• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrasensitive electrochemical determination of metronidazole based on polydopamine/carboxylic multi-walled carbon nanotubes nanocomposites modified GCE

    2018-04-17 02:46:00SatarTursynbolatYrysgulBakytkarimJianzhiHuangLishiWang
    Journal of Pharmaceutical Analysis 2018年2期

    Satar Tursynbolat,Yrysgul Bakytkarim,Jianzhi Huang,Lishi Wang

    School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510641,China

    1.Introduction

    Metronidazole,one of nitroimidazole derivative drugs(Fig.1)well-known for its antimicrobial properties, is effective against trichomonas[1–3],Vincent's organisms[4]and anaerobic bacteria [5–7].However,overuse and long-term use of metronidazole will cause toxicity[8],peripheral neuropathies[9]and opticneuropathy[10,11].Therefore,itisnecessary to monitor metronidazole concentration in patients under antibiotic therapy.Several analytical methods have been reported for the determination of metronidazole,including spectrophotometry[12,13]and chromatography[14–17].However,these methods could not realize high selectivity of metronidazole determination,and such determination processes were costly and time consuming.Hence,it is important to develop an alternative method for metronidazole determination with high sensitivity and selectivity.

    Nowadays,electrochemical methods have been widely used in environmental analysis and biological samples analysis[18–22].Particularly,electrochemical sensors and biosensors have been developed for pharmaceutical, food, agricultural and environmental analyses due to the advantages of fast response and good sensitivity[23–26].

    Electrochemical determination based on electrochemical sensor possesses the advantages of high sensitivity low cost and easy operation,which was widely used in analytical chemistry,and separation step is usually used to increase the selectivity prior to the determination[27–29].Electrochemical sensors fabricated by different modified electrode materials have been developed for electrochemical determination [27,29].Poly-dopamine is a conductive and biocompatible polymer,which has versatile applications due to its many attractive properties[30–33].Polydopamine can be coated on different materials and can be a good support for loading metal nanoparticle to form nanocomposites[34,35],which finally was applied in various electrochemical biosensors[36–39].Moreover,the polymerization method of dopamine was facile,and its surface morphology and layer thickness can be better controlled[40–42].Furthermore,polydopamine can be easily coated on the materials surface through a very strong chemical bond[43,44].Carboxylic muti-walled carbon nanotubes(MWCNTs–COOH)have been widely applied for the development of chemical sensors due to their excellent electrical conductivity,high surface area,remarkable mechanical strength and good chemical stability[45,46].

    Fig.1.Chemical structure of metronidazole.

    In this work,we developed a novel electrochemical sensor based on polydopamine/MWCNTs–COOH nanocomposites,where polydopamine can be easily electropolymerized to the surface of MWCNTs–COOH to form nanocomposites,and f i nally successfully realized the ultrasensitive determination for metronidazole with a wide linear detection range from 5 to 5000 μmol/dm3and a low detection limit of 0.25 μmol/dm3(S/N=3).Most importantly,the proposed sensor has been successfully applied for the quantitative determination of metronidazole in real drug samples.This work would provide an effective analytical strategy for metronidazole determination in application of real pharmaceutical and biological samples analysis.

    2.Experimental

    2.1.Reagents

    Metronidazole(99%,analytical grade)was purchased from Macklin Biochemical Co.,Ltd.(Shanghai,China).Carboxylic multiwalled carbon nanotubes were purchased from Aladdin Industrial Company(Shanghai,China).Dopamine hydrochloride(98%,analytical grade)was purchased from J&K Chemical(Beijing,China).Drug samples were obtained from Huayueyang Biotechnology Co.,Ltd.(Beijing,China).All other reagents were of analytical grade and used without further purification.0.1 M phosphate buffer solution(PBS)was prepared by mixing NaH2PO4and Na2HPO4,and then adjusted to the required pH values with H3PO4or NaOH solution.All aqueous solutions were prepared with doubly distilled water.

    2.2.Fabrication of polydopamine/MWCNTs–COOH nanocomposites/GCE sensor

    First,the bare GCE was polished with 0.3 and 0.05 μm of alumina powders,then rinsed ultrasonically with absolute alcohol and distilled water,and finally dried in the nitrogen stream.5μL of 0.5 mg/mL MWCNTs–COOH homogeneous suspension was dropped onto the electrode surface and then was dried under the infrared lamp,thus obtaining MWCNTs–COOH/GCE.Finally the polydopamine was electropolymerized onto thesurfaceof MWCNTs–COOH by cyclic voltammetry in 5 mmol/dm3dopamine in 0.1 M PBS(pH=5)between-0.4 V and+0.7 V at a scan rate of 50 mV/s for 10 cycles,thus obtained polydopamine/MWCNTs–COOH nanocomposites/GCE sensor.

    2.3.Apparatus and method

    Cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV)experiments were performed on a CHI 660B electrochemical workstation,purchased from Chenhua Co,Ltd.(Shanghai,China).A conventional three-electrode system was used with a glassy carbon electrode(3 mm diameter)as the working electrode,a saturated calomel reference electrode(SCE)and a Pt wire as the counter electrode.The differential pulse voltammetry scans ranged from-0.4 V to-1.0 V with amplitude of 0.05 V,pulse width of 0.05 s,pulse period of 0.5 s,sampling width of 0.0167,and increment of 0.004 V.For CV,scan rate was 50 mV/s,sample interval was 0.001 V.Electrochemical impedense spectroscopy was obtained in 5 mmol/dm3K3[Fe(CN)6]/K4[Fe(CN)6]solution containing 0.1 M KCl under open circuit potential with frequency range from 0.1 Hz to 100 kHz and 5 mV amplitude.The surface morphology was characterized using a field emission scanning electron microscope(FE-SEM;Zeiss Ultra55,Germany).

    For the determination of metronidazole,the detection limit(Cm)was obtained using the following equation:

    Where m is the slope of the calibration plot in the linear range,and Sbis the standard deviation of the blank response which was obtained from 20 replicate measurements of the blank PBS buffer solution.

    3.Results and discussion

    3.1.Characterization of polydopamine/MWCNTs–COOH nanocomposites modified GCE

    The SEM images of MWCNTs–COOH/GCE and polydopamine/MWCNTs–COOH nanocomposites/GCE are shown in Fig.2.The MWCNTs–COOH can be obviously observed in Fig.2A,when the polydopamine was electropolymerized onto the electrode surface,a rough polymer film could be obviously observed on the surface of MWCNTs–COOH,indicating the successful preparation of polydopamine/MWCNTs–COOH nanocomposites/GCE sensor(Fig.2B).

