• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scheduling Optimization of Space Object Observations for Radar

    2018-04-16 06:49:38XiongjunFuLipingWuChengyanZhangandMinXie

    Xiongjun Fu, Liping Wu, Chengyan Zhang and Min Xie

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    The orbital elements of space objects provide collision warning and can be used to adjust the launch window of satellites, space stations and spacecraft. The observation of low earth orbit (LEO) objects are mainly carried out using ground-based radars. The effectiveness of space observation radar can be reflected by the ability of new object discovery, observation efficiency, the accuracy of measurement and orbit determination, the quality of radar imaging, and the recognition rate. Specifically, the higher the number of space objects with determined parameters observed in the same time, the higher is the observation efficiency of radar.

    It turns out to be an optimization problem to improve the performance of space observation on the constraint of radar resources. There are many previous studies on radar resources management for multiple target detection. G. Van Keuk[1]and Yinfei Fu[2]studied task scheduling for ground-based phased array radar and wireless sensor networks respectively; to select the subset of jobs to be processed during the given planning period and determining the starting time and scan-off angle for each selected job, M.R. Taner[3]studied the problem of scheduling the searching, verification, and tracking tasks of a ground-based three-dimensional military surveillance radar. They scheduled tasks to realize radar resource optimization for common targets, while the issue of observing more targets to improve efficiency was not considered. For space objects, the priori orbital elements can be utilized for observation and tracking, and further optimization can be implemented by prearrangement of observation order. Zhongchao Xu[4]scheduled the space objects according to requirement and equipment constraint to improve the observation efficiency of facilities, without utilizing orbital elements. Hua Liang[5]made simulations on observation objects arrangement using prior orbital elements, while the actual constraints and realizability of facilities were not considered.

    Phased array radars with the characteristics of beam agility track multiple objects seamlessly, while the mechanical scan radar has a single beam, and its antenna servo system has the characteristic of inertia. Therefore, for a ground- based mechanical scanning radar, it is necessary to arrange multiple objects observation scheduling reasonably, considering the requirement of observation rate. While the observation scheduling is optimized, the number of observation objects can be maximized during a period of observation time, and a high precision performance for orbit determination can be achieved.

    This letter presents an observation scheduling algorithm for multiple objects based on semi-random search. The observation scheduling is screened by a designed fitness function. Additionally the connection time pair (CTP) and the tracks between two objects are determined for mechanical scanning radar. The multiple target observation is equivalent to long-time single target observation, so highly efficient observation is obtained. The scheme of scheduling optimization is shown in Fig.1.

    Fig.1 Scheme of scheduling optimization

    1 Optimization of the Initial Observation Scheduling Based on Semi-random Search

    The visibility of each object should be determined first for an object set to be observed.We define “observation session” as a period of continuous operating time of radar and “observation bin” as a fraction of time. Observation bin is the increment of time to assign observation tasks. Observation session can be uniformly divided into a series of successive observation bins.

    Referred to space object parameters provided by satellite situation report (SSR) and two-line element (TLE)[6], the visible object set can then be obtained by analyzing the constraints such as relative position between radar and objects, transmitting power and visual angle. Range, azimuth and elevation (RAE) of all visible objects can be calculated using the simplified general perturbations (SGP4) model[7], and then the visible objects in each observation bin can be obtained.

    Designate an object for each observation bin utilizing a random search method and considering the constraints on multiple objects observations. This random search with constraints is called a semi-random search. Initial observation scheduling can so be obtained by using semi-random search. The constraints here mainly refer to observation strategy. The factors include the observation rate (observingLrevolutions duringMdays), object priority and minimum or maximum observation time per revolution or arc. Observation rate is determined by the principle of orbital altitude stratification, importance of objects and the requirement of orbit determination accuracy or radar imaging resolutions[8]. Object priority is set according to observation requirement, the more important the objects are, the higher their priority.For mechanical scanning radar, the servo system constraints should also be considered, which include the elevation range of the antenna, its angular velocity range and angular acceleration range in azimuth and elevation.

    “Highest Priority First” and “Earliest Deadline First” are the two main strategies proposed to generate initial observation scheduling by this semi-random search method. “Highest Priority First” refers to the condition that low-priority objects can be selected only after all the high-priority objects are successfully observed. The priority of one object will be adjusted to minimum if its observation rate requirement has been met. Select one object randomly if several objects have the same priority. “Earliest Deadline First” specifies that the object whose observation time expires the earliest should be selected first. The so-called “expired time” is the last time the moment in which the object could be observed in the current revolution.

