞飽腹感信號。CRF與中樞食欲調(diào)控神經(jīng)系統(tǒng)調(diào)節(jié)因子包括下丘腦神經(jīng)元阿黑皮素原(POMC)/可卡因和安非他明調(diào)節(jié)轉(zhuǎn)錄子(CART)、NPY/刺鼠相關(guān)蛋白(AgRP)、POMC多肽加工處理的可調(diào)控動(dòng)物攝食的片段α-促黑激素(α-MSH)及黑皮素4受體(MC4R)相互作用調(diào)控魚類攝食。CRF與外周食欲調(diào)控因子包括胃腸道分泌的饑餓素(ghrelin)和胰腺分泌的胰島素三者之間互作調(diào)控魚類攝食。CRF也可與腦腸肽(apelin)互作調(diào)控魚類攝食。
3.3.1 CRF與POMC/CART或NPY/AgRP互作調(diào)控?cái)z食
在大鼠上通過體外和體內(nèi)試驗(yàn)說明通過CRF系統(tǒng)可上調(diào)POMC/CART參與厭食欲作用,并且POMC/CART通過CRF系統(tǒng)激活HPI軸[42]。而NPY/AgRP可下調(diào)CRF調(diào)節(jié)攝食,NPY/AgRP與CRF之間的互作也和糖皮質(zhì)激素緊密相關(guān)。Heinrichs等[43]對大鼠中樞共注射NPY和CRF受體拮抗劑αh-CRF(9-41),注射部位為下丘腦室旁核區(qū)域,攝食量增加;隨后對通過糖皮質(zhì)激素地塞米松處理后的大鼠,中樞注射NPY,結(jié)果顯示室旁核的CRF基因表達(dá)下調(diào),攝食量增加。在魚類上的報(bào)道還較缺乏,目前僅在金魚上有研究。在金魚上,Bernier等[39]緩慢適量增加血漿皮質(zhì)醇濃度,刺激NPY釋放,抑制CRF基因表達(dá),攝食量增加。
3.3.2 CRF與α-MSH和MC4R互作調(diào)控?cái)z食
CRF作為整合厭食欲信號的神經(jīng)多肽,整合了POMC多肽加工處理的可調(diào)控動(dòng)物攝食的片段α-MSH及其受體MC4R調(diào)控?cái)z食[44]。CRF與黑皮素系統(tǒng)之間的互作在魚類上目前僅在金魚中有報(bào)道。Matsuda等[45]對金魚中樞共注射α-MSH興奮劑(MT Ⅱ)和αh-CRF(9-41),結(jié)果顯示MT Ⅱ引起的食欲抑制效果減小。然而,共注射CRF和MC4R拮抗劑HS024,發(fā)現(xiàn)對金魚攝食量無顯著影響。進(jìn)一步通過免疫組化分析檢測出CRF和MSH神經(jīng)元位于大腦處,其中α-MSH包含的神經(jīng)纖維末梢和下丘腦區(qū)域的CRF神經(jīng)元緊密結(jié)合。綜上,提示了在魚類上,α-MSH和MC4R通過CRF信號通路發(fā)揮厭食欲作用。
3.3.3 CRF與ghrelin和胰島素互作調(diào)控?cái)z食
通過CRF信號途徑可使外周食欲調(diào)節(jié)因子ghrelin抑制食欲,又因ghrelin參與糖代謝,所以CRF、ghrelin和胰島素之間互作對動(dòng)物攝食產(chǎn)生影響。ghrelin和CRF共同作用可使胰島素敏感性降低。Solomon等[46]對大鼠預(yù)處理靜脈注射0.5 mL ghrelin特異性抗體和非特異性抗體,然后對皮下組織單次注射生理鹽水、胰島素和2-脫氧葡萄糖,通過免疫組化方法檢測出,胰島素和ghrelin抗體共處理組的CRF陽性神經(jīng)元比胰島素處理組的更高,并且與無特異性抗體預(yù)處理組之間進(jìn)行比較,胰島素處理組和2-脫氧葡萄糖處理組的CRFc-fos(1種即刻早期基因)陽性神經(jīng)元均顯著高于生理鹽水對照組,而攝食量與對照組相比卻顯著增加。在CRF厭食欲信號中通過胰島素處理出現(xiàn)反常的現(xiàn)象,說明低血液葡萄糖應(yīng)激可能導(dǎo)致HPI軸激活補(bǔ)償葡萄糖水平,刺激少量ACTH和皮質(zhì)醇的生成,少量皮質(zhì)醇可刺激動(dòng)物攝食。
在魚類上,J?nsson等[47]對虹鱒幼魚分4組進(jìn)行中樞注射,ghrelin組顯著降低攝食量,αh-CRF(9-41)組對攝食量無顯著影響,共注射組的攝食量和ghrelin組比較有升高的趨勢,并與對照組的攝食量相當(dāng)。此結(jié)果提示ghrelin通過CRF系統(tǒng)抑制魚類攝食。
3.3.4 CRF與apelin互作調(diào)控?cái)z食
CRF與apelin對攝食調(diào)控的互作有少量報(bào)道。apelin可刺激CRF的釋放,并通過CRF系統(tǒng)抑制哺乳動(dòng)物攝食[48-49]。Lv等[49]禁食處理雄性小鼠24 h,分別中樞注射0.3、1.0和3.0 μg/kg apelin-13,對照組注射生理鹽水,檢測出試驗(yàn)組攝食量和對照組的比較呈劑量依賴性抑制;進(jìn)一步對小鼠分成4組,與注射生理鹽水對照組相比,αh-CRF(9-41)處理組的4 h攝食量無顯著變化,apelin-13處理組的累積攝食量則極顯著減少,而apelin-13和αh-CRF(9-41)共注射處理組與對照組比較攝食量無顯著差異,與apelin-13處理組比較攝食量顯著增加。CRF與腦腸肽apelin之間的互作目前在魚類上還未見報(bào)道。