    Fig.3A shows cyclic voltammograms of bare GCE,MWCNTs–COOH/GCE and polydopamine/MWCNTs–COOH nanocomposites/GCE in the presence of 5 mmol/dm3K3Fe(CN)6]/K4[Fe(CN)6]solution containing 0.1 M KCl.A pair of reversible oxidation and reduction peaks were observed at 0.26 and 0.17 V,respectively,for the bare GCE(curve a).After being modified with the MWCNTs–COOH(curve b),it showed obvious increased redox peak currents because MWCNTs–COOH can dramatically increase the electrode surface area and possesses good electrical conductivity[47].Moreover,the polydopamine/MWCNTs–COOH nanocomposites/GCE(curve c)showed further enhanced redox peak currents compared with MWCNTs–COOH/GCE because polydopamine can accelerate the electron transfer eff i ciency between the electrode surface and solution.

    Fig.2.SEM images of(A)MWCNTs–COOH/GCE and(B)polydopamine/MWCNTs–COOH nanocomposites/GCE.

    Fig.3.(A)Cyclic voltammograms and(B)Electrochemical impedance spectroscopy obtained at(a)bare GCE,(b)MWCNTs–COOH/GCE and(c)polydopamine/MWCNTs–COOH nanocomposites/GCE in 5 mmol/dm3K3[Fe(CN)6]/K4[Fe(CN)6]solution containing 0.1 M KCl.

    Fig.4.(A)CVs and(B)DPVs of 500 μmol/dm3metronidazole in 0.1 M PBS(pH=10)buffer solution at(a)bare GCE and(b)polydopamine/MWCNTs–COOH nanocomposites/GCE.

    Fig.5.(A)CVs of 500 μmol/dm3metronidazole at the polydopamine/MWCNTs–COOH nanocomposites/GCE in 0.1 M PBS(pH=10)buffer solution at different scan rates.(B)The relationship between the reduction peak currents and scan rates.

    Fig.6.The effect of(A)accumulation time and(B)accumulation potential on the reduction peak current of 500 μmol/dm3metronidazole in 0.1 M PBS(pH=10)buffer solution at the polydopamine/MWCNTs–COOH nanocomposites/GCE.

    Fig.7.(A)CVs of 500 μmol/dm3metronidazole in 0.1 M PBS(pH=10)buffer solution at different pH values at the polydopamine/MWCNTs–COOH nanocomposites/GCE.The relationship of(B)reduction peak potentials vs.pH values and(C)reduction peak currents vs.pH values.

    Electrochemical impedance spectroscopy(EIS)is a powerful tool for studying the surface-modified electrode.Fig.3B shows the EISplotsofbareGCE,MWCNTs–COOH/GCE,polydopamine/MWCNTs–COOH nanocomposites/GCE at 5 mmol/dm3K3[Fe(CN)6]/K4[Fe(CN)6]in 0.1 M KCl.The bare GCE(curve a)possesses a small resistance.When MWCNTs–COOH was modified onto the bare GCE surface(curve b),it displayed a straight line in the Nyquist plot because the resistance was significantly decreased.Moreover,thepolydopamine/MWCNTs–COOHnanocomposites/GCE(curve c)also displayed a straight line in the Nyquist plot,which almost showed the resistance same as MWCNTs–COOH/GCE,because polydopamine/MWCNTs–COOH nanocomposites also possess excellent electron transfer efficiency.Therefore,both the CV and EIS plots proved the successful preparation of polydopamine/MWCNTs–COOH nanocomposites/GCE sensor.

    3.2.Electrochemical behavior of metronidazole at the polydopamine/MWCNTs–COOH nanocomposites/GCE sensor

    The electrochemical behavior of bare GCE and polydopamine/MWCNTs–COOH nanocomposites/GCE for determination of 500 μmol/dm3metronidazole in 0.1 M PBS(pH 10.0)buffer solution is shown in Fig.4A.The reduction peak current and peak potential of metronidazole at the bare GCE(curve a)were Ip=-8.44 μA and Ep=-0.749 V.However,compared to the bare GCE,the polydopamine/MWCNTs–COOH nanocomposites/GCE(curve b)exhibited significantly increased reduction peak current(Ip=-41.12 μA)and significantly increased reduction peak potential(Ep=-0.721 V)of metronidazole.The significantly increased reduction peak potential and significantly increased reduction peak current both confirmed the polydopamine/MWCNTs–COOH nanocomposites possess strong catalytic activity towards the reduction of metronidazole.Moreover,the DPVs results in Fig.4B correspond with the CVs in Fig.4A.Therefore,the polydopamine/MWCNTs–COOH nanocomposites/GCE sensor can be successfully utilized for the determination of metronidazole.

    3.3.The effect of scan rate

    The CVs of polydopamine/MWCNTs–COOH nanocomposites/GCE in 500 μmol/dm3metronidazole at different scan rates are shown in Fig.5A,where the reduction peak currents showed linearity with the scan rates.And the linear regression equation can be expressed as Ip(μA)=-0.363ν(mV/s)-32.399(R=-0.9914)in Fig.5B,indicating that the reduction of the metronidazole is a typical adsorption controlled process.Therefore,it is necessary to study the effect of accumulation time and accumulation potential in order to obtain more sensitive determination for metronidazole.

    3.4.The effect of accumulation time and accumulation potential

    The effect of accumulation time and accumulation potential for the determination of metronidazole was studied by DPVs in Fig.6.As shown in Fig.6A,at the accumulation potential of-0.5 V,the reduction peak current increased gradually with the accumulation time and reached the maximum value when the accumulation time was 200 s.However,the reduction peak current almost remained the same after 200 s due to the saturation of surface active catalytic sites of polydopamine/MWCNTs–COOH nanocomposites/GCE.Thus,the optimal accumulation time of 200 s was employed in our experiments.With the optimal accumulation time determined above,we further studied the effect of accumulation potential on reduction peak current of metronidazole.As shown in Fig.6B,the reduction peak current decreased gradually with the increase of accumulation potential;therefore,the accumulation potentialwaschosen at-0.5 V fordetermination ofmetronidazole in our later experiments.