    For mechanical scanning radar, the strategy “Frontier First” should be considered.This refers to the condition that the next neighboring object which becomes present along the scan of antenna beam steering is selected. In this way the burden of antenna servo is reduced. If several objects are the frontier objects, we select one object randomly.

    Initial observation scheduling is generated by simulations.Fig. 2 shows the simulation results of 7 objects.

    Observation interval:17/12/2013 0:00:00-8:20:00; international number of objects: 01616,04331,22652,22692,23787,27560,27868,32955; time of observation bin is 10 s; number of bins forward search cross:10; time of mean observation span: 6h; priority of each object is 1; observation rateM,L(observeLtimes duringMdays)=(1,1).

    Fig.2 Schematic of observation scheduling generation

    In Fig. 2, ordinate object1…object7 are the objects mentioned above, and the black blocks represent that the objects are visual to radar.Ordinate observation scheduling 1 and observation scheduling 2 are the results of observation scheduling generation, and the object to be observed corresponding to each observation bin is arranged.

    2 Optimization of CTP Based on GA and Track Design for Mechanical Scanning

    For the mechanical scanning radar, further optimization is needed due to its inertia of the servo system. The realizability of connection between two objects should be paid attention to. CTP between two adjacent objects in observation order can be optimized using GA, and the tracks in the spare time are designed, following which the seamless observation for multiple targets can be achieved.

    The observation on TDM mode for multiple objects is shown in Fig.3.Tobis the minimum observation time of each object;Tspis the spare time without target observation;t′e,iis the end of observation zone of objecti,t′s,i+1is the beginning of observation zone of objecti+1. The end time of objecti, denoted asA, can be set anywhere witht′e,i. The start time of objecti+1, denoted asB, can be set anywhere withint′s,i+1. {A,B} is defined as TCP.Tiis the track of attenna beam from objectito objecti+1.

    Fig.3 Observation on TDM mode for multiple objects

    GA is an optimization algorithm imitating natural selection and genetic mechanism[9].Genetic algorithm with its evolution mutation strategy has strong global search capability[11]. It operates selection operator, crossover operator and mutation operator on initial population generated randomly. The optimal or local optimal solution can be obtained according to the appropriate fitness function. The selection operator combines the means of best individual preservation and fitness proportionate selection[10]. Crossover operator is a manner of two-point crossover, the cross position randomly generated must be located at the end area of an observation arc. Time increment is mutated by mutation operator at a certain probability to ensure its diversification.

    In this paper, GA is applied to optimize CTP by adjusting time increment.Ninitial observation scheduling lead toNobservation scheduling optimized. A final observation scheduling can be determined according to experimental requirement and the value of each element in fitness function. Some factors are required to be considered in the fitness function. The maximum of each factor is 1 for the convenience of weighting.

    2.1 Efficiency factors

    ② Object observation ratio:β=Nob/Nt, whereNobis the number of objects observed,Ntis the total number of objects during observation session.

    2.2 Performance factors

    ① The normalized variance of observation time for each arc:λ=1/(1+varw), where varw=var (Tarc) is the variance of observation time for each arc.

    Orbit accuracy requirements, image quality and image resolution requirements can be expressed by performance elements.

    2.3 Equipment consumption factor

    ① The normalized times of beam direction reentrant:ρ=Ma/Mm, whereMais the reentrant time of beam steering trend for observing another object,Mmis the maximum time.

    So the fitness function is

    (1)

    whereq1,q2,…,q6are the weighting coefficients and set by experience.

    For each new individual generated, it is verified that the constraints are satisfied in the genetic process. The optimization procedure of CTP using GA is shown in Fig.4.

    Fig.4 Optimization procedure of CTP

    For mechanical scanning radar, the observation scheduling could be used for multiple target seamless observation only if the azimuth and elevation information of beam in spare time are appended in. Therefore, after the final observation scheduling is determined, the tracks of antenna beam should be designed according to the constraints of the servo system. The track is expressed in Fig.3. The principles of kinematics should be obeyed here. Rotational angular velocity and acceleration should be as small as possible to get smoothed track when motion displacement and spare time are fixed.

    The entire scheduling process of multiple objects is completed when all the tracks of antenna beam steering are determined.Finally, the RAE time sequence comprising multiple objects can be obtained, and it can be used as the guidance for the radar observation.