魚類通過攝食為自身機(jī)體提供營養(yǎng)和能量,促進(jìn)其生長發(fā)育和繁殖。攝食調(diào)控復(fù)雜且精細(xì),通過中樞或者外周的厭食欲因子和增食欲因子互作調(diào)控機(jī)體攝食。CRF作為重要的中樞調(diào)控厭食欲因子,是動(dòng)物攝食和能量代謝領(lǐng)域的研究熱點(diǎn)之一。目前,CRF關(guān)于攝食調(diào)控和機(jī)制的研究主要集中在哺乳動(dòng)物上,而魚類上研究少。由于魚類所處環(huán)境差異達(dá),生理結(jié)構(gòu)和機(jī)能差異較大,所以未來應(yīng)在借鑒哺乳動(dòng)物研究結(jié)果的基礎(chǔ)上,深入探討CRF對不同魚類的攝食調(diào)節(jié)機(jī)制,為魚類攝食調(diào)控和生產(chǎn)應(yīng)用提供理論依據(jù)。
參考文獻(xiàn):
[1] SAPER C B,CHOU T C,ELMQUISTl J K.The need to feed:homeostatic and hedonic control of eating[J].Neuron,2002,36(2):199-211.
[2] 田娟,何艮,麥康森,等.魚類食欲調(diào)控研究進(jìn)展[J].動(dòng)物營養(yǎng)學(xué)報(bào),2016,28(4):984-998.
[3] VOLKOFF H.The neuroendocrine regulation of food intake in fish:a review of current knowledge[J].Frontiers in Neuroscience,2016,10:540.
[4] VALE W,SPIESS J,RIVIER C,et al.Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin[J].Science,1981,213(4514):1394-1397.
[5] SAFFRAN M,SCHALLY A V.The release of corticotrophin by anterior pituitary tissueinvitro[J].Canadian Journal of Biochemistry and Physiology,1955,33(3):408-415.
[6] FURUTANI Y,MORIMOTO Y,SHIBAHARA S,et al.Cloning and sequence analysis of cDNA for ovine corticotropin-releasing factor precursor[J].Nature,1983,301(5900):537-540.
[7] VANDENBORNE K,DE GROEF B,GEELISSEN S M,et al.Molecular cloning and developmental expression of corticotropin-releasing factor in the chicken[J].Endocrinology,2005,146(1):301-308.
[8] OKAWARA Y,MORLEY S D,BURZIO L O,et al.Cloning and sequence analysis of cDNA for corticotropin-releasing factor precursor from the teleost fishCatostomuscommersoni[J].Proceedings of the National Academy of Sciences of the United States of America,1988,85(22):8439-8443.
[9] BERNIER N J,LIN X W,PETER R E.Differential expression of corticotropin-releasing factor (CRF) and urotensin Ⅰ precursor genes,and evidence ofCRFgene expression regulated by cortisol in goldfish brain[J].General and Comparative Endocrinology,1999,116(3):461-477.
[10] ANDO H,HASEGAWA M,ANDO J,et al.Expression of salmon corticotropin-releasing hormone precursor gene in the preoptic nucleus in stressed rainbow trout[J].General and Comparative Endocrinology,1999,113(1):87-95.