    3.5.The pH effect

    The effect of pH value on the electrochemical response of 500 μmol/dm3metronidazole in 0.1 M PBS with pH value ranging from 5.0 to 11.0 at the polydopamine/MWCNTs–COOH nanocomposites/GCE was investigated by CV(Fig.7A).The reduction peak potentials showed linearity with pH values ranging from 5.0–9.0 and 9.0–11.0,with the linear regression equations of Ep=-0.0518pH–0.266(R=-0.9687)and Ep=-0.008pH–0.658(R=-0.9462),respectively(Fig.7B),indicating two different reaction mechanisms of metronidazole.According to previous reports[39,48],the reaction mechanisms of metronidazole are listed below:

    Fig.8.DPVs of metronidazole at(A)5–800 μmol/dm3and(C)800–5000 μmol/dm3in 0.1 M PBS(pH=10)buffer solution at the polydopamine/MWCNTs–COOH nanocomposites/GCE.Linear relationships between reduction peak currents and concentrations at(B)5–800 μmol/dm3and(D)800–5000 μmol/dm3.

    Table 1 Linear regression equations of metronidazole under different concentration rangs.

    In pH values of 5·0–9·0:

    In pH values of 9·0–11·0:

    Moreover,as shown in Fig.7C,because the reduction peak current achieved the maximum value in pH=10.0,the pH value of 10.0 was chosen as the best pH value for the determination of metronidazole.

    3.6.The quantitative determination of metronidazole

    The quantitative determination of metronidazole at the polydopamine/MWCNTs–COOH nanocomposites/GCE was achieved by DPV under optimal conditions addressed above.As shown in Fig.8,the reduction peak currents of metronidazole at the polydopamine/MWCNTs–COOH nanocomposites/GCE increased linearly with concentration ranges of 5–300 μmol/dm3,300–800 μmol/dm3and 800–5000 μmol/dm3,and their corresponding linear regression equations are listed in Table 1.

    The detection limit of metronidazole was determined to be 0.25 μmol/dm3(S/N=3).Moreover,compared with recently most reported electrochemical sensors[49–55]for determination of metronidazole,our proposed nanocomposites sensor could fi nish the ultrasensitive determination of metronidazole with a much widerlinearrangesand a much lowerdetection limits(Table 2).

    Table 2 Comparison of performances of the polydopamine/MWCNTs–COOH nanocomposites/GCE with other modif i ed electrodes.

    Table 3 Practical determination of metronidazole in real drug samples(n=3).(Sample responses are expressed as a confidence interval of 95%probability).

    3.7.Selectivity,stability and reproducibility of the polydopamine/MWCNTs–COOH nanocomposites/GCE sensor

    Selectivity,stability and reproducibility of the proposed sensors are key factors for their practical application.The proposed sensor was not affected by additions of 100-fold concentrations of various inorganic ions(K+,Mg2+,Zn2+,Na+,Ca2+,PO43-,SO42-,F-,CO32-,NO3-and Cl-,signal change below 3%)and 10-fold concentrations of some organic compounds(oxalic acid,ascorbic acid,glucose,citric acid,cystine,alanine and tartaric acid,signal change below 6%).This results suggested that the proposed sensor possesses excellent selectivity for the determination of metronidazole.After the prepared electrode was stored at 4°C in a refrigerator for 1 month,the reduction peak current of metronidazole remained 95.2%of its initial value,indicating that the proposed sensor possesses good stability.Moreover,four modified electrodes were fabricated to estimate the sensor's reproducibility,and the relative standard deviation(RSD)of detection measurements was calculated to be 2.5%for metronidazole,suggesting that the proposed sensor possesses high reproducibility.Therefore,the polydopamine/MWCNTs–COOH nanocomposites/GCE sensor is promising for determination of metronidazole with excellent selectivity,stability and reproducibility.

    3.8.Real samples determination

    The practical analytical application of the polydopamine/MWCNTs–COOH nanocomposites/GCE sensor was evaluated by determination of metronidazole in real drug samples by standardaddition technique.Three parallel experiments were performed on all measurements.As shown in Table 3,the recovery of the real samples ranged between 93.4%and 118.3%,and the RSD values were less than 4%,indicating that the our proposed sensor can be successfully applied forthepracticaldetermination ofmetronidazole in real samples.

    4.Conclusions

    In summary,we successfully develop an ultrasensitive electrochemical sensor for metronidazole determination,which was based on polydopamine/MWCNTs–COOH nanocomposites.Moreover,the fabrication of polydopamine/MWCNTs–COOH nanocomposites/GCE sensor was simple,where polydopamine can coat on the surface ofMWCNTs–COOH via asimple electropolymerization process.Under optimized conditions,the proposed sensorshowed widerlineardetection range from 5 to 5000 μmol/dm3and a low detection limit of 0.25 μmol/dm3(S/N=3)for metronidazole,and was successfully applied for the practical determination of metronidazole in real drug samples.The proposed sensor shows broad potential in application of real pharmaceutical and biological samples analysis.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    This work was financially supported by the National Natural Science Foundation of China(Grant Nos.21475046,21427809).

    [1]N.C.Desai,A.S.Maheta,K.M.Rajpara,et al.,Green synthesis of novel quinolone based imidazole derivatives and evaluation of their antimicrobial activity,J.Saudi Chem.Soc.18(2014)963–971.

    [2]A.M.Jarrad,T.Karoli,A.Debnath,et al.,Metronidazole–triazole conjugates:activity against Clostridium difficile and parasites,Eur.J.Med.Chem.101(2015)96–102.

    [3]L.A.Dunn,K.T.Andrews,J.S.McCarthy,et al.,The activity of protease inhibitors against Giardia duodenalis and metronidazole-resistant Trichomonas vaginalis,Int.J.Antimicrob.Agents 29(2007)98–102.

    [4]A.H.Davies,J.A.Mafadzean,S.Squires,Treatment of Vincent's stomatitis with metronidazole,Br.Med.J.5391(1964)1149–1150.

    [5]N.Dione,S.Khelai fi a,J.C.Lagier,et al.,The aerobic activity of metronidazole against anaerobic bacteria,Int.J.Antimicrob.Agents 45(2015)537–540.

    [6]A.Katsandri,A.Avlamis,A.Pantazatou,et al.,In vitro activities of Tigecycline against recently isolated Gram-negative anaerobic bacteria in Greece,including metronidazole-resistant strains,Diagn.Microbiol.Infect.Dis.55(2006)231–236.