    3 Outdoor Experiment and Performance Evaluation

    3.1 Overview of the outdoor experiment

    The outdoor experiment was carried out on December 17, 2013 using an S-band high-precision observation and measurement radar. This mechanical scanning radar is armed with a Cassegrain antenna and operated on data guidance mode in the experiment. The latest TLE and SSR are adopted.

    In the experiment, in order to keep the antenna from being damaged when tracking multiple objects automatically, some parameters value of servo system were reduced by 0.9 times, such as azimuth angular velocity/angular acceleration and elevation angular velocity/angular acceleration. The parameters of antenna servo system are shown in Tab.1.

    Tab.1 Parameters of antenna servo system

    The experiment was performed with number of objects which could be observed 559, observation session 08:00-10:00,minimum observation time per arc 30 s, observation time range per revolution [180,600] s, observation bin 30 s,observation rate {M,L}={2,2}, times of genetic iteration 200,species size 21,maximum ratio of optimal individual 0.92,mutation probability 0.005, the weighting coefficients in fitness function {q1,q2,q3,q4,q5,q6}={2,3,1,1,1,1}. Here, observation rate and the maximum ratio of optimal individual are set by engineering requirements for space objects observation;times of genetic iteration is determined by experiments, while the times of genetic iteration is over 200, the optimization results will not be better, considering time spent and optimization results, the times of genetic iteration is set 200; mutation probability is set by engineering experience; weighting coefficients are set by experience and engineering requirements, for example,q1is effective observation time ratio, the more important the objects are, theq1is bigger;q3is the average displacement of antenna steering in the spare time, considering the servo system,q3should not be taken too big, or the servo system will be damaged easily.

    3.2 Results of the experiment

    The effective observation time are 81.48 min within 120 min. 78 objects are expected to be observed in the optimized scheduling, and they were all observed successfully in the experiment. The number of times of antenna direction reentrantMais 52. As an example, the RAE time sequence of 3 objects observed in a 2 min interval is shown in Tab.2. And the statistics of scheduling results of outdoor experiments are shown in Tab.3.

    Tab.2 Scheduling results (08:00:00-10:00:00)

    3.3 Performance evaluation

    78 objects were observed within 120 min, which means the observation efficiency of this mechanical scanning radar is over 10 times higher than that of scanning radar before. The minimum observation time is 20 s and the minimum antenna latency time is 15 s, more than 30 objects can be observed within one hour. The effective tracking time ratio is close to 70%, which means the spare time is lower than one third. If the minimum observation time is 20 s, the maximum observation time is 60 s and the minimum antenna latency time is 15 s. 30 objects could be observed within 30 minutes, and the radar could observe one object in one minute.

    Tab.3 Statistics of scheduling results of outdoor experiments

    It is verified by more experiments that the expected performance can be obtained by adjusting the weighting factors of the fitness function and other parameters. However, the weighting factors of the fitness function can be optimized by using Greedy algorithm to make the fitness function achieve the maximum in the future.

    4 Conclusion

    A scheduling optimization algorithm for multi-target observation based on TDM is proposed using priori orbital information of objects. The optimized observation scheduling is obtained by a semi-random search and fitness function screening when using phased array radar. For a mechanical scanning radar, the CTP between objects is optimized via GA and the tracks of antenna beam in the spare time are designed additionally. The issue of scheduling optimization of space object observations by radar was validated during anoutdoor experiment. The experiment results showed that the observation efficiency of the mechanical scanning radar has improved significantly. An important observation here is that if the number of measured targets was big enough and the observation time of each object was shorter, the effective utilization of observation time would be higher. Different optimization results can be obtained by adjusting parameters (like the weighting of coefficients of the fitness function) for different demands such as orbit determination and imaging.

    [1] Van Keuk G, Blackman S S. On phased-array radar tracking and parameter control[J]. IEEE Trans Aerosp Electron Syst,1993,29(1):186-194.

    [2] Fu Yinfei, Ling Qing.Distributed sensor allocation for multi-target tracking in wireless sensor networks[J]. IEEE Trans Aerosp Electron Syst, 2012, 48(4):3538-3553.

    [3] Taner M R, Karasan O E. Scheduling beams with different priorities on a military surveillance radar[J]. IEEE Trans Aerosp Electron Syst, 2012,48(2):1725-1739.

