• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development and validation of InDel markers for identification of QTL underlying flowering time in soybean

    2018-04-12 03:33:50JilinWngLingpingKongKnchoYuFenggeZhngXinyiShiYnpingWngHiyngNnXiohuiZhoSijiLuDongCoXiomingLiChoFngFeifeiWngTongSuShichenLiXiohuiYunBohuiLiuFnjingKong
    The Crop Journal 2018年2期
    關(guān)鍵詞:冬令潛藏陽氣

    Jilin Wng,Lingping Kong,Kncho Yu,Fengge Zhng,Xinyi Shi,Ynping Wng,Hiyng Nn,Xiohui Zho,b,Siji Lu,b,Dong Co,Xioming Li,e,Cho Fng,e,Feifei Wng,e,Tong Su,e,Shichen Li,e,Xiohui Yun,*,Bohui Liu,b,**,Fnjing Kong,b,**

    a The Key Laboratory of Soybean Molecular Design Breeding,Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Harbin 150081,Heilongjiang,China

    b School of Life Sciences,Guangzhou University,Guangzhou 510006,Guangdong,China

    c Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences,Qiqihar 161006,Heilongjiang,China

    d Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences,Mudanjiang 157041,Heilongjiang,China

    e University of Chinese Academy of Sciences,Beijing 100049,China

    f College of Agriculture,Northeast Agricultural University,Harbin 150030,Heilongjiang,China

    1.Introduction

    A functional gene can be identified via forward and reverse genetics strategies[7,8].Positional cloning is widely used as a forward genetics approach to isolate genes in different organisms[9],and its utility can be fully exploited in modern molecular plant breeding systems,such as corn and soybean,when markers linked to genes of interest are discovered[10].The principle of positional cloning is to systematically narrow down the genetic interval containing a causal mutation by sequentially excluding all other regions in the genome[11].All rely on the development of highly dense genetic markers that are polymorphic between the accessions used for generating the mapping population(s)to provide adequate mapping resolution.This dependence is a major limiting factor for the rate of mapping progress.

    With the decreasing cost of next-generation sequencing,there have been several proposals to exploit single-nucleotide polymorphisms(SNPs)and Insertion/Deletions(InDels)for genetic mapping with high-density markers.In contrast to SNPs,InDel polymorphisms,another form of natural genetic variation,have received relatively little attention.Mechanisms such as transposable elements,slippage in simple sequence replication,and unequal crossover events can result in the formation of InDels[12].They can be converted to a user-friendly marker type,show high variation and codominant inheritance,and are relatively abundant and uniformly distributed throughout the genome[13,14].InDel markers are PCR-based and readily genotyped by fragment length polymorphism with minimal laboratory equipment.Recently InDel markers have been widely applied for genotyping,genetic diversity analysis,QTL mapping,map-based cloning,and even marker-assisted selection in Arabidopsis,rice,wheat,turnip,sunflower,pepper,sesame,cotton,and citrus[14–27].However,InDel markers have seldom been identified and used in soybean.A recent study used 73,327 InDels in six soybean cultivars to build a soybean barcode system for comparing data from different sources[28].In another study,165 validated InDel markers were used to develop an InDel-based linkage map for a mapping population between Hedou 12 and Williams 82[29].By exploiting the reference genome sequence of soybean and the large amount of intensive resequencing data available in public databases[30–35],it is now possible to detect genome-wide InDel polymorphisms amongst different accessions using whole-genome resequencing to guide rapid and efficient development of InDel markers for high-resolution genetic analysis.

    In this study,we attempted to develop InDel markers using genomic resequencing data using a series of bioinformatic approaches.In total,these methods yielded 12,619 new markers that were variously polymorphic amongst 56 soybean accessions.An InDel-based genetic map of soybean was constructed with 300 polymorphic InDel markers.QTL analysis was performed to identify genomic regions associated with flowering time.One major QTL(qDTF4)was identified in 2015 and confirmed in 2016.The InDel markers,genetic map,and QTL identified in this study will lay a foundation for the genetic/QTL analysis and isolation of genes underlying variation in flowering time and provide useful information for MAS breeding in soybean.

    2.Materials and methods

    2.1.Plant materials and trait evaluation

    The F7:8seeds for the mapping populations were grown in walk-in plant growth chambers at 22°C,65%relative humidity,and long-day(LD)photoperiod(16 h light/8 h dark)in October 2015 and in the field in Harbin(45°43′N,126°45′E)and Mudanjiang(44°36′N,129°35′E),China in May 2016.

    Days to flowering were recorded at the R1 stage(days from emergence to first open flower appearing on 50%of plants).For chamber experiments,seeds from each line were sown in pots.After germination,the seedlings were thinned until each pot contained five uniform plants.Populations were sown in the field with a single seed every 20 cM in 5-m rows spaced 60 cM apart and 25 seeds per line.All trials received standard cultural practices to control insects and weeds.

    2.2.Mapping populations and sequence data sets

    The BA population,derived from a cross between Mufu12-604×HB-2 and consisting of 156 F2genotypes,was used to test the newly developed markers and construct a high-density InDel linkage map.The DW population(144 RILs),derived from a cross between Dongnong 50(early-flowering in LD photoperiod)and Williams 82(late-flowering in LD photoperiod),was used to evaluate the InDel markers for QTL mapping.

    Fifty six accessions,including 29 from three recent research papers and 27 from this study,were used for InDel polymorphism validation(Table 1).Young leaves from 27 accessions were collected three weeks after planting in growth chambers and separately quick-frozen in liquid nitrogen.Total DNA was extracted by the improved cetyltrimethylammonium bromide(CTAB)method[36].A sequencing library was constructed with at least 6 μg of genomic DNA following the manufacturer's instructions(Illumina Inc.,San Diego,CA).Paired-end sequencing libraries with an insert size of approximately 500 bp were sequenced on an Illumina HiSeq 2000 sequencer.

    Table 1–Soybean accessions used in the study.

    2.3.InDel detection and marker development

    The process used to detect InDel sites involved three steps.(i)Alignment of paired-end (PE) short reads. BWA(Burrows-Wheeler Aligner)software[37]was used to align paired reads to the reference genome with default parameters and Picard(http://broadinstitute.github.io/picard/)to mark duplicate reads.(ii)Detection of InDels.Five software tools:Samtools[38],GATK Unique Genotyper[39],Varscan[40],Pindel[41],and Soapindel[42],were used to identify InDels 5–50 bp in length.(iii)Optimization of InDels.A support vector machine(SVM)filter was trained on simulated data using a library for support vector machines(LIBSVM)[43]and the InDels were filtered with the SVM filter.The InDels with high polymorphism(MAF>0.4)among 56 individuals were chosen as molecular markers.