    [7]A.V.Scorza,M.R.Lappin,Metronidazole for the treatment of feline giardiasis,J.Feline Med.Surg.6(2004)157–160.

    [8]M.W.Carroll,D.Jeon,J.M.Mountz,et al.,Ef fi cacy and safety of metronidazole for pulmonary multidrug-resistant tuberculosis,J.Antimicrob.Agents Chemother.57(2013)3903–3909.

    [9]A.Etxeberria,S.Lonneville,M.P.Rutgers,et al.,Metronidazole-cerebellopathy associated with peripheral neuropathy,downbeat nystagmus and bilateral ocular abduction de fi cit,Rev.Neurol.168(2012)193–195.

    [10]N.M.McGrath,B.Kent-Smith,D.M.Sharp,Reversible optic neuropathy due to metronidazole,Clin.Exp.Ophthalmol.35(2007)585–586.

    [11]M.P.Prabhakaran,M.Zamani,B.Felice,et al.,Electrospraying technique for the fabrication of metronidazole contained PLGA particles and their release profile,Mater.Sci.Eng.C 56(2015)66–73.

    [12]A.K.Mishra,A.Kumar,A.Mishra,et al.,Development of ultraviolet spectroscopic method for the estimation of metronidazole benzoate from pharmaceutical formulation,J.Nat.Sci.Biol.Med.5(2014)261–264.

    [13]G.O.El-Sayed,Polarographic determination of metronidazole in pharmaceutical formulations and urine,Microchem.J.55(1997)110–114.

    [14]W.Tian,L.Gao,Y.Zhao,et al.,Simultaneous determination of metronidazole,chloramphenicol and 10 sulfonamide residues in honey by LC–MS/MS,Anal.Methods 5(2013)1283–1288.

    [15]C.Ho,D.W.M.Sin,K.M.Wong,et al.,Determination of dimetridazole and metronidazole in poultry and porcine tissues by gas chromatography–electron capture negative ionization mass spectrometry,Anal.Chim.Acta 530(2005)23–31.

    [16]H.M.Maher,R.M.Youssef,R.H.Khalil,et al.,Simultaneous multi residue determination of metronidazole and spiramycin in fi sh muscle using high performance liquid chromatography with UV detection,J.Chromatogr.B 876(2008)175–181.

    [17]J.Li,Y.B.Wang,L.Wu,et al.,Fabrication of multi-walled carbon nanotubes/oxide reinforced hollow fi bers by sol–gel technique for rapid determination of metronidazole in milk,Anal.Methods 6(2014)1401–1411.

    [18]M.M.Ardakani,H.Beitollahi,Z.Taleat,et al.,Selective voltammetric determination of D-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2nanoparticles and quinizarine,J.Electroanal.Chem.644(2010)1–6.

    [19]M.M.Ardakani,Z.Taleat,H.Beitollahi,et al.,Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum(VI)complex-TiO2nanoparticle modified carbon paste electrode,J.Electroanal.Chem.624(2008)73–78.

    [20]S.Tajika,M.A.Taher,H.Beitollahi,Simultaneous determination of droxidopa and carbidopa using a carbon nanotubes paste electrode,Sens.Actuators B Chem.188(2013)923–930.

    [21]V.Vyskocil,J.Barek,Polarographic and voltammetric study of genetoxic 2,7-dinitro fluoren-9-one and its determination using mercury electrodes,Collect.Czech Chem.C 74(2009)1675–1696.

    [22]O.Yosypchuk,J.Barek,V.Vyskocil,Voltammetric determination of carcinogenic derivatives of pyrene using a boron-doped diamond fi lm electrode,Anal.Lett.45(2012)449–459.

    [23]H.Beitollahi,H.K.Maleh,H.Khabazzadeh,Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N-phenyl-hydrazinecarbothioamide,Anal.Chem.80(2008)9848–9851.

    [24]H.Beitollahi,M.M.Ardakani,H.Naeimi,et al.,Electrochemical characterization of 2,2′-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone-carbon nanotube paste electrode and its application to simultaneous voltammetric determination of ascorbic acid and uric acid,J.Solid State Electrochem.13(2009)353–363.

    [25]M.M.Ardakani,H.Beitollahi,M.K.Amini,et al.,Simultaneous determination of epinephrine and uric acid at a gold electrode modified by a 2-(2,3-dihydroxy phenyl)-1,3-dithiane self-assembled monolayer,J.Electroanal.Chem.651(2011)243–249.

    [26]M.Baghayeri,M.Namadchian,H.K.Maleh,et al.,Determination of nifedipine using nanostructured electrochemical sensor based on simple synthesis of Ag nanoparticles at the surface of glassy carbon electrode:application to the analysis of some real samples,J.Electroanal.Chem.697(2013)53–59.

    [27]V.Vyskocil,J.Barek,Mercury electrodes-possibilities and limitations in environmental electroanalysis,Crit.Rev.Anal.Chem.39(2009)173–188.

    [28]V.Vyskocil,J.Barek,Electroanalysis of nitro and amino derivatives of polycyclic aromatic hydrocarbons,Curr.Org.Chem.15(2011)3059–3076.

    [29]J.Gajdar,E.Horakova,J.Barek,et al.,Recent applications of mercury electrodes for monitoring of pesticides:a critical review,Electroanalysis 28(2016)2659–2671.

    [30]M.L.Lynge,R.van der Westen,A.Posta,et al.,Polydopamine a nature-inspired polymer coating for bilchemical scince,Nanoscale 3(2011)4916–4928.

    [31]Y.Li,Y.Su,X.Zhao,et al.,Antifouling,high-flux nanofiltration membranes enabled by dual functional polydopamine,ACS Appl.Mater.Interfaces 6(2014)5548–5557.

    [32]C.Wang,J.Zhou,P.Wang,et al.,Robust nanoparticle-DNA conjugates based on mussel-inspired polydopamine coating for cell imaging and tailored self-assembly,Bioconjug.Chem.27(2016)815–823.

    [33]Q.Liu,N.Wang,J.Caro,et al.,Bio-inspired polydopamine:a versatile and powerful platform for covalent synthesis of molecular sieve membranes,J.Am.Chem.Soc.135(2013)17679–17682.

    [34]J.Ryu,S.H.Ku,H.Lee,et al.,Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization,Adv.Funct.Mater.20(2010)2132–2139.

    [35]W.Zhang,Y.Tang,J.Liu,et al.,An electrochemical sensor for detecting triglyceride based on biomimetic polydopamine and gold nanocomposite,J.Mater.Chem.B 2(2014)8490–8495.