    [4] Xu Zhongchao, Huang Yongxuan. A scheduling method for cataloging observation tasks based on greedy algorithm[J]. Journal of Spacecraft TT&C Technology, 2012, 1(1):89-94.(in Chinese)

    [5] Liang Hua, Niu Wei.Design and implementation of measurement resource scheduling for space object catalog[J].Journal of Spacecraft TT&C Technology, 2012, 31(1):84-88.(in Chinese)

    [6] Space-track. Two line element data [EB/OL].(2013-12-16). http:∥www.space-track.org.

    [7] Cho C H, Lee B S.NORAD TLE type orbit determination of LEO satellites using GPS navigation solutions[J].J Astron Space Sci, 2002, 19(3):197-206.

    [8] Li Yuanxin, Wu Bin. Study on determination of observation requirements in space objects catalog maintenance [J]. Journal of Spacecraft TT&C Technology, 2005, 24(1): 26-33.(in Chinese)

    [9] Capraro C T, Bradaric I, Capraro G T. Using genetic algorithms for radar waveform selection[C]∥IEEE Radar Conference, Rome, Italy,2008.

    [10] Arabas J, Bartnik L,Opara K. DMEA-an algorithm that combines differential mutation with the fitness proportionate selection[C]∥IEEE Symposium on Differential Evolution (SDE),Paris, France, 2011.

    [11] Wang Shoukun, Li Delong, Guo Junjie, et al. Robot stereo vision calibration method with genetic algorithm and particle swarm optimization [J]. Journal of Beijing Institute of Technology, 2013, 22(2): 213-220.