    此時(shí)養(yǎng)生應(yīng)遵循陽氣潛藏的規(guī)律,以“養(yǎng)藏”為根本,適當(dāng)進(jìn)補(bǔ),所謂“立冬補(bǔ)一冬”。冬令進(jìn)補(bǔ),要注意一個(gè)“藏”字,達(dá)到斂陰護(hù)陽、養(yǎng)精蓄銳的目的。冬補(bǔ)以燉補(bǔ)為佳,燉補(bǔ)制作時(shí)間長,有利于營養(yǎng)消化吸

    Primer 3 software[44]was employed to identify primers for each InDel site with the following parameters:predicted products ranged from 100 to 300 bp;the length of primers was limited to 18–24 bp with an optimum size of 20 bp;the annealing temperature was restricted to 57–62 °C;the GC content was set to 35%,50%,and 65%as the minimum,optimum,and maximum,respectively.Only primers with one hit in the genome assembly were retained.

    2.4.Nomenclature

    In order to provide the user with valuable information on marker distribution,the markers were named using the format IDNNXXXX,where ID represents InDel,NN the chromosome number(01–20),and the Xs the ordered number of each marker on its chromosome.For example,InDel marker ID06006 is the sixth marker on chromosome Gm06.

    2.5.Screening and genotyping of InDel markers

    Total genomic DNA was extracted from young leaves or seed flour of individual samples using the improved CTAB method.PCR amplification was performed in a 10 μL reaction consisting of a final concentration of 1×Easy Taq PCR SuperMix for PAGE(TransBionovo Co.,Ltd.,Beijing,China),0.2 μmol L?1forward/reverse primers,and approximately 30–50 ng of genomic DNA as a template.The amplification protocol comprised an initial denaturation for 2 min at 94°C,35 cycles of denaturation for 30 s at 94°C,annealing for 30 s at 56 °C,and extension for 30 s at 72 °C,followed by a final extension for 5 min at 72°C.PCR products were resolved by 12%SDS-polyacrylamide gel electrophoresis.The gels were stained with ethidium bromide,and the bands were visualized and photographed under ultraviolet light.

    2.6.Construction of a linkage map and QTL analysis of flowering time

    The F2population,BA,was used to evaluate the utility of InDel makers for mapping.JoinMap 4.0[45]was used to build the genetic map with 347 markers that were polymorphic between the two parents.The groups and orders of segregated markers were determined on the basis of an LOD(logarithm of the odds ratio for linkage)score of≥7.0 and a minimum LOD score of 1.0,with the threshold of 0.4 in each LG.Markers were tested for deviation from expected Mendelian segregation using a chi-squared test and sorted on the basis of the test(P<0.05).Both inclusive composite interval mapping(ICIM)and multiple-QTL mapping(MQM)were initially applied to detect QTL(LOD>2.0)for flowering time,using QTL IciMapping 4.0[46]and MapQTL 5[47],respectively.

    3.Results

    3.1.InDel identification and marker development in 56 soybean accessions

    Many accurate strategies with corresponding cost and throughput have been developed to detect SNPs as new polymorphic markers for the success of a map-based cloning project.However,detecting InDels is a more challenging task and requires substantial bioinformatic analysis.Several factors affect the discovery of InDels.The phylogenetic relationship between the genotypes used for InDel discovery is important.In this study,based on the alignment of the sequencing reads to a reference genome,17,613 InDel sites were identified among 56 soybean accessions including nine wild soybeans,four landraces,and 43 cultivars from many countries(Table 1).

    The InDel sites were filtered by size and those with a size of 5–50 bp were retained.In total,12,619 primer pairs were obtained with a dense distribution across each of the 20 soybean chromosomes(Table S1).The frequency of InDel markers varied across the chromosomes,falling within the range of approximately 275–1207 markers per chromosome(Table 2).Based on this distribution of InDel markers,it was possible to construct high-density genetic maps and select InDels within specific regions for fine mapping.

    To evaluate the performance of the InDel markers,1000 random markers were tested by PCR with Williams 82 as the template.A total of 930 markers(93%)generated single and clear bands as expected,and only 70 markers(7%)either yielded no amplification product or were difficult to score.We next examined the distribution of the 12,619 InDels relative to genes of soybean and found that 429(3.4%)were located within the exons of annotated genes,where gene function may be expected to be influenced.Of these,135(1.1%)were non-3-nucleotide InDels,which were predicted to cause frameshift mutations.This finding indicates that the developed InDel markers are useful for identifying the genetic composition of soybean and provide a valuable source of allelic diversity for genetic and molecular dissection of traits.

    3.2.Genetic map construction

    The developed InDel markers should be useful for genetic map construction because there are on average about 630 markers on each chromosome.We used a F2mapping population to illustrate their application to linkage analysis.The F2population consisted of 156 progeny derived from the cross Mufu 12-604×HB-2,which were not included in the 56 soybean accessions.A random subset of 2841 primer pairs were chosen to identify polymorphism between the parental lines,and 347(12.21%)polymorphic markers were validated.This finding shows that these InDel markers have universal applicability of performance and application,and can be expanded to all soybean germplasm,although these InDel markers were designed to capture the variation within 56 soybean accessions.

    A total of 347 polymorphic markers were scored in the genotype analysis of 156 progeny in the BA F2population,with each primer pair yielding polymorphic bands at a single locus.After exclusion of 47 unlinked markers,300 marker loci were grouped into 20 LGs,which matched the 20 consensus LGs.Finally,a genetic map(Fig.1),designated as the BA map,was constructed with 20 LGs covering a total genetic distance of 2347.30 cM with an average density of one marker for every 7.82 cM(Table 2).The number of mapped markers per LG ranged from 10(H and D2)to 23(A2)with an average of 15 markers.The largest and smallest genetic distances between adjacent markers were 52.3 cM and 0.1 cM,respectively.Because of low marker density(Fig.2)and infrequent recombination compared with distal regions,our map did not cover all centromeric blocks,resulting in coverage of only a portion of some chromosomes(N,C2,M,O,H,and F)or of two clusters of markers,one from each arm(K and B1)in the F2mapping study.Six marker orders(N,A1,M,B2,and E)in our genetic map that were in conflict with the physical map could be due to sequence assembly errors,inversions,and segregation distortion.

    Table 2–Statistics of the BA map based on InDel markers.

    3.3.QTL analysis of flowering time

    The DW population(144 RILs)originated from a cross between the Chinese cultivar Dongnong 50 and the American cultivar Williams 82 and was used to evaluate the InDelmarkers for QTL mapping.The F7:8seeds were grown in walk-in plant growth chambers in October 2015.A total of 4 QTL,including one major(qDTF4)and three minor QTL(qDTF20,qDTF13,and qDTF12),were detected on four chromosomes using either ICIM or MQM.These QTL explained from 6.0%to 11.3%of phenotypic variation(PEV),with LOD scores ranging from 2.09 to 2.93(Table 3).