    [36]M.Amiri,E.Amali,A.Nematollahzadeh,et al.,Poly-dopamine films:voltammetric sensor for pH monitoring,Sens.Actuators B-Chem.228(2016)53–58.

    [37]M.Amiri,E.Amali,A.Nematollahzadeh,Poly-dopamine thin film for voltammetric sensing of atenolol,Sens.Actuators B-Chem.216(2015)551–557.

    [38]L.Zheng,L.Xiong,Y.Li,et al.,Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol,Sens.Actuators B-Chem.177(2013)344–349.

    [39]H.B.Ammar,M.B.Brahim,R.Abdelhedi,et al.,Boron doped diamond sensor for sensitive determination of metronidazole:mechanistic and analytical study by cyclic voltammetry and square wave voltammetry,Mater.Sci.Eng.C 59(2016)604–610.

    [40]J.Z.Huang,X.L.Shen,R.L.Wang,et al.,A highly sensitive metronidazole sensor based on a Pt nanospheres/polyfurfural film modified electrode,RSC Adv.7(2017)535–542.

    [41]E.L.Ciolkowski,B.R.Cooper,J.A.Jankowski,et al.,Direct observation of epinephrine and norepinephrine cosecretion from individual adrenal medullary chromaf fin cells,J.Am.Chem.Soc.114(1992)2815–2821.

    [42]E.L.Ciolkowski,K.M.Maness,P.S.Cahill,et al.,Disproportionation during electrooxidation of catecholamines at carbon- fiber microelectrodes,Anal.Chem.66(1994)3611–3617.

    [43]Y.S.Choi,H.Kang,D.G.Kim,et al.,Mussel-inspired dopamine-and plant-based cardanol-containing polymer coatings for multifunctional filtration membranes,ACS Appl.Mater.Interfaces 6(2014)21297–21307.

    [44]H.Lee,S.M.Dellatore,W.M.Miller,et al.,Mussel-inspired surface chemistry for multifunctional coatings,Science 318(2007)426–430.

    [45]D.Eder,Carbon nanotube-inorganic hybrids,Chem.Rev.110(2010)1348–1385.

    [46]H.Beitollahi,S.Mohammadi,Selective voltammetric determination of norepinephrine in the presence of acetaminophen and tryptophan on the surface of a modi fi ed carbon nanotube paste electrode,Mater.Sci.Eng.C 33(2013)3214–3219.

    [47]J.Z.Huang,S.L.Bai,G.Q.Yue,et al.,Coordination matrix/signal amplifier strategy for simultaneous electrochemical determination of cadmium(II),lead(II),copper(II),and mercury(II)ions based on polyfurfural film/multi-walled carbon nanotube modified electrode,RSC Adv.7(2017)28556–28563.

    [48]A.Hajkova,J.Hranicek,J.Barek,et al.,Voltammetric determination of trace amounts of 2-amino fl uoren-9-one at a mercury meniscus modi fi ed silver solid amalgam electrode,Electroanalysis 25(2013)295–302.

    [49]V.Vyskocil,T.Navratil,A.Danhel,et al.,Voltammetric determination of selected nitro compounds at a polished silver solid amalgam composite electrode,Electroanalysis 23(2011)129–139.

    [50]P.Bartlett,E.Ghoneim,G.El-Hefnawy,et al.,Voltammetry and determination of metronidazole at a carbon fiber microdisk electrode,Talanta 66(2005)869–874.

    [51]A.Salimi,M.Izadi,R.Hallaj,et al.,Simultaneous determination of ranitidine and metronidazole at glassy carbon electrode modified with single wall carbon nanotubes,Electroanalysis 19(2007)1668–1676.

    [52]A.M.Brett,S.H.Serrano,I.G.Gutz,et al.,Comparison of the voltammetric behavior of metronidazole at a DNA-modified glassy carbon electrode,a mercury thin film electrode and a glassy carbon electrode,Electroanalysis 9(1997)110–114.

    [53]S.A.?zkan,Y.?zkan,Z.?entürk,Electrochemical reduction of metronidazole at activated glassy carbon electrode and its determination in pharmaceutical dosage forms,J.Pharm.Biomed.Anal.17(1998)299–305.

    [54]J.Peng,C.Hou,X.Hu,Determination of metronidazole in pharmaceutical dosage forms based on reduction at graphene and ionic liquid composite film modified electrode,Sens.Actuators B-Chem.169(2012)81–87.

    [55]Y.Gu,X.Y.Yan,W.L.Liu,et al.,Biomimetic sensor based on copper-poly(cysteine) film for the determination of metronidazole,Electrochim.Acta 152(2015)108–116.