    免费女性裸体啪啪无遮挡网站| 一级毛片高清免费大全| 操美女的视频在线观看| 国产97色在线日韩免费| 精品久久蜜臀av无| 中文字幕色久视频| 女警被强在线播放| 免费在线观看黄色视频的| 国产亚洲欧美98| 久久精品国产99精品国产亚洲性色 | 亚洲成国产人片在线观看| 正在播放国产对白刺激| 丰满人妻熟妇乱又伦精品不卡| 亚洲色图综合在线观看| 人人妻人人添人人爽欧美一区卜| 脱女人内裤的视频| 老司机深夜福利视频在线观看| 国产亚洲av高清不卡| 99国产极品粉嫩在线观看| 国产成人系列免费观看| 18禁国产床啪视频网站| 久久99一区二区三区| 久9热在线精品视频| 中文字幕色久视频| 国产在线精品亚洲第一网站| 色尼玛亚洲综合影院| 91大片在线观看| 无限看片的www在线观看| 欧美亚洲日本最大视频资源| 婷婷精品国产亚洲av在线 | 欧美黄色淫秽网站| 国产aⅴ精品一区二区三区波| 好看av亚洲va欧美ⅴa在| 久久婷婷成人综合色麻豆| 国产在线观看jvid| 精品一区二区三卡| 男女床上黄色一级片免费看| 欧美在线一区亚洲| 久久九九热精品免费| 制服诱惑二区| 91麻豆av在线| 国产精品电影一区二区三区 | 欧美午夜高清在线| 99re6热这里在线精品视频| 亚洲欧美一区二区三区黑人| 久久精品91无色码中文字幕| 欧美精品人与动牲交sv欧美| 国产成人精品无人区| 老鸭窝网址在线观看| 亚洲av日韩在线播放| 欧美日韩亚洲综合一区二区三区_| 精品人妻熟女毛片av久久网站| 国产精品自产拍在线观看55亚洲 | 亚洲第一欧美日韩一区二区三区| 女人被狂操c到高潮| 欧美日韩成人在线一区二区| 亚洲五月天丁香| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区黑人| 黄色视频,在线免费观看| 国产亚洲欧美在线一区二区| 成在线人永久免费视频| 欧美亚洲 丝袜 人妻 在线| 国产亚洲欧美98| 怎么达到女性高潮| 在线观看免费高清a一片| 国产精品久久久人人做人人爽| 在线天堂中文资源库| 一级片免费观看大全| 夜夜夜夜夜久久久久| 窝窝影院91人妻| 曰老女人黄片| 精品电影一区二区在线| 欧美午夜高清在线| av有码第一页| 久久亚洲真实| 欧美一级毛片孕妇| 亚洲va日本ⅴa欧美va伊人久久| 涩涩av久久男人的天堂| 亚洲久久久国产精品| 中国美女看黄片| 大片电影免费在线观看免费| 一级毛片高清免费大全| 老汉色∧v一级毛片| 国产日韩欧美亚洲二区| 国产不卡av网站在线观看| 俄罗斯特黄特色一大片| 男人的好看免费观看在线视频 | 中文字幕人妻丝袜一区二区| 亚洲一码二码三码区别大吗| 久久久久视频综合| 亚洲色图综合在线观看| 亚洲欧美激情在线| 精品国产一区二区三区久久久樱花| 日韩熟女老妇一区二区性免费视频| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久久人人做人人爽| 女性生殖器流出的白浆| 夜夜爽天天搞| 精品无人区乱码1区二区| 欧美黄色淫秽网站| 久久国产精品人妻蜜桃| 搡老熟女国产l中国老女人| 国产精品99久久99久久久不卡| 欧美日韩黄片免| 丁香欧美五月| avwww免费| videosex国产| 国产精品久久视频播放| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 狠狠狠狠99中文字幕| 国产精品久久电影中文字幕 | 亚洲精品中文字幕一二三四区| 午夜久久久在线观看| 麻豆乱淫一区二区| 日韩熟女老妇一区二区性免费视频| 久久久久久亚洲精品国产蜜桃av| 黑人巨大精品欧美一区二区mp4| 亚洲av美国av| 夜夜夜夜夜久久久久| 欧美日韩av久久| 午夜免费观看网址| 免费在线观看亚洲国产| 水蜜桃什么品种好| 女人久久www免费人成看片| 亚洲免费av在线视频| 亚洲一区中文字幕在线| 一进一出好大好爽视频| 精品国产一区二区久久| 亚洲一区二区三区不卡视频| 亚洲精品久久成人aⅴ小说| 一区二区三区精品91| 啦啦啦视频在线资源免费观看| 亚洲全国av大片| 久久中文字幕人妻熟女| 国产亚洲欧美精品永久| 成人av一区二区三区在线看| 亚洲av日韩在线播放| 国产高清国产精品国产三级| 久久久久久人人人人人| 久久亚洲真实| 国产1区2区3区精品| 村上凉子中文字幕在线| 亚洲五月婷婷丁香| 亚洲自偷自拍图片 自拍| 午夜福利一区二区在线看| 欧美成狂野欧美在线观看| 热re99久久国产66热| 