    To confirm the QTL results,the F7:9seeds were grown in the field in Harbin and Mudanjiang on May 2016.The major QTL,which was assumed to be identical to qDTF4,was repeatedly identified by both ICIM and MQM in two environments.This result showed that the effect of qDTF4 was little affected by the environment and was consistent with the characterization of high heritability of flowering time.In addition,another minor QTL(qDTF11)was mapped on chromosome 11,and explained 6.5%and 9.4%of the phenotypic variation,with LOD scores 2.58 and 3.31,by ICIM and MQM,respectively(Table 3).

    4.Discussion

    Genetic diversity in soybean as in other crops has decreased during domestication and improvement[35].The phylogenetic relationship between the genotypes used for InDel discovery is important.In this study,we collected 56 soybean accessions from several regions around the world,including nine wild soybeans,four landraces,and 43 cultivars.The germplasm from wild soybeans and landraces would therefore be useful in broadening the genetic basis and the detection of InDels.This report presents an optimized algorithm with no special requirements for the number of accessions and InDel detection software tools.Additional software can be added to this InDel detection procedure to further improve the performance of the proposed algorithms.

    Fig.1–Genetic linkage map of soybean constructed with InDel markers.Genetic positions and marker names are indicated on the left and right side of each chromosome,respectively.

    InDels identification has become routine with the abundance of next-generation sequence data.The InDel markers developed in this study could be widely used in genotyping with minimum lab equipment and PCR options.The potential utility of InDel markers in multiplex PCR could reduce the cost of genotyping by reducing the quantity of reagents and DNA in PCR reactions.Furthermore,this strategy is efficient when hundreds of markers are screened but DNA availability is limited.Our InDel markers closely match many of the criteria for multiplex PCR.The critical parameters of the primers in multiplex PCR should be 18–34 bp or more in length,GC content of 35%–60%,and annealing at 55–58 °C.In addition,the primer length should be up to 28–30 bp and the annealing temperature should be increased for reducing non-specific PCR products.However,owing to the finite polymerase and DNA resources,many specific loci strongly suppress non-specific amplification.Thus,54°C is the appropriate temperature for amplifying multiple loci at the same time[48].All primers reported here were designed with a length of 18–24 bp and GC content of 35%–65%and were amplified at 56 °C,indicating the potential utility of these markers for multiplex PCR.

    Mapping QTL requires a genetic map covered with a high density of polymorphic markers.However,although reduction in the cost of next-generation sequencing technologies will allow the sequencing of numerous soybean accessions,the specialized expertise and the skilled applications of bioinformatics analysis will become a rate-limiting step in uncovering the molecular basis of natural variation.To avoid map-based cloning,a tedious task beset with complications,several recent papers have reported workflows for next-generation sequencing-based strategies for mutation mapping.The approach we advocate here is using resequenced genomes to rapidly facilitate InDel marker design for application to conventional mapping.Interestingly,Dongnong 50 and Williams 82 carry the same genotype(e1-as/E3/E4)for known major maturity loci,but a large difference of 30 days in R1 between the two cultivars was observed under long-day conditions.Thus,some new genes may be involved in control of flowering time and be strongly associated with photoperiod response.The main-effect QTL(qDTF4)was located in the same region as the E8 locus[49,50]and contained candidate genes E1-like-a and E1-like-b,two E1 homologs,which function similarly to E1 in adjusting flowering time in soybean[51].The frequencies of InDel markers developed in this study varied over chromosomes,falling within the range of 275–1207 markers per chromosome,indicating that it was possible to construct high-density genetic maps and select InDels within specific regions for fine mapping.

    Fig.2–Physical distribution of 12,619 InDel markers across 20 chromosomes of soybean.The x axis shows the chromosome length in Mbp and the y axis the frequency of InDel markers.

    Table 3–QTL of flowering time identified by two mapping methods.

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2017.08.001.

    This work was supported by National Natural Science Foundation of China(31430065,31571686,31371643,31071445),National Key Research and Development Program(2016YFD0100401),“Strategic Priority Research Program”of the Chinese Academy of Sciences(XDA08030108),the Open Foundation of the Key Laboratory of Soybean Molecular Design Breeding of Chinese Academy of Sciences,“One-hundred Talents”Startup Funds from Chinese Academy of Sciences,Scientific Research Foundation for Returned Chinese Scholars of Heilongjiang Province,China(LC201417),and the Science Foundation for Creative Research Talents of Harbin Science and Technology Bureau,China(2014RFQYJ046).

    [1]R.G.Palmer,T.C.Kilen,Qualitative genetics and cytogenetics,in:J.R.Wilcox(Ed.),Soybeans:Improvement,Production,and Uses,Agronomy Monographs,2nd Edition,No.16,American Society of Agronomy,Crop Science Society of America,Soil Science Society of America, Madison, Wisconsin, USA 1987,pp.135–209.

    [2]P.Keim,B.W.Diers,T.C.Olson,R.C.Shoemaker,RELP mapping in soybean:association between marker loci and variation in quantitative traits,Genetics 126(1990)735–742.

    [3]J.G.K.Williams,A.R.Kubelik,K.J.Livak,J.A.Rafalski,S.V.Tingey,DNA polymorphisms amplified by arbitrary primers are useful as genetic markers,Nucleic Acids Res.18(1990)6531–6535.

    [4]M.S.Akkaya,A.A.Bhagwat,P.B.Cregan,Length polymorphisms of simple sequence repeat DNA in soybean,Genetics 132(1992)1131–1139.

    [5]M.S.Akkaya,R.C.Shoemaker,J.E.Specht,A.A.Bhagwat,P.B.Cregan,Integration of simple sequence repeat DNA markers into a soybean linkage map,Crop Sci.35(1995)1439–1445.

    [6]Q.J.Song,G.F.Jia,Y.L.Zhu,D.Grant,R.T.Nelson,E.Y.Hwang,D.L.Hyten,P.B.Cregan,Abundance of SSR motifs and development of candidate polymorphic SSR markers(BARCSOYSSR_1.0)in soybean,Crop Sci.50(2010)1950–1960.

    [7]J.M.Alonso,J.R.Ecker,Moving forward in reverse:genetic technologies to enable genome-wide phenomic screens in Arabidopsis,Nat.Rev.Genet.7(2006)524–536.

    [8]C.Alonso-Blanco,M.G.Aarts,L.Bentsink,J.J.Keurentjes,M.Reymond,D.Vreugdenhil,M.Koornneef,What has natural variation taught us about plant development,physiology,and adaptation?Plant Cell 21(2009)1877–1896.

    [9]X.F.Chi,X.Y.Lou,Q.Y.Shu,Progressive fine mapping in experimental populations:an improved strategy toward positional cloning,J.Theor.Biol.253(2008)817–823.

    [10]H.A,Yang,Y.Tao,Z.Q.Zheng,C.D.Li,M.W.Sweetingham,J.G.Howieson,Application of next-generation sequencing for rapid marker development in molecular plant breeding:a case study on anthracnose disease resistance in Lupinus angustifolius L,BMC Genomics 13(2012)318.