    精品一区二区三区av网在线观看| www.精华液| 丁香欧美五月| 好男人电影高清在线观看| 在线观看免费视频日本深夜| 久久精品国产99精品国产亚洲性色| 日本 欧美在线| 香蕉丝袜av| 久久天堂一区二区三区四区| 悠悠久久av| 女人爽到高潮嗷嗷叫在线视频| 国产人伦9x9x在线观看| 狠狠狠狠99中文字幕| www.自偷自拍.com| 亚洲av五月六月丁香网| 精品久久久久久久久久久久久| 最近在线观看免费完整版| 亚洲精品久久国产高清桃花| 国产伦人伦偷精品视频| 久久久久久久午夜电影| 亚洲中文av在线| av国产免费在线观看| 精品电影一区二区在线| 欧美成狂野欧美在线观看| 欧美性猛交╳xxx乱大交人| 国产三级中文精品| 亚洲色图 男人天堂 中文字幕| 九九热线精品视视频播放| 一进一出抽搐gif免费好疼| 国产1区2区3区精品| 一级作爱视频免费观看| 免费看美女性在线毛片视频| 天堂动漫精品| 我的老师免费观看完整版| 一本综合久久免费| 国产成人精品久久二区二区免费| 日本撒尿小便嘘嘘汇集6| 真人一进一出gif抽搐免费| 久久久久久久精品吃奶| 亚洲性夜色夜夜综合| 99在线人妻在线中文字幕| 少妇被粗大的猛进出69影院| 黄色女人牲交| 国产精品免费一区二区三区在线| 国产精品av视频在线免费观看| 日韩三级视频一区二区三区| 亚洲精品久久国产高清桃花| 精品日产1卡2卡| 久久久久久久久免费视频了| 在线播放国产精品三级| 成人一区二区视频在线观看| 久久精品91蜜桃| 色在线成人网| 国产成年人精品一区二区| 亚洲美女黄片视频| 18美女黄网站色大片免费观看| 免费电影在线观看免费观看| 午夜影院日韩av| 黄色 视频免费看| 熟女电影av网| 一本综合久久免费| 中文字幕av在线有码专区| 国产成人av激情在线播放| 国产97色在线日韩免费| 免费在线观看黄色视频的| 成人手机av| 午夜福利在线观看吧| 18禁美女被吸乳视频| 国产成年人精品一区二区| 午夜免费观看网址| 久热爱精品视频在线9| 国产亚洲欧美98| 后天国语完整版免费观看| 国产黄色小视频在线观看| 欧美黑人精品巨大| 在线十欧美十亚洲十日本专区| 亚洲一码二码三码区别大吗| 国产一区二区激情短视频| 在线观看一区二区三区| 午夜福利18| 神马国产精品三级电影在线观看 | 亚洲第一欧美日韩一区二区三区| 在线看三级毛片| www国产在线视频色| 不卡av一区二区三区| 在线观看日韩欧美| 久久久国产欧美日韩av| 99热只有精品国产| 母亲3免费完整高清在线观看| 成人av在线播放网站| www.熟女人妻精品国产| 老司机在亚洲福利影院| 亚洲片人在线观看| 最近视频中文字幕2019在线8| 一本一本综合久久| 亚洲av成人精品一区久久| 岛国在线观看网站| 一级a爱片免费观看的视频| 女生性感内裤真人,穿戴方法视频| av超薄肉色丝袜交足视频| 欧美中文日本在线观看视频| 国产精品 欧美亚洲| 久久这里只有精品中国| 欧美中文综合在线视频| 欧美色视频一区免费| 18禁美女被吸乳视频| 一二三四社区在线视频社区8| 亚洲美女视频黄频| 亚洲av成人不卡在线观看播放网| 日韩免费av在线播放| 老熟妇仑乱视频hdxx| 精品一区二区三区视频在线观看免费| 麻豆成人av在线观看| 黄色成人免费大全| 亚洲av五月六月丁香网| 欧美激情久久久久久爽电影| 免费观看精品视频网站| 啦啦啦韩国在线观看视频| 首页视频小说图片口味搜索| 少妇人妻一区二区三区视频| 欧美av亚洲av综合av国产av| 亚洲美女黄片视频| 久久欧美精品欧美久久欧美| 曰老女人黄片| 欧美黑人巨大hd| or卡值多少钱| 狠狠狠狠99中文字幕| 男女之事视频高清在线观看| 女生性感内裤真人,穿戴方法视频| 啦啦啦免费观看视频1| www日本黄色视频网| 亚洲精品久久成人aⅴ小说| 日韩欧美三级三区| 亚洲aⅴ乱码一区二区在线播放 | 啦啦啦韩国在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 大型av网站在线播放| 国产成人一区二区三区免费视频网站| 一本精品99久久精品77| 小说图片视频综合网站| 婷婷六月久久综合丁香| 1024视频免费在线观看| 日本在线视频免费播放| 精品不卡国产一区二区三区| 18禁黄网站禁片免费观看直播| 免费在线观看完整版高清| 国产真人三级小视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美精品综合久久99| 欧美成人免费av一区二区三区| 欧美极品一区二区三区四区| 色综合欧美亚洲国产小说| 亚洲欧洲精品一区二区精品久久久| 精品国产乱子伦一区二区三区| 一级毛片高清免费大全| 国产精品99久久99久久久不卡| 麻豆成人av在线观看| 精品国产超薄肉色丝袜足j| 午夜视频精品福利| 国产精品久久久久久亚洲av鲁大| 嫩草影视91久久| 中文字幕人成人乱码亚洲影| 美女高潮喷水抽搐中文字幕| 亚洲精品色激情综合| 精品国产乱码久久久久久男人| 1024视频免费在线观看| bbb黄色大片| 熟女少妇亚洲综合色aaa.| 淫妇啪啪啪对白视频| 国产成+人综合+亚洲专区| 欧美 亚洲 国产 日韩一| 一本综合久久免费| av免费在线观看网站| 国产精品亚洲一级av第二区| 精品国产亚洲在线| 亚洲精品一区av在线观看| 18禁国产床啪视频网站| 精品国产乱码久久久久久男人| 亚洲国产欧美一区二区综合| 99在线视频只有这里精品首页| 成人国语在线视频| 日韩欧美在线二视频| 国产激情偷乱视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲精品一区二区www| 国产99白浆流出| 白带黄色成豆腐渣| 手机成人av网站| 久久久久国产精品人妻aⅴ院| 亚洲一区二区三区不卡视频| 欧美精品亚洲一区二区| 亚洲成人久久性| 国产精品av视频在线免费观看| 亚洲av电影在线进入| 久久久久九九精品影院| 日韩高清综合在线| 亚洲欧美激情综合另类| √禁漫天堂资源中文www| 一本精品99久久精品77| 国产激情偷乱视频一区二区| 99热这里只有是精品50| 