国产真人三级小视频在线观看| 久久精品成人免费网站| 窝窝影院91人妻| 涩涩av久久男人的天堂| 精品福利永久在线观看| 91老司机精品| av线在线观看网站| 最新的欧美精品一区二区| 免费一级毛片在线播放高清视频 | 欧美日韩黄片免| 国产精品自产拍在线观看55亚洲 | 亚洲精品粉嫩美女一区| 欧美另类亚洲清纯唯美| 亚洲国产欧美日韩在线播放| 国产精品久久久久久人妻精品电影| 国产精品一区二区免费欧美| 久久国产精品男人的天堂亚洲| 国产黄色免费在线视频| 欧美日韩国产mv在线观看视频| 国产蜜桃级精品一区二区三区 | 搡老岳熟女国产| 十八禁人妻一区二区| 啦啦啦在线免费观看视频4| 天天影视国产精品| 日韩有码中文字幕| 九色亚洲精品在线播放| 精品久久久久久久毛片微露脸| 校园春色视频在线观看| 日韩制服丝袜自拍偷拍| 最新的欧美精品一区二区| 国精品久久久久久国模美| 精品亚洲成a人片在线观看| 免费看十八禁软件| 国产成+人综合+亚洲专区| 一进一出好大好爽视频| 少妇的丰满在线观看| 国产精品亚洲一级av第二区| 国产精品自产拍在线观看55亚洲 | 成人免费观看视频高清| av天堂久久9| 99久久人妻综合| 亚洲av欧美aⅴ国产| 国产精品电影一区二区三区 | 黑人欧美特级aaaaaa片| 国产亚洲精品第一综合不卡| 久久香蕉激情| 又紧又爽又黄一区二区| 极品教师在线免费播放| 久久青草综合色| 精品久久久久久,| 国产欧美日韩精品亚洲av| 亚洲成a人片在线一区二区| 一级a爱视频在线免费观看| 国产91精品成人一区二区三区| 亚洲欧美激情综合另类| 女同久久另类99精品国产91| 久久人妻福利社区极品人妻图片| 精品国产乱子伦一区二区三区| 村上凉子中文字幕在线| 91国产中文字幕| av电影中文网址| 日韩欧美三级三区| 美女扒开内裤让男人捅视频| 日韩欧美国产一区二区入口| 后天国语完整版免费观看| 欧美性长视频在线观看| 国产亚洲欧美在线一区二区| 黄片播放在线免费| 久久亚洲精品不卡| 国产区一区二久久| 中文字幕制服av| 欧美精品人与动牲交sv欧美| 国产免费男女视频| 捣出白浆h1v1| 亚洲精品国产色婷婷电影| av天堂在线播放| 1024视频免费在线观看| 咕卡用的链子| 黄片小视频在线播放| 国产区一区二久久| 亚洲专区中文字幕在线| 又大又爽又粗| 又黄又爽又免费观看的视频| 一二三四社区在线视频社区8| 中出人妻视频一区二区| 十八禁高潮呻吟视频| 超色免费av| 超碰成人久久| 天天添夜夜摸| 制服人妻中文乱码| 免费黄频网站在线观看国产| 国产国语露脸激情在线看| 国产精品免费视频内射| а√天堂www在线а√下载 | 亚洲精品自拍成人| www日本在线高清视频| 亚洲精品国产精品久久久不卡| 国产激情久久老熟女| 欧美亚洲日本最大视频资源| 国产成人影院久久av| 搡老熟女国产l中国老女人| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 国产一区二区三区视频了| 精品免费久久久久久久清纯 | 午夜亚洲福利在线播放| 真人做人爱边吃奶动态| 欧美日本中文国产一区发布| 欧美大码av| 欧美精品高潮呻吟av久久| 在线观看免费日韩欧美大片| 一级黄色大片毛片| 久久久久久久久久久久大奶| 国产精品乱码一区二三区的特点 | 99热只有精品国产| 美女扒开内裤让男人捅视频| 在线观看一区二区三区激情| 亚洲欧美激情综合另类| 18禁观看日本| 国产精品偷伦视频观看了| 久久久久国产精品人妻aⅴ院 | 亚洲欧美精品综合一区二区三区| 男女免费视频国产| 美国免费a级毛片| 久久久水蜜桃国产精品网| 多毛熟女@视频| videos熟女内射| 精品熟女少妇八av免费久了| 激情视频va一区二区三区| 天天操日日干夜夜撸| 亚洲av成人一区二区三| 亚洲精品国产精品久久久不卡| 中文字幕最新亚洲高清| 一区福利在线观看| 婷婷丁香在线五月| 搡老岳熟女国产| 日本wwww免费看| 丰满饥渴人妻一区二区三| 满18在线观看网站| 欧美精品啪啪一区二区三区| 国产伦人伦偷精品视频| 精品久久久精品久久久| 大陆偷拍与自拍| 亚洲精品久久午夜乱码| 91精品三级在线观看| 国内久久婷婷六月综合欲色啪| 亚洲成人免费av在线播放| 99香蕉大伊视频| 午夜两性在线视频| 一边摸一边抽搐一进一小说 | 一区在线观看完整版| 国产精品亚洲一级av第二区| 一边摸一边抽搐一进一小说 | 一区在线观看完整版| 亚洲五月色婷婷综合| 