    [11]W.Lukowitz,C.S.Gillmor,W.R.Scheible,Positional cloning in Arabidopsis.Why it feels good to have a genome initiative working for you,Plant Physiol.123(2000)795–805.

    [12]R.J.Britten,L.Rowen,J.Williams,R.A.Cameron,Majority of divergence between closely related DNA samples is due to indels,Proc.Natl.Acad.Sci.U.S.A.100(2003)4661–4665.

    [13]R.E.Mills,C.T.Luttig,C.E.Larkins,A.Beauchamp,C.Tsui,W.S.Pittard,S.E.Devine,An initial map of insertion and deletion(INDEL)variation in the human genome,Genome Res.16(2006)1182–1190.

    [14]D.I.Pacurar,M.L.Pacurar,N.Street,J.D.Bussell,T.I.Pop,L.Gutierrez,C.Bellini,A collection of INDEL markers for mapbased cloning in seven Arabidopsis accessions,J.Exp.Bot.63(2012)2491–2501.

    [15]X.Hou,L.Li,Z.Peng,B.Wei,S.Tang,M.Ding,J.Liu,F.Zhang,Y.Zhao,H.Gu,L.J.Qu,A platform of high-density INDEL/CAPS markers for map-based cloning in Arabidopsis,Plant J.63(2010)880–888.

    [16]K.Hayashi,H.Yoshida,I.Ashikawa,Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes,Theor.Appl.Genet.113(2006)251–260.

    [17]P.Liu,X.X.Cai,B.R.Lu,Single-seeded InDel fingerprints in rice:an effective tool for indica-japonica rice classification and evolutionary studies,J.Syst.Evol.50(2012)1–11.

    [18]H.Raman,R.Raman,R.Wood,P.Martin,Repetitive indel markers within the ALMT1 gene conditioning aluminium tolerance in wheat(Triticum aestivum L.),Mol.Breed.18(2006)171–183.

    [19]B.Liu,Y.Wang,W.Zhai,J.Deng,H.Wang,Y.Cui,F.Cheng,X.W.Wang,J.Wu,Development of InDel markers for Brassica rapa based on whole-genome re-sequencing,Theor.Appl.Genet.126(2013)231–239.

    [20]H.H.Lv,L.M.Yang,J.G.Kang,Q.B.Wang,X.W.Wang,Z.Y.Fang,Y.M.Liu,M.Zhuang,Y.Y.Zhang,Y.Lin,Y.H.Yang,B.Y.Xie,B.Liu,J.S.Liu,Development of InDel markers linked to Fusarium wilt resistance in cabbage,Mol.Breed.32(2013)961–967.

    [21]A.Heesacker,V.K.Kishore,W.X.Gao,S.X.Tang,J.M.Kolkman,A.Gingle,M.Matvienko,A.Kozik,R.M.Michelmore,Z.Lai,L.H.Rieseberg,S.J.Knapp,SSRs and INDELs mined from the sunflower EST database:abundance,polymorphisms,and cross-taxa utility,Theor.Appl.Genet.117(2008)1021–1029.

    [22]S.Tan,J.W.Cheng,L.Zhang,C.Qin,D.G.Nong,W.P.Li,X.Tang,Z.M.Wu,K.L.Hu,Construction of an interspecific genetic map based on InDel and SSR for mapping the QTLs affecting the initiation of flower primordia in pepper(Capsicum spp.),PLoS One 10(2015),e0119389..

    [23]W.P.Li,J.W.Cheng,Z.M.Wu,C.Qin,S.Tan,X.Tang,J.J.Cui,L.Zhang,K.L.Hu,An InDel-based linkage map of hot pepper(Capsicum annuum),Mol.Breed.35(2015)32.

    [24]K.Wu,M.M.Yang,H.Y.Liu,Y.Tao,J.Mei,Y.Z.Zhao,Genetic analysis and molecular characterization of Chinese sesame(Sesamum indicum L.)cultivars using insertion-deletion(InDel)and simple sequence repeat(SSR)markers,BMC Genet.15(2014)35.

    [25]X.M.Li,W.H.Gao,H.L.Guo,X.L.Zhang,D.D.Fang,Z.X.Lin,Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping,BMC Genomics 15(2014)1046.

    [26]F.Ollitrault,J.Terol,A.A.Martin,J.A.Pina,L.Navarro,M.Talon,P.Ollitrault,Development of indel markers from Citrus clementina(Rutaceae)BAC-end sequences and interspecific transferability in Citrus,Am.J.Bot.99(2012)e268–e273.

    [27]A.Garcia-Lor,F.Luro,L.Navarro,P.Ollitrault,Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity:a perspective for genetic association studies,Mol.Gen.Genomics.287(2012)77–94.

    [28]H.B.Sohn,S.J.Kim,T.Y.Hwang,H.M.Park,Y.Y.Lee,K.Markkandan,D.Lee,S.Lee,S.Y.Hong,Y.H.Song,B.C.Koo,Y.H.Kim,Barcode system for genetic identification of soybean[Glycine max(L.)Merrill]cultivars using InDel markers specific to dense variation blocks,Front.Plant Sci.8(2017)520.

    [29]X.F.Song,H.C.Wei,W.Cheng,S.X.Yang,Y.X.Zhao,X.Li,D.Luo,H.Zhang,X.Z.Feng,Development of INDEL markers for genetic mapping based on whole genome resequencing in soybean,G3-Genes Genomes Genet.5(2015)2793–2799.

    [30]J.Schmutz,S.B.Cannon,J.Schlueter,J.X.Ma,T.Mitros,W.Nelson,D.L.Hyten,Q.J.Song,J.J.Thelen,J.L.Cheng,D.Xu,U.Hellsten,G.D.May,Y.Yu,T.Sakurai,T.Umezawa,M.K.Bhattacharyya,D.Sandhu,B.Valliyodan,E.Lindquist,M.Peto,D.Grant,S.Q.Shu,D.Goodstein,K.Barry,M.Futrell-Griggs,B.Abernathy,J.C.Du,Z.X.Tian,L.C.Zhu,N.Gill,T.Joshi,M.Libault,A.Sethuraman,X.C.Zhang,K.Shinozaki,H.T.Nguyen,R.A.Wing,P.Cregan,J.E.Specht,J.Grimwood,D.Rokhsar,G.Stacey,R.C.Shoemaker,S.A.Jackson,Genome sequence of the palaeopolyploid soybean,Nature 463(2010)178–183.

    [31]M.Y.Kim,S.Lee,K.Van,T.H.Kim,S.C.Jeong,I.Y.Choi,D.S.Kim,Y.S.Lee,D.Park,J.Ma,W.Y.Kim,B.C.Kim,S.Park,K.A.Lee,D.H.Kim,K.H.Kim,J.H.Shin,Y.E.Jang,K.D.Kim,W.X.Liu,T.Chaisan,Y.J.Kang,Y.H.Lee,K.H.Kim,J.K.Moon,J.Schmutz,S.A.Jackson,J.Bhak,S.H.Lee,Whole-genome sequencing and intensive analysis of the undomesticated soybean(Glycine soja Sieb.and Zucc.)genome,Proc.Natl.Acad.Sci.U.S.A.107(2010)22032–22037.