成熟少妇高潮喷水视频| 午夜福利成人在线免费观看| 欧美一级a爱片免费观看看 | 精品久久久久久久久久免费视频| 欧美高清成人免费视频www| 亚洲最大成人中文| 国产高清视频在线播放一区| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩无卡精品| 国产一级毛片七仙女欲春2| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黄色片欧美黄色片| 最近最新中文字幕大全免费视频| 制服诱惑二区| 狂野欧美激情性xxxx| xxx96com| 一本精品99久久精品77| 88av欧美| 母亲3免费完整高清在线观看| 99热6这里只有精品| 久99久视频精品免费| 最新在线观看一区二区三区| 午夜久久久久精精品| 中文字幕最新亚洲高清| 欧美不卡视频在线免费观看 | 欧美日韩国产亚洲二区| 老司机在亚洲福利影院| av天堂在线播放| 国产一区二区激情短视频| 一个人观看的视频www高清免费观看 | 757午夜福利合集在线观看| 天天躁夜夜躁狠狠躁躁| 免费在线观看完整版高清| 老鸭窝网址在线观看| 18禁黄网站禁片午夜丰满| 夜夜夜夜夜久久久久| 欧美极品一区二区三区四区| 日本一本二区三区精品| 一级毛片女人18水好多| 波多野结衣高清无吗| 国产精品精品国产色婷婷| 99精品久久久久人妻精品| netflix在线观看网站| 少妇人妻一区二区三区视频| 岛国在线免费视频观看| 久久久国产成人精品二区| 亚洲专区国产一区二区| 男女床上黄色一级片免费看| 日韩有码中文字幕| 免费在线观看视频国产中文字幕亚洲| 宅男免费午夜| 欧美日韩福利视频一区二区| 亚洲 欧美一区二区三区| 欧美又色又爽又黄视频| 亚洲国产精品成人综合色| 久久久久久久久免费视频了| 一进一出抽搐gif免费好疼| av在线天堂中文字幕| 桃色一区二区三区在线观看| 超碰成人久久| 久久精品aⅴ一区二区三区四区| 国产高清有码在线观看视频 | 国产成人精品久久二区二区免费| 999久久久国产精品视频| 国产精品免费一区二区三区在线| 免费观看人在逋| 丝袜人妻中文字幕| 成人欧美大片| 日韩 欧美 亚洲 中文字幕| 岛国在线免费视频观看| 欧美日韩亚洲国产一区二区在线观看| 香蕉久久夜色| 国产精品影院久久| 午夜福利在线观看吧| 50天的宝宝边吃奶边哭怎么回事| 午夜影院日韩av| 亚洲成av人片免费观看| 国产精品亚洲美女久久久| 美女黄网站色视频| 久久久久久亚洲精品国产蜜桃av| 成人18禁在线播放| 伊人久久大香线蕉亚洲五| 欧美日韩乱码在线| 成年女人毛片免费观看观看9| 亚洲中文日韩欧美视频| 亚洲自拍偷在线| 免费看美女性在线毛片视频| 可以免费在线观看a视频的电影网站| 黑人操中国人逼视频| 国产精品久久久久久亚洲av鲁大| 免费看美女性在线毛片视频| 亚洲精品国产一区二区精华液| 精品不卡国产一区二区三区| 亚洲精品国产精品久久久不卡| 老司机午夜十八禁免费视频| 精品国产亚洲在线| 亚洲五月婷婷丁香| 久久国产精品影院| av视频在线观看入口| 中文字幕av在线有码专区| www.999成人在线观看| 成人亚洲精品av一区二区| 2021天堂中文幕一二区在线观| 俺也久久电影网| 白带黄色成豆腐渣| 免费搜索国产男女视频| 搞女人的毛片| 国产亚洲精品久久久久5区| 丁香六月欧美| 久久精品国产清高在天天线| 精品欧美一区二区三区在线| 五月伊人婷婷丁香| 成人三级做爰电影| 色噜噜av男人的天堂激情| 老司机午夜十八禁免费视频| 大型黄色视频在线免费观看| 黄色片一级片一级黄色片| 夜夜看夜夜爽夜夜摸| 免费搜索国产男女视频| 99国产精品一区二区三区| 国产精品九九99| xxx96com| 亚洲国产欧洲综合997久久,| 免费观看精品视频网站| 九色成人免费人妻av| 久久久精品大字幕| www.999成人在线观看| 91大片在线观看| 婷婷六月久久综合丁香| 色尼玛亚洲综合影院| 一级a爱片免费观看的视频| 国产亚洲欧美98| 国内少妇人妻偷人精品xxx网站 | 精品一区二区三区av网在线观看| 美女高潮喷水抽搐中文字幕| 夜夜躁狠狠躁天天躁| 亚洲成人国产一区在线观看| 国产精品一区二区免费欧美| 国产私拍福利视频在线观看| 亚洲天堂国产精品一区在线| 1024香蕉在线观看| 国产在线精品亚洲第一网站| 久久久久久久久久黄片| 国内精品久久久久精免费| 88av欧美| 国产精品电影一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 久久 成人 亚洲| 亚洲熟妇中文字幕五十中出| 成人欧美大片| 久久久久久大精品| 好看av亚洲va欧美ⅴa在| 视频区欧美日本亚洲| 久久 成人 亚洲| 久久香蕉国产精品| 亚洲av片天天在线观看| 亚洲av电影在线进入| 成人精品一区二区免费| 亚洲性夜色夜夜综合| 亚洲成av人片在线播放无| 久久久精品欧美日韩精品| 亚洲av中文字字幕乱码综合| 欧美日韩中文字幕国产精品一区二区三区| 亚洲午夜理论影院| 国产亚洲精品久久久久5区| 久久精品亚洲精品国产色婷小说| 欧美成人性av电影在线观看| 午夜激情av网站| 叶爱在线成人免费视频播放| 亚洲最大成人中文| 国产精品 国内视频| 亚洲一区中文字幕在线| 国产精品久久视频播放| 又紧又爽又黄一区二区| 欧美成人性av电影在线观看| 国产精品免费视频内射| 国产精华一区二区三区| 亚洲一区二区三区色噜噜| 国产av又大| 悠悠久久av| 久99久视频精品免费| 日韩欧美 国产精品| 久久精品91无色码中文字幕| 动漫黄色视频在线观看| 操出白浆在线播放| 天天躁夜夜躁狠狠躁躁| e午夜精品久久久久久久| 婷婷精品国产亚洲av在线| 99久久精品国产亚洲精品| 2021天堂中文幕一二区在线观| 亚洲一区高清亚洲精品| 男人舔女人下体高潮全视频| 国产久久久一区二区三区| 欧美黑人精品巨大| 久久人妻av系列| 国产精品久久久久久精品电影| 高清在线国产一区| 欧美黄色片欧美黄色片| 一级毛片精品| 90打野战视频偷拍视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美久久黑人一区二区| 