18禁美女被吸乳视频| 精品高清国产在线一区| 亚洲av日韩精品久久久久久密| xxx96com| 深夜精品福利| 国产精品免费大片| 国产又色又爽无遮挡免费看| 久久久国产一区二区| 午夜福利视频在线观看免费| 国产亚洲欧美98| 亚洲 国产 在线| 男人操女人黄网站| 天堂俺去俺来也www色官网| 欧美精品人与动牲交sv欧美| 欧美不卡视频在线免费观看 | 精品欧美一区二区三区在线| 天天影视国产精品| 人妻久久中文字幕网| 色在线成人网| 久久久久视频综合| 国产又爽黄色视频| 大码成人一级视频| 亚洲成人免费av在线播放| 亚洲国产欧美一区二区综合| 91精品国产国语对白视频| 1024香蕉在线观看| 女人被狂操c到高潮| 建设人人有责人人尽责人人享有的| 最近最新免费中文字幕在线| av免费在线观看网站| 久久99一区二区三区| 亚洲自偷自拍图片 自拍| 精品国产一区二区三区久久久樱花| 真人做人爱边吃奶动态| 岛国毛片在线播放| 一级毛片精品| 国产免费现黄频在线看| 亚洲中文日韩欧美视频| 久久国产精品大桥未久av| 成人精品一区二区免费| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频| videosex国产| 在线观看舔阴道视频| 女性生殖器流出的白浆| 黑人操中国人逼视频| 国产精品一区二区在线观看99| 中文字幕av电影在线播放| 国产一区二区三区综合在线观看| 黄色毛片三级朝国网站| 成人亚洲精品一区在线观看| 欧美乱码精品一区二区三区| 性色av乱码一区二区三区2| 韩国av一区二区三区四区| 老司机影院毛片| 看黄色毛片网站| 女人久久www免费人成看片| 黄色毛片三级朝国网站| 日韩视频一区二区在线观看| 午夜日韩欧美国产| 天天添夜夜摸| 不卡av一区二区三区| 免费女性裸体啪啪无遮挡网站| 又黄又粗又硬又大视频| 久久久久久久精品吃奶| 亚洲专区国产一区二区| 十八禁人妻一区二区| 中文亚洲av片在线观看爽 | 丝瓜视频免费看黄片| 99热国产这里只有精品6| av不卡在线播放| а√天堂www在线а√下载 | 操出白浆在线播放| 亚洲 国产 在线| 国产精品秋霞免费鲁丝片| 男人舔女人的私密视频| 99热国产这里只有精品6| 亚洲 国产 在线| 国产麻豆69| 亚洲少妇的诱惑av| 777米奇影视久久| 精品一区二区三卡| 亚洲精品国产色婷婷电影| 久久精品国产清高在天天线| 黑人欧美特级aaaaaa片| 国产一区二区激情短视频| 国产1区2区3区精品| 人人妻人人澡人人爽人人夜夜| netflix在线观看网站| 国产精品av久久久久免费| 国产成+人综合+亚洲专区| 精品免费久久久久久久清纯 | 成人黄色视频免费在线看| 亚洲精品国产区一区二| 久99久视频精品免费| 999久久久国产精品视频| 日本wwww免费看| 男女午夜视频在线观看| av网站在线播放免费| 在线观看免费视频网站a站| 国内久久婷婷六月综合欲色啪| 一进一出好大好爽视频| 免费观看精品视频网站| 成人亚洲精品一区在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美激情高清一区二区三区| a级毛片黄视频| 欧美精品人与动牲交sv欧美| 丰满饥渴人妻一区二区三| 麻豆国产av国片精品| 999久久久国产精品视频| 精品一区二区三区四区五区乱码| 国产在线观看jvid| www.熟女人妻精品国产| 深夜精品福利| 精品卡一卡二卡四卡免费| 中文字幕另类日韩欧美亚洲嫩草| 国产乱人伦免费视频| 十八禁人妻一区二区| 婷婷成人精品国产| 日韩一卡2卡3卡4卡2021年| 免费黄频网站在线观看国产| 夫妻午夜视频| www.999成人在线观看| 日日夜夜操网爽| 免费高清在线观看日韩| 亚洲一区中文字幕在线| 久久精品亚洲av国产电影网| 嫩草影视91久久| e午夜精品久久久久久久| 美女午夜性视频免费| 多毛熟女@视频| 人妻一区二区av| 久久 成人 亚洲| 大陆偷拍与自拍| 757午夜福利合集在线观看| 啪啪无遮挡十八禁网站| 国产亚洲一区二区精品| 午夜老司机福利片| 日本欧美视频一区| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻熟女毛片av久久网站| 一级毛片女人18水好多| 国产又爽黄色视频| 国产精品亚洲av一区麻豆| 精品少妇一区二区三区视频日本电影| 中文字幕制服av| 十八禁人妻一区二区| 在线观看www视频免费| 成人手机av| 