    [32]H.M.Lam,X.Xu,X.Liu,W.B.Chen,G.H.Yang,F.L.Wong,M.W.Li,W.M.He,N.Qin,B.Wang,J.Li,M.Jian,J.Wang,G.H.Shao,J.Wang,S.S.Sun,G.Y.Zhang,Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection,Nat.Genet.42(2010)1053–1059.

    [33]Y.H.Kim,H.M.Park,T.Y.Hwang,S.K.Lee,M.S.Choi,S.Jho,S.Hwang,H.M.Kim,D.Lee,B.C.Kim,C.P.Hong,Y.S.Cho,H.Kim,K.H.Jeong,M.J.Seo,H.T.Yun,S.L.Kim,Y.U.Kwon,W.H.Kim,H.K.Chun,S.J.Lim,Y.A.Shin,I.Y.Choi,Y.S.Kim,H.S.Yoon,S.H.Lee,S.Lee,Variation block-based genomics method for crop plants,BMC Genomics 15(2014)477.

    [34]W.H.Chung,N.Jeong,J.Kim,W.K.Lee,Y.G.Lee,S.H.Lee,W.Yoon,J.H.Kim,I.Y.Choi,H.K.Choi,J.K.Moon,N.Kim,S.C.Jeong,Population structure and domestication revealed by high-depth resequencing of Korean cultivated and wild soybean genomes,DNA Res.21(2014)153–167.

    [35]Z.K.Zhou,Y.Jiang,Z.Wang,Z.H.Gou,J.Lyu,W.Y.Li,Y.J.Yu,L.P.Shu,Y.J.Zhao,Y.M.Ma,C.Fang,Y.T.Shen,T.F.Liu,C.C.Li,Q.Li,M.Wu,M.Wang,Y.S.Wu,Y.Dong,W.T.Wan,X.Wang,Z.L.Ding,Y.D.Gao,H.Xiang,B.G.Zhu,S.H.Lee,W.Wang,Z.X.Tian,Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean,Nat.Biotechnol.33(2015)408–414.

    [36]M.Murray,W.F.Thompson,Rapid isolation of high molecular weight plant DNA,Nucleic Acids Res.8(1980)4321–4326.

    [37]H.Li,R.Durbin,Fast and accurate short read alignment with Burrows-Wheeler transform,Bioinformatics 25(2009)1754–1760.

    [38]H.Li,A statistical framework for SNP calling,mutation discovery,association mapping and population genetical parameter estimation from sequencing data,Bioinformatics 27(2011)2987–2993.

    [39]A.McKenna,M.Hanna,E.Banks,A.Sivachenko,K.Cibulskis,A.Kernytsky,K.Garimella,D.Altshuler,S.Gabriel,M.Daly,M.A.DePristo,The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data,Genome Res.20(2010)1297–1303.

    [40]D.C.Koboldt,K.Chen,T.Wylie,D.E.Larson,M.D.McLellan,E.R.Mardis,G.M.Weinstock,R.K.Wilson,L.Ding,VarScan:variant detection in massively parallel sequencing of individual and pooled samples,Bioinformatics 25(2009)2283–2285.

    [41]K.Ye,M.H.Schulz,Q.Long,R.Apweiler,Z.M.Ning,Pindel:a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads,Bioinformatics 25(2009)2865–2871.

    [42]Y.H.Li,S.C.Zhao,J.X.Ma,D.Li,L.Yan,J.Li,X.T.Qi,X.S.Guo,L.Zhang,W.M.He,R.Z.Chang,Q.S.Liang,Y.Guo,C.Ye,X.B.Wang,Y.Tao,R.X.Guan,J.Y.Wang,Y.L.Liu,L.G.Jin,X.Q.Zhang,Z.X.Liu,L.J.Zhang,J.Chen,K.J.Wang,R.Nielsen,R.Q.Li,P.Y.Chen,W.B.Li,J.C.Reif,M.Purugganan,J.Wang,M.C.Zhang,J.Wang,L.J.Qiu,Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing,BMC Genomics 14(2013)579.

    [43]C.C.Chang,C.J.Lin,LIBSVM:a library for support vector machines,ACM Trans.Intell.Syst.Technol.2(2011)27.

    [44]A.Untergasser,I.Cutcutache,T.Koressaar,J.Ye,B.C.Faircloth,M.Remm,S.G.Rozen,Primer3-new capabilities and interfaces,Nucleic Acids Res.40(2012),e115..

    [45]J.W.Van Ooijen,JoinMap4.0,Software for the calculation of genetic linkage maps in experimental populations,Kyazma B.V.,Wageningen,Netherlands,2006.

    [46]H.H.Li,G.Y.Ye,J.K.Wang,A modified algorithm for the improvement of composite interval mapping,Genetics 175(2007)361–374.

    [47]J.W.Van Ooijen,MapQTL 5,Software for the mapping of quantitative trait loci in experimental populations,Kyazma B.V.,Wageningen,Netherlands,2004.

    [48]O.Henegariu,N.A.Heerema,S.R.Dlouhy,G.H.Vance,P.H.Vogt,P.C.R.Multiplex,Critical parameters and step-by-step protocol,BioTechniques 23(1997)504–511.

    [49]E.R.Cober,S.J.Molnar,M.Charette,H.D.Voldeng,A new locus for early maturity in soybean,Crop Sci.50(2010)524–527.

    [50]L.R.Cheng,Y.Wang,C.B.Zhang,C.X.Wu,J.L.Xu,H.Y.Zhu,J.T.Leng,Y.N.Bai,R.X.Guan,W.S.Hou,L.J.Zhang,T.F.Han,Genetic analysis and QTL detection of reproductive period and post-flowering photoperiod responses in soybean,Theor.Appl.Genet.123(2011)421–429.

    [51]M.L.Xu,N.Yamagishi,C.Zhao,R.Takeshima,M.Kasai,S.Watanabe,A.Kanazawa,N.Yoshikawa,B.H.Liu,T.Yamada,J.Abe,The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through downregulation of FLOWERING LOCUS T orthologs,Plant Physiol.168(2015)1735–1746.