[11] DOYON C,GILMOUR K,TRUDEAU V,et al.Corticotropin-releasing factor and neuropeptide Y mRNA levels are elevated in the preoptic area of socially subordinate rainbow trout[J].General and Comparative Endocrinology,2003,133(2):260-271.
[12] HUISING M O,METZ J R,VAN SCHOOTEN C,et al.Structural characterisation of a cyprinid (CyprinuscarpioL.) CRH,CRH-BP and CRH-R1,and the role of these proteins in the acute stress response[J].Journal of Molecular Endocrinology,2004,32(3):627-648.
[13] VAN ENCKEVORT F H J,PEPELS P P L M,LEUNISSEN J A M,et al.Oreochromismossambicus(tilapia) corticotropin-releasing hormone:cDNA sequence and bioactivity[J].Journal of Neuroendocrinology,2000,12(2):177-186.
[14] LU W Q,DOW L,GUMUSGOZ S,et al.Coexpression of corticotropin-releasing hormone and urotensin Ⅰ precursor genes in the caudal neurosecretory system of the euryhaline flounder (Platichthysflesus):a possible shared role in peripheral regulation[J].Endocrinology,2004,145(12):5786-5797.
[15] CHANDRASEKAR G,LAUTER G,HAUPTMANN G.Distribution of corticotropin-releasing hormone in the developing zebrafish brain[J].Journal of Comparative Neurology,2007,505(4):337-351.
[16] WANG T,ZHOU C W,YUAN D Y,et al.Schizothoraxprenanticorticotropin-releasing hormone (CRH):molecular cloning,tissue expression,and the function of feeding regulation[J].Fish Physiology and Biochemistry,2014,40(5):1407-1415.
[17] MATSUDA K,MORIMOTO N,HASHIMOTO K,et al.Changes in the distribution of corticotropin-releasing factor (CRF)-like immunoreactivity in the larval bullfrog brain and the involvement of CRF in the cessation of food intake during metamorphosis[J].General and Comparative Endocrinology,2010,168(2):280-286.
[18] MATSUDA K.Regulation of feeding behavior and psychomotor activity by corticotropin-releasing hormone (CRH) in fish[J].Frontiers in Neuroscience,2013,7:91.
[20] BERNIER N J,PETER R E.Appetite-suppressing effects of urotensin Ⅰ and corticotropin-releasing hormone in goldfish (Carassius auratus)[J].Neuroendocrinology,2001,73(4): 248-260.
[21] PARROTT R.Central administration of corticotropin releasing factor in the pig:effects on operant feeding,drinking and plasma cortisol[J].Physiology & Behavior,1990,47(3):519-524.
[22] YUAN P Q,WU S V,ELLIOTT J,et al.Expression of corticotropin releasing factor receptor type 1 (CRF 1) in the human gastrointestinal tract and upregulation in the colonic mucosa in patients with ulcerative colitis[J].Peptides,2012,38(1):62-69.
[23] COLOMBO E,SANGIOVANNI E,DELL’AGLI M.A review on the anti-inflammatory activity of pomegranate in the gastrointestinal tract[J].Evidence-Based Complementary and Alternative Medicine,2013,2013:247145.
[24] TACHé Y,PERDUE M H.Role of peripheral CRF signalling pathways in stress-related alterations of gut motility and mucosal function[J].Neurogastroenterology & Motility,2004,16(Suppl.1):137-142.
[25] PEPELS P P,VAN Helvoort H,Bonga S W E,et al.Corticotropin-releasing hormone in the teleost stress response:rapid appearance of the peptide in plasma of tilapia (Oreochromismossambicus)[J].Journal of Endocrinology,2004,180(3):425-438.
[26] YADAWA A K,CHATURVEDI C M.Expression of stress hormones AVP and CRH in the hypothalamus ofMusmusculusfollowing water and food deprivation[J].General and Comparative Endocrinology,2016,239:13-20.
[27] MARUYAMA K,MIURA T,UCHIYAMA M,et al.Relationship between anorexigenic action of pituitary adenylate cyclase-activating polypeptide (PACAP) and that of corticotropin-releasing hormone (CRH) in the goldfish,Carassiusauratus[J].Peptides,2006,27(7):1820-1826.
[28] BERNIER N J,CRAIG P M.CRF-related peptides contribute to stress response and regulation of appetite in hypoxic rainbow trout[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,2005,289(4):R982-R990.
[29] WOOD C M.Dogmas and controversies in the handling of nitrogenous wastes:is exogenous ammonia a growth stimulant in fish?[J].Journal of Experimental Biology,2004,207(12):2043-2054.