精品卡一卡二卡四卡免费| 日本欧美视频一区| 中文字幕人妻丝袜制服| 欧美精品av麻豆av| 免费黄频网站在线观看国产| 黄片大片在线免费观看| 精品国产国语对白av| 久久久精品免费免费高清| x7x7x7水蜜桃| 成人特级黄色片久久久久久久| 久久人妻福利社区极品人妻图片| 亚洲在线自拍视频| 丁香欧美五月| 免费不卡黄色视频| 亚洲三区欧美一区| 男女之事视频高清在线观看| 午夜91福利影院| 天天添夜夜摸| av免费在线观看网站| 成人黄色视频免费在线看| 亚洲少妇的诱惑av| av一本久久久久| 亚洲精品粉嫩美女一区| 欧美国产精品va在线观看不卡| 中国美女看黄片| 三上悠亚av全集在线观看| 可以免费在线观看a视频的电影网站| 黄色女人牲交| 少妇猛男粗大的猛烈进出视频| а√天堂www在线а√下载 | 一级片免费观看大全| 丝袜在线中文字幕| 久久草成人影院| 精品视频人人做人人爽| 十分钟在线观看高清视频www| 男女午夜视频在线观看| 免费观看a级毛片全部| 夫妻午夜视频| 天天躁日日躁夜夜躁夜夜| 91av网站免费观看| 手机成人av网站| 这个男人来自地球电影免费观看| 亚洲欧美日韩另类电影网站| 最近最新免费中文字幕在线| 9热在线视频观看99| 国产精品 国内视频| 亚洲中文字幕日韩| a在线观看视频网站| 久久婷婷成人综合色麻豆| 国产欧美日韩一区二区精品| 国产精品亚洲一级av第二区| 欧美精品一区二区免费开放| 一进一出抽搐gif免费好疼 | 一级作爱视频免费观看| 久久婷婷成人综合色麻豆| 成人手机av| 国产亚洲一区二区精品| 欧美乱妇无乱码| 天堂俺去俺来也www色官网| 国产欧美日韩一区二区精品| 黄色 视频免费看| 中文字幕人妻熟女乱码| 妹子高潮喷水视频| 中文欧美无线码| 欧美亚洲日本最大视频资源| 久久午夜亚洲精品久久| 亚洲精品中文字幕在线视频| 两性夫妻黄色片| 久久久久久人人人人人| 久久久久久亚洲精品国产蜜桃av| 国产主播在线观看一区二区| 最新美女视频免费是黄的| 亚洲少妇的诱惑av| 国产成人av教育| 三上悠亚av全集在线观看| 一进一出抽搐动态| 亚洲伊人色综图| 亚洲免费av在线视频| 亚洲伊人色综图| 国产97色在线日韩免费| 国产真人三级小视频在线观看| 多毛熟女@视频| 亚洲第一青青草原| 高清在线国产一区| 亚洲精品久久成人aⅴ小说| 久久国产精品人妻蜜桃| 国产午夜精品久久久久久| 美国免费a级毛片| 在线天堂中文资源库| 久久 成人 亚洲| 99精国产麻豆久久婷婷| 婷婷丁香在线五月| 国产野战对白在线观看| 首页视频小说图片口味搜索| 一二三四在线观看免费中文在| 国产熟女午夜一区二区三区| 黄色 视频免费看| x7x7x7水蜜桃| 中文字幕av电影在线播放| 在线观看免费视频日本深夜| 日韩有码中文字幕| 一a级毛片在线观看| 丁香六月欧美| 一级,二级,三级黄色视频| 乱人伦中国视频| 久久午夜综合久久蜜桃| 欧美激情高清一区二区三区| 亚洲精品国产区一区二| 高清av免费在线| 成人免费观看视频高清| 亚洲精品成人av观看孕妇| 国产成人免费观看mmmm| 99国产精品免费福利视频| 岛国在线观看网站| 18禁黄网站禁片午夜丰满| 久久精品熟女亚洲av麻豆精品| 国精品久久久久久国模美| a级毛片在线看网站| 日本五十路高清| 制服人妻中文乱码| 精品免费久久久久久久清纯 | 日韩有码中文字幕| 欧美午夜高清在线| 欧美人与性动交α欧美软件| 午夜精品久久久久久毛片777| 国产精品香港三级国产av潘金莲| 啦啦啦视频在线资源免费观看| 色精品久久人妻99蜜桃| 91成人精品电影| 国产成人av激情在线播放| 99国产精品一区二区蜜桃av | 校园春色视频在线观看| 91成年电影在线观看| 一区二区三区激情视频| av网站在线播放免费| 90打野战视频偷拍视频| 国产亚洲精品久久久久久毛片 | 黄片小视频在线播放| 欧美国产精品va在线观看不卡| 国产极品粉嫩免费观看在线| 午夜福利乱码中文字幕| 搡老熟女国产l中国老女人| 男人操女人黄网站| 久热这里只有精品99| 亚洲一区二区三区不卡视频| 久9热在线精品视频| 国产蜜桃级精品一区二区三区 | 99riav亚洲国产免费| 亚洲第一av免费看| 中文字幕高清在线视频| 青草久久国产| 午夜福利欧美成人| 黑人操中国人逼视频| 后天国语完整版免费观看| 人妻 亚洲 视频| 好看av亚洲va欧美ⅴa在| 欧美人与性动交α欧美精品济南到| 国产av一区二区精品久久| 国产免费男女视频| 视频区图区小说|