    猜你喜歡
    冬令潛藏陽氣
    陽氣,護(hù)佑全身、除痰祛濕!
    中醫(yī)教你冬令如何進(jìn)補(bǔ)
    熱門還是熱鬧?4月加州鱸見漲,但下半年行情潛藏危機(jī)
    陽氣不足該怎么調(diào)理?
    婦女生活(2019年7期)2019-07-16 04:16:19
    Mother's hands
    影 子
    中國詩歌(2018年5期)2018-11-14 20:52:30
    冬令進(jìn)補(bǔ)有膏方
    冬令進(jìn)補(bǔ)藥膳
    手腳冰涼 醋泡生姜
    久久精品熟女亚洲av麻豆精品| 国产精品一区二区在线观看99| 看十八女毛片水多多多| 亚洲欧美精品自产自拍| 大香蕉久久网| 精品国产露脸久久av麻豆| 午夜日本视频在线| 大片电影免费在线观看免费| 99九九在线精品视频| 久久人人爽人人片av| 久久久国产欧美日韩av| 九草在线视频观看| av网站免费在线观看视频| 精品国产一区二区久久| 久久青草综合色| 下体分泌物呈黄色| 一级爰片在线观看| 黑丝袜美女国产一区| 制服诱惑二区| 两个人看的免费小视频| 51国产日韩欧美| 高清在线视频一区二区三区| 色94色欧美一区二区| 秋霞在线观看毛片| 日日啪夜夜爽| 精品人妻熟女毛片av久久网站| 精品福利永久在线观看| xxx大片免费视频| 亚洲欧美日韩卡通动漫| 如何舔出高潮| 人人妻人人爽人人添夜夜欢视频| 制服丝袜香蕉在线| 高清不卡的av网站| 97精品久久久久久久久久精品| 国产一级毛片在线| 国产成人一区二区在线| 亚洲精品乱码久久久久久按摩| 日韩大片免费观看网站| 18禁在线无遮挡免费观看视频| 欧美丝袜亚洲另类| 人妻一区二区av| 男女下面插进去视频免费观看 | 亚洲精品456在线播放app| 男人添女人高潮全过程视频| 波野结衣二区三区在线| 一区二区av电影网| 91精品伊人久久大香线蕉| 另类精品久久| 国产精品不卡视频一区二区| 国产亚洲欧美精品永久| 午夜福利乱码中文字幕| 精品99又大又爽又粗少妇毛片| 国产69精品久久久久777片| 99热全是精品| 51国产日韩欧美| 亚洲欧美日韩另类电影网站| 国产乱来视频区| 99热这里只有是精品在线观看| 亚洲精品国产av蜜桃| 男女午夜视频在线观看 | 成年人免费黄色播放视频| 国产永久视频网站| 成人国产av品久久久| 国产麻豆69| 久久精品久久精品一区二区三区| 蜜桃国产av成人99| 青春草视频在线免费观看| 最近2019中文字幕mv第一页| 国产精品国产三级专区第一集| 永久网站在线| 国产福利在线免费观看视频| 最近最新中文字幕免费大全7| 高清不卡的av网站| 九九爱精品视频在线观看| 在线精品无人区一区二区三| 69精品国产乱码久久久| 国产成人免费无遮挡视频| 国产无遮挡羞羞视频在线观看| 蜜桃在线观看..| av网站免费在线观看视频| 亚洲精品色激情综合| 91在线精品国自产拍蜜月| 欧美成人午夜精品| 欧美老熟妇乱子伦牲交| 欧美精品一区二区大全| 中文字幕最新亚洲高清| 少妇熟女欧美另类| 久久久久久久久久成人| 中文欧美无线码| 狂野欧美激情性xxxx在线观看| 水蜜桃什么品种好| 亚洲精华国产精华液的使用体验| 国产精品偷伦视频观看了| 多毛熟女@视频| 热99国产精品久久久久久7| 国产亚洲精品第一综合不卡 | 亚洲精品国产色婷婷电影| 中文乱码字字幕精品一区二区三区| 久久久a久久爽久久v久久| 黑丝袜美女国产一区| 成人国产麻豆网| 看免费av毛片| 久久久久久久大尺度免费视频| 在线精品无人区一区二区三| 欧美bdsm另类| 9191精品国产免费久久| 国产又爽黄色视频| 亚洲av欧美aⅴ国产| 2018国产大陆天天弄谢| 亚洲五月色婷婷综合| 80岁老熟妇乱子伦牲交| 母亲3免费完整高清在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 国语对白做爰xxxⅹ性视频网站| 国产乱人偷精品视频| videosex国产| 日韩三级伦理在线观看| 九色亚洲精品在线播放| 伦精品一区二区三区| 国产精品偷伦视频观看了| 天堂8中文在线网| 国产精品一二三区在线看| 午夜福利,免费看| 日本av免费视频播放| 综合色丁香网| 婷婷色av中文字幕| 老女人水多毛片| 三级国产精品片| 色吧在线观看| 中文精品一卡2卡3卡4更新| 国产精品欧美亚洲77777| 毛片一级片免费看久久久久| 国产成人欧美| 欧美激情 高清一区二区三区| 免费高清在线观看日韩| 美女大奶头黄色视频| 成人国语在线视频| av一本久久久久| 青青草视频在线视频观看| 精品国产国语对白av| 亚洲精品中文字幕在线视频| av黄色大香蕉| 老司机影院毛片| 色婷婷av一区二区三区视频| 亚洲婷婷狠狠爱综合网| 国产日韩欧美在线精品| 亚洲精品日韩在线中文字幕| 久久热在线av| av线在线观看网站| 亚洲第一区二区三区不卡| xxx大片免费视频| a级毛片黄视频| 秋霞伦理黄片| 男人操女人黄网站| 大片免费播放器 马上看| 97在线人人人人妻| 中文天堂在线官网| 午夜免费鲁丝| 纯流量卡能插随身wifi吗| 性高湖久久久久久久久免费观看| 一级毛片 在线播放| 亚洲四区av| 久久精品熟女亚洲av麻豆精品| 国产永久视频网站| 国产片内射在线| 99热全是精品| 精品人妻熟女毛片av久久网站| 26uuu在线亚洲综合色| 久久国产亚洲av麻豆专区| 老熟女久久久| 美女大奶头黄色视频| 一级毛片电影观看| 天天躁夜夜躁狠狠躁躁| 欧美xxⅹ黑人| 亚洲av电影在线观看一区二区三区| 国产乱来视频区| 亚洲在久久综合| 久久精品久久久久久噜噜老黄| av国产久精品久网站免费入址| 国产一区有黄有色的免费视频| 亚洲精品aⅴ在线观看| 欧美国产精品一级二级三级| 三上悠亚av全集在线观看| 亚洲av电影在线进入| 美女国产视频在线观看| 亚洲国产精品成人久久小说| 日本黄色日本黄色录像| 亚洲国产精品专区欧美| 