[30] ORTEGA V A,RENNER K J,BERNIER N J.Appetite-suppressing effects of ammonia exposure in rainbow trout associated with regional and temporal activation of brain monoaminergic and CRF systems[J].Journal of Experimental Biology,2005,208(10):1855-1866.
[31] CRAIG P M,AL-TIMIMI H,ERNIER N J.Differential increase in forebrain and caudal neurosecretory system corticotropin-releasing factor and urotensin Ⅰ gene expression associated with seawater transfer in rainbow trout[J].Endocrinology,2005,146(9):3851-3860.
[32] VAUGHAN J,DONALDSON C,BITTENCOURT J,et al.Urocortin,a mammalian neuropeptide related to fish urotensin Ⅰ and to corticotropin-releasing factor[J].Nature,1995,378(6554):287-292.
[33] BERNIER N J,PETER R E.The hypothalamic-pituitary-interrenal axis and the control of food intake in teleost fish[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2001,129(2/3):639-644.
[34] BERTHOUD H R.Multiple neural systems controlling food intake and body weight[J].Neuroscience & Biobehavioral Reviews,2002,26(4):393-428.
[35] ARAI M,ASSIL I Q,ABOU-SAMRA A B.Characterization of three corticotropin-releasing factor receptors in catfish:a novel third receptor is predominantly expressed in pituitary and urophysis[J].Endocrinology,2001,142(1):446-454.
[36] CARDOSO J C R,POWER D M,ELGA R,et al.Isolation and characterisation of the corticotropin releasing factor receptor 1 (CRFR1) gene in a teleost fish,Fugurubripes[J].DNA Sequence,2003,14(3):215-218.
[38] GREGORY T R,WOOD C M.The effects of chronic plasma cortisol elevation on the feeding behaviour,growth,competitive ability,and swimming performance of juvenile rainbow trout[J].Physiological and Biochemical Zoology,1999,72(3):286-295.
[39] BERNIER N J,BEDARD N,PETER R E.Effects of cortisol on food intake,growth,and forebrain neuropeptide Y and corticotropin-releasing factor gene expression in goldfish[J].General and Comparative Endocrinology,2004,135(2):230-240.
[40] DUCOURET B,TUJAGUE M,ASHRAF J,et al.Cloning of a teleost fish glucocorticoid receptor shows that it contains a deoxyribonucleic acid-binding domain different from that of mammals[J].Endocrinology,1995,136(9):3774-3783.
[41] VLLETTE P A,YOUNG G.Tissue culture of sockeye salmon intestine:functional response of Na+-K+-ATPase to cortisol[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,2005,288(6):R1598-R1605.
[42] SMITH S M,VAUGHAN J M,DONALDSON C J,et al.Cocaine-and amphetamine-regulated transcript activates the hypothalamic-pituitary-adrenal axis through a corticotropin-releasing factor receptor-dependent mechanism[J].Endocrinology,2004,145(11):5202-5209.
[43] HEINRICHS S C,MENZAGHI F,PICH E M,et al.Corticotropin-releasing factor in the paraventricular nucleus modulates feeding induced by neuropeptide Y[J].Brain Research,1993,611(1):18-24.
[44] BAZHAN N,ZELENA D.Food-intake regulation during stress by the hypothalamo-pituitary-adrenal axis[J].Brain Research Bulletin,2013,95:46-53.
[45] MATSUDA K,KOJIMA K,SHIMAKURA S I,et al.Corticotropin-releasing hormone mediates α-melanocyte-stimulating hormone-induced anorexigenic action in goldfish[J].Peptides,2008,29(11):1930-1936.
[46] SOLOMON A,DE FANTI B A,MARTNEZ A M.Peripheral ghrelin participates in glucostatic feeding mechanisms and in the anorexigenic signalling mediated by CART and CRF neurons[J].Nutritional Neuroscience,2005,8(5/6):287-295.
[47] J?NSSON E,KAIYA H,BJ?RNSSON B T.Ghrelin decreases food intake in juvenile rainbow trout (Oncorhynchusmykiss) through the central anorexigenic corticotropin-releasing factor system[J].General and Comparative Endocrinology,2010,166(1):39-46.
[48] TAHERI S,MURPHY K,COHEN M,et al.The effects of centrally administered apelin-13 on food intake,water intake and pituitary hormone release in rats[J].Biochemical and Biophysical Research Communications,2002,291(5):1208-1212.
[49] LV S Y,YANG Y J,QIN Y J,et al.Central apelin-13 inhibits food intake via the CRF receptor in mice[J].Peptides,2012,33(1):132-138.