亚洲精品美女久久久久99蜜臀| 国产精品电影一区二区三区| 国产精品自产拍在线观看55亚洲| 欧美精品啪啪一区二区三区| 一边摸一边抽搐一进一小说| 国产午夜福利久久久久久| 好男人在线观看高清免费视频| 黄色 视频免费看| 最近在线观看免费完整版| 精品国产亚洲在线| 国产麻豆成人av免费视频| 精品人妻1区二区| 性欧美人与动物交配| 成人三级黄色视频| 国内久久婷婷六月综合欲色啪| 午夜a级毛片| 国产片内射在线| 久久精品国产清高在天天线| 午夜精品久久久久久毛片777| 免费无遮挡裸体视频| 啪啪无遮挡十八禁网站| 欧美成人午夜精品| 免费在线观看黄色视频的| 又粗又爽又猛毛片免费看| 最新在线观看一区二区三区| 亚洲片人在线观看| 久久久精品大字幕| 国产一区二区三区在线臀色熟女| 欧美日韩瑟瑟在线播放| 18禁裸乳无遮挡免费网站照片| 女同久久另类99精品国产91| tocl精华| 神马国产精品三级电影在线观看 | 久久中文看片网| 免费在线观看日本一区| 露出奶头的视频| 国产亚洲精品一区二区www| 亚洲av熟女| 国产精品国产高清国产av| 精品国产乱码久久久久久男人| 国产精品国产高清国产av| 日韩高清综合在线| 日韩免费av在线播放| 国产区一区二久久| 男人舔女人下体高潮全视频| 亚洲在线自拍视频| 中文字幕熟女人妻在线| 亚洲av五月六月丁香网| 亚洲色图 男人天堂 中文字幕| 97碰自拍视频| 成年女人毛片免费观看观看9| 久久99热这里只有精品18| xxx96com| 床上黄色一级片| 国产午夜精品论理片| 岛国在线免费视频观看| 动漫黄色视频在线观看| 老司机午夜十八禁免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产av麻豆久久久久久久| 91成年电影在线观看| 国产成+人综合+亚洲专区| 亚洲aⅴ乱码一区二区在线播放 | 黄色片一级片一级黄色片| 99久久久亚洲精品蜜臀av| 两人在一起打扑克的视频| 亚洲专区中文字幕在线| 欧美成人免费av一区二区三区| 国产精品一及| 国产精品野战在线观看| 欧美日韩乱码在线| 亚洲熟女毛片儿| 国产欧美日韩一区二区精品| 日韩欧美国产一区二区入口| av片东京热男人的天堂| 97人妻精品一区二区三区麻豆| 伦理电影免费视频| 99热只有精品国产| 窝窝影院91人妻| 丝袜美腿诱惑在线| 欧美精品啪啪一区二区三区| 久久九九热精品免费| 日本五十路高清| 成人亚洲精品av一区二区| 亚洲男人天堂网一区| 国产探花在线观看一区二区| 黄频高清免费视频| 欧美三级亚洲精品| 97超级碰碰碰精品色视频在线观看| 日本 av在线| 久久久久久久久免费视频了| 亚洲九九香蕉| av福利片在线观看| 日本一区二区免费在线视频| 国产精品香港三级国产av潘金莲| 国产探花在线观看一区二区| 亚洲欧美一区二区三区黑人| 999久久久精品免费观看国产| xxxwww97欧美| 亚洲激情在线av| 看黄色毛片网站| av视频在线观看入口| 欧美日韩黄片免| xxxwww97欧美| 国产私拍福利视频在线观看| 亚洲成av人片在线播放无| 色精品久久人妻99蜜桃| 一区二区三区高清视频在线| 色综合欧美亚洲国产小说| 日本精品一区二区三区蜜桃| 欧美高清成人免费视频www| 国产精品 国内视频| 日本免费一区二区三区高清不卡| 精品久久蜜臀av无| 1024香蕉在线观看| 国产熟女xx| 国产精品久久视频播放| 久久欧美精品欧美久久欧美| 高清在线国产一区| 国产一区二区三区在线臀色熟女| 小说图片视频综合网站| 国产日本99.免费观看| 国产主播在线观看一区二区| 真人做人爱边吃奶动态| 母亲3免费完整高清在线观看| 人妻夜夜爽99麻豆av| aaaaa片日本免费| 国产高清激情床上av| 精品国内亚洲2022精品成人| 一夜夜www| 国产一区二区三区视频了| 夜夜夜夜夜久久久久| 丰满人妻一区二区三区视频av | 99久久精品国产亚洲精品| 一进一出好大好爽视频| 91九色精品人成在线观看| 国产成人影院久久av| 人人妻人人澡欧美一区二区| www.熟女人妻精品国产| 视频区欧美日本亚洲| 黄色成人免费大全| 在线看三级毛片| 亚洲成人中文字幕在线播放| 夜夜躁狠狠躁天天躁| 久久精品国产亚洲av高清一级| 欧美三级亚洲精品| 亚洲第一欧美日韩一区二区三区| 老汉色av国产亚洲站长工具| 亚洲欧美日韩东京热| 别揉我奶头~嗯~啊~动态视频| 在线观看一区二区三区| 一级毛片高清免费大全| 18美女黄网站色大片免费观看| av天堂在线播放| 观看免费一级毛片| 免费观看人在逋| 色哟哟哟哟哟哟| 人妻久久中文字幕网| av有码第一页| 亚洲自偷自拍图片 自拍| 青草久久国产| 美女午夜性视频免费| 国产av麻豆久久久久久久| a级毛片在线看网站| 日本五十路高清| 日本一本二区三区精品| 亚洲七黄色美女视频| 午夜福利高清视频| 日韩欧美在线二视频| 中文字幕熟女人妻在线| 亚洲 欧美 日韩 在线 免费| 99久久综合精品五月天人人| 国产一区二区激情短视频| 黄色成人免费大全| e午夜精品久久久久久久| 99精品欧美一区二区三区四区| 亚洲国产精品合色在线| 黄色片一级片一级黄色片| 久久天堂一区二区三区四区| 国产免费男女视频| 国产av又大| 亚洲精品久久成人aⅴ小说| 99久久99久久久精品蜜桃| 青草久久国产| 在线观看一区二区三区| 亚洲国产欧美网| 毛片女人毛片| 午夜a级毛片| 亚洲国产日韩欧美精品在线观看 | 母亲3免费完整高清在线观看| 亚洲精品在线观看二区| 最新美女视频免费是黄的| 亚洲精品中文字幕一二三四区| 在线观看www视频免费| 免费在线观看成人毛片| 美女免费视频网站| 亚洲国产精品久久男人天堂| 国产主播在线观看一区二区| 久久国产精品人妻蜜桃| 免费电影在线观看免费观看| 久久精品国产综合久久久| 久久精品成人免费网站| 国产爱豆传媒在线观看 | 18禁观看日本| 老司机福利观看| www.999成人在线观看| 男男h啪啪无遮挡| 久久中文字幕人妻熟女| 欧美精品亚洲一区二区| 一本一本综合久久| av中文乱码字幕在线| 欧洲精品卡2卡3卡4卡5卡区|