99久久精品国产国产毛片| 成年动漫av网址| 国产极品天堂在线| 99久久综合免费| 久久精品国产a三级三级三级| 欧美激情 高清一区二区三区| 黄网站色视频无遮挡免费观看| 精品卡一卡二卡四卡免费| 国产精品99久久99久久久不卡 | 国产日韩欧美视频二区| 久久精品人人爽人人爽视色| 日本vs欧美在线观看视频| 日本欧美国产在线视频| 赤兔流量卡办理| 91aial.com中文字幕在线观看| 久久韩国三级中文字幕| 精品亚洲成国产av| 欧美精品人与动牲交sv欧美| 国精品久久久久久国模美| 涩涩av久久男人的天堂| 日韩av不卡免费在线播放| 午夜免费鲁丝| 国产免费又黄又爽又色| 日本午夜av视频| 人妻人人澡人人爽人人| 国产av一区二区精品久久| 国产一区二区三区av在线| av在线播放精品| 91成人精品电影| 中文天堂在线官网| 久久韩国三级中文字幕| 成人午夜精彩视频在线观看| 最黄视频免费看| 中文字幕精品免费在线观看视频 | 久久久久久久精品精品| 欧美97在线视频| 两性夫妻黄色片 | 亚洲国产日韩一区二区| 国产亚洲午夜精品一区二区久久| 丝瓜视频免费看黄片| 男的添女的下面高潮视频| 在线观看美女被高潮喷水网站| av线在线观看网站| 日产精品乱码卡一卡2卡三| 一区二区三区四区激情视频| 在线观看免费视频网站a站| 香蕉国产在线看| 久久精品国产综合久久久 | 精品福利永久在线观看| 久久ye,这里只有精品| 成年av动漫网址| 国产成人精品无人区| 天美传媒精品一区二区| 男人添女人高潮全过程视频| 久久精品久久久久久噜噜老黄| 成年人午夜在线观看视频| 国产成人一区二区在线| 久久久久视频综合| 97精品久久久久久久久久精品| 黄色一级大片看看| 成人国语在线视频| 久久精品夜色国产| 国产免费现黄频在线看| 午夜久久久在线观看| 少妇人妻精品综合一区二区| 国产av精品麻豆| www.熟女人妻精品国产 | 国产国拍精品亚洲av在线观看| 在线观看www视频免费| 国产熟女欧美一区二区| av国产精品久久久久影院| 国产又爽黄色视频| 视频区图区小说| 丝袜脚勾引网站| 黄色一级大片看看| 成人影院久久| 久久久久久久亚洲中文字幕| 日本色播在线视频| 一本大道久久a久久精品| 久热这里只有精品99| 日本午夜av视频| 国语对白做爰xxxⅹ性视频网站| tube8黄色片| 国产精品偷伦视频观看了| 国产深夜福利视频在线观看| 久久免费观看电影| av电影中文网址| 亚洲,欧美,日韩| 女人精品久久久久毛片| 飞空精品影院首页| 人体艺术视频欧美日本| 看免费av毛片| 亚洲精品一二三| 亚洲一级一片aⅴ在线观看| 欧美3d第一页| 亚洲av中文av极速乱| 丰满少妇做爰视频| 巨乳人妻的诱惑在线观看| 国产 一区精品| 99久国产av精品国产电影| 国产不卡av网站在线观看| 免费在线观看黄色视频的| 日韩成人av中文字幕在线观看| 18禁动态无遮挡网站| 中文字幕亚洲精品专区| 国产日韩欧美亚洲二区| 边亲边吃奶的免费视频| 久久精品国产综合久久久 | 在线观看免费日韩欧美大片| 亚洲欧洲日产国产| 曰老女人黄片| 国产爽快片一区二区三区| 亚洲欧美精品自产自拍| 各种免费的搞黄视频| 高清不卡的av网站| tube8黄色片| 男女边摸边吃奶| 十分钟在线观看高清视频www| 中文字幕av电影在线播放| 99热6这里只有精品| 乱码一卡2卡4卡精品| 捣出白浆h1v1| 日韩中字成人| 久久ye,这里只有精品| 9热在线视频观看99| 免费黄频网站在线观看国产| 在线天堂最新版资源| 99香蕉大伊视频| 男女边吃奶边做爰视频| 内地一区二区视频在线| 伦理电影大哥的女人| 免费人妻精品一区二区三区视频| 国产激情久久老熟女| 在现免费观看毛片| 亚洲国产毛片av蜜桃av| 十八禁网站网址无遮挡| 精品人妻熟女毛片av久久网站| www.av在线官网国产| 欧美日韩国产mv在线观看视频| a级毛色黄片| 精品人妻在线不人妻| 国产成人精品无人区| 精品国产乱码久久久久久小说| 观看美女的网站| 99久久精品国产国产毛片| 99热这里只有是精品在线观看| 久久久国产欧美日韩av| 国产精品一区二区在线观看99| √禁漫天堂资源中文www| 国产精品久久久久久久久免| 国产成人午夜福利电影在线观看| 最近最新中文字幕大全免费视频 | 欧美激情国产日韩精品一区| 18禁国产床啪视频网站| 精品福利永久在线观看| 成人手机av| 亚洲精品日韩在线中文字幕| 国产精品欧美亚洲77777| 熟女人妻精品中文字幕| 久久久久久人妻| 亚洲在久久综合| 免费观看av网站的网址| 午夜激情久久久久久久| 精品少妇久久久久久888优播| 亚洲精品日本国产第一区| 中文字幕免费在线视频6| 秋霞伦理黄片| 国产在线免费精品| 亚洲精品,欧美精品| 国产男女内射视频| 婷婷色综合www| 一个人免费看片子| 色网站视频免费| 一区二区av电影网| 99久久精品国产国产毛片| 国产色婷婷99| 90打野战视频偷拍视频| 视频区图区小说| 午夜免费鲁丝| 黑人巨大精品欧美一区二区蜜桃 | 五月伊人婷婷丁香| 青青草视频在线视频观看| 免费看av在线观看网站| 赤兔流量卡办理| 亚洲av欧美aⅴ国产| 亚洲内射少妇av| 女性被躁到高潮视频| 一个人免费看片子| 99视频精品全部免费 在线| 久久久久久伊人网av| 大片免费播放器 马上看| 纯流量卡能插随身wifi吗| 亚洲,欧美,日韩| 大香蕉久久成人网| 男女国产视频网站| 黄色视频在线播放观看不卡| 亚洲国产毛片av蜜桃av| 国产精品久久久久久久电影| 国产成人精品婷婷| 热99国产精品久久久久久7| 日韩制服丝袜自拍偷拍| 十八禁网站网址无遮挡| 日本与韩国留学比较| 一级片'在线观看视频| 久久精品国产综合久久久 | 午夜日本视频在线| 久久影院123| 国产乱来视频区| 亚洲精品一二三| 国产成人欧美| videosex国产| 国产一区二区在线观看av| 精品国产国语对白av| 亚洲图色成人| 在线天堂最新版资源| 少妇的丰满在线观看| 日韩免费高清中文字幕av| 巨乳人妻的诱惑在线观看| 免费高清在线观看日韩| 亚洲熟女精品中文字幕| av在线播放精品| 国产爽快片一区二区三区| 人人妻人人澡人人爽人人夜夜| 欧美精品一区二区免费开放| 狂野欧美激情性xxxx在线观看| 在线 av 中文字幕| 国产不卡av网站在线观看| av播播在线观看一区| 美女xxoo啪啪120秒动态图| 国产精品国产三级国产专区5o| 人人妻人人爽人人添夜夜欢视频| 亚洲色图 男人天堂 中文字幕 | 美女国产高潮福利片在线看| 男女无遮挡免费网站观看| 中文字幕人妻丝袜制服| 边亲边吃奶的免费视频| 91久久精品国产一区二区三区| 国产一级毛片在线| 18+在线观看网站| 日本av免费视频播放| av国产久精品久网站免费入址| 国产日韩欧美亚洲二区| 色网站视频免费| 免费人妻精品一区二区三区视频| 国产成人a∨麻豆精品| 亚洲中文av在线| 毛片一级片免费看久久久久| 如何舔出高潮| 久久鲁丝午夜福利片| 国产精品久久久久久久电影| 成人18禁高潮啪啪吃奶动态图| 亚洲综合色惰| 美国免费a级毛片| 亚洲,欧美,日韩| 亚洲综合色惰| 99热这里只有是精品在线观看| 天堂中文最新版在线下载| 看免费av毛片| 考比视频在线观看| 亚洲成国产人片在线观看| 婷婷色av中文字幕| av有码第一页| www.熟女人妻精品国产 | 中国三级夫妇交换| 亚洲三级黄色毛片| 精品一区在线观看国产| 亚洲,欧美,日韩| 91在线精品国自产拍蜜月| 国产一区二区激情短视频 | 丁香六月天网| 国产亚洲欧美精品永久| 赤兔流量卡办理| 中国国产av一级| 亚洲,欧美,日韩| 国精品久久久久久国模美| 国产免费现黄频在线看| 一本大道久久a久久精品| 亚洲av日韩在线播放| 黄色视频在线播放观看不卡| av在线观看视频网站免费| 亚洲成人一二三区av| 日韩伦理黄色片| 乱人伦中国视频| 国产成人91sexporn| 国产精品麻豆人妻色哟哟久久| 又粗又硬又长又爽又黄的视频| 男女无遮挡免费网站观看| 男女高潮啪啪啪动态图| 99国产精品免费福利视频| 久久精品久久精品一区二区三区| 免费av不卡在线播放| 性色avwww在线观看| 久久99一区二区三区| 下体分泌物呈黄色| 婷婷色麻豆天堂久久| 超碰97精品在线观看| 黄片无遮挡物在线观看| 自线自在国产av| 国产成人免费观看mmmm| 久久狼人影院| 久久热在线av| 国产白丝娇喘喷水9色精品| 丰满少妇做爰视频| 中文精品一卡2卡3卡4更新| 伊人久久国产一区二区| 777米奇影视久久| 赤兔流量卡办理| 国产成人av激情在线播放| 五月开心婷婷网| 午夜福利影视在线免费观看| 午夜福利网站1000一区二区三区| 久久精品夜色国产| 国产熟女午夜一区二区三区| 十八禁高潮呻吟视频| 一级片'在线观看视频| 国产精品人妻久久久久久| 免费观看性生交大片5| 国产高清不卡午夜福利| 国产精品久久久久久精品电影小说| 国产精品国产三级专区第一集| 欧美日韩亚洲高清精品| 一本—道久久a久久精品蜜桃钙片| 日韩精品免费视频一区二区三区 | 精品一品国产午夜福利视频| 人人澡人人妻人| 国产成人精品在线电影| a级毛片黄视频| 久久99蜜桃精品久久| 高清毛片免费看| 在线观看三级黄色| 中国美白少妇内射xxxbb| 啦啦啦视频在线资源免费观看| 你懂的网址亚洲精品在线观看| 九色亚洲精品在线播放| 日本午夜av视频| 精品亚洲成国产av| 一级毛片电影观看| 黄色配什么色好看| 亚洲四区av| 超色免费av| 国产深夜福利视频在线观看| 国产国拍精品亚洲av在线观看| 尾随美女入室| 午夜91福利影院| 精品人妻偷拍中文字幕| 欧美 日韩 精品 国产| 色吧在线观看| 国产成人午夜福利电影在线观看| 黄色毛片三级朝国网站| 男女免费视频国产| 啦啦啦啦在线视频资源| av片东京热男人的天堂| 国产午夜精品一二区理论片| 国产成人免费无遮挡视频| 寂寞人妻少妇视频99o| 建设人人有责人人尽责人人享有的| 看非洲黑人一级黄片| 国产精品久久久av美女十八| 两个人看的免费小视频| 欧美日韩综合久久久久久| 日韩 亚洲 欧美在线| 99香蕉大伊视频| 一级爰片在线观看| 国产精品女同一区二区软件| 99精国产麻豆久久婷婷| 亚洲五月色婷婷综合| 亚洲欧美成人综合另类久久久| 青春草视频在线免费观看| kizo精华| 国产1区2区3区精品| 久久99一区二区三区| 亚洲成人一二三区av| 最近最新中文字幕免费大全7| 免费看不卡的av| 丝袜美足系列| 中文天堂在线官网| 久久久久久人人人人人| 亚洲综合色网址| 十八禁网站网址无遮挡| 2021少妇久久久久久久久久久| 一区二区三区精品91| av黄色大香蕉| av天堂久久9| 黑丝袜美女国产一区| 在线免费观看不下载黄p国产| 亚洲av成人精品一二三区| 午夜福利乱码中文字幕| 免费观看无遮挡的男女| 人成视频在线观看免费观看| 欧美日韩亚洲高清精品| 午夜激情久久久久久久| 日韩,欧美,国产一区二区三区| 日本欧美国产在线视频| 国产精品一国产av| 亚洲国产毛片av蜜桃av| 黄片播放在线免费| 狠狠婷婷综合久久久久久88av| 久久热在线av| 亚洲人成77777在线视频| 最近的中文字幕免费完整| 最黄视频免费看| 精品视频人人做人人爽| 亚洲欧美日韩卡通动漫| 精品福利永久在线观看| 天天躁夜夜躁狠狠躁躁| 国国产精品蜜臀av免费| 90打野战视频偷拍视频| 免费黄色在线免费观看| 日本vs欧美在线观看视频| 亚洲欧美成人精品一区二区| 美女内射精品一级片tv| 亚洲一区二区三区欧美精品| 中文字幕免费在线视频6| 色哟哟·www| 色94色欧美一区二区| 侵犯人妻中文字幕一二三四区| 亚洲伊人久久精品综合| 宅男免费午夜| 又黄又粗又硬又大视频| 欧美日韩视频精品一区| 精品国产一区二区三区四区第35| 亚洲欧美日韩卡通动漫| 22中文网久久字幕| av线在线观看网站| 在线观看国产h片| 欧美日韩一区二区视频在线观看视频在线| 欧美3d第一页|