朱寬宇 展明飛 陳靜 王志琴 楊建昌 趙步洪
?
不同氮肥水平下結(jié)實(shí)期灌溉方式對(duì)水稻弱勢(shì)粒灌漿及產(chǎn)量的影響
朱寬宇1展明飛1陳靜1王志琴1楊建昌1趙步洪2,*
(1揚(yáng)州大學(xué) 江蘇省作物遺傳生理重點(diǎn)實(shí)驗(yàn)室/糧食作物現(xiàn)代產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心,江蘇 揚(yáng)州,225009;2江蘇里下河地區(qū)農(nóng)業(yè)科學(xué)研究所,江蘇 揚(yáng)州 225009;)
【目的】旨在闡明氮肥和灌溉方式對(duì)水稻產(chǎn)量、籽粒灌漿及生理特性的影響?!痉椒ā恳源笏胄推贩N甬優(yōu)2640和中穗型品種淮稻5號(hào)為供試材料進(jìn)行盆缽試驗(yàn),大田育秧移栽后設(shè)置3種氮肥水平,即0 N(不施氮)、MN(2 g N/盆)、HN(4 g N/盆);抽穗至成熟期設(shè)置3種灌溉方式,即CI(保持水層灌溉)、WMD(輕干濕交替灌溉, 土壤水勢(shì) -15 kPa時(shí)復(fù)水)、WSD(重干濕交替灌溉, 土壤水勢(shì) -30 kPa時(shí)復(fù)水)。【結(jié)果】在CI下,兩個(gè)品種產(chǎn)量均以MN水平最高;WMD處理下,兩個(gè)品種產(chǎn)量均以HN水平最高,但與MN下差異不顯著,WSD處理下兩個(gè)品種產(chǎn)量均以HN最高;而在籽粒灌漿上,兩個(gè)品種強(qiáng)勢(shì)粒的灌漿速率和最終粒重在各個(gè)水氮處理間無顯著差異,弱勢(shì)粒的灌漿速率和最終粒重在良好水勢(shì)條件CI和輕度水分脅迫WMD下,分別在0 N和MN水平下表現(xiàn)較優(yōu);但在重度水分脅迫WSD下,0N水平表現(xiàn)最低,HN最高,但與MN差異不顯著。以上都表明產(chǎn)量與弱勢(shì)粒的灌漿在水氮間存在著明顯的交互作用。在品種間,大穗型秈粳雜交稻甬優(yōu)2640弱勢(shì)粒灌漿速率及粒重都低于中穗型常規(guī)粳稻淮稻5號(hào),其產(chǎn)量?jī)?yōu)勢(shì)主要源自較高的每穗粒數(shù)。最后,WMD+MN處理下有較高的氮肥利用率,較少的施氮量獲得較高的產(chǎn)量,達(dá)到節(jié)水節(jié)氮增產(chǎn)的效果,其次也增加了根系生理活性和葉片光合性能,非結(jié)構(gòu)性碳水化合物(NSC)轉(zhuǎn)運(yùn)率,促進(jìn)了地上部的生長(zhǎng)發(fā)育,同時(shí)也加強(qiáng)了物質(zhì)運(yùn)轉(zhuǎn),促進(jìn)了灌漿中后期弱勢(shì)粒籽粒的充實(shí),最終達(dá)到產(chǎn)量增加的目的,成為本研究最佳水氮運(yùn)籌方式。
水稻;產(chǎn)量;強(qiáng)勢(shì)粒;弱勢(shì)粒;互作;生理特性
水稻產(chǎn)量潛力是由其庫(kù)容大小和籽粒灌漿的充實(shí)程度共同決定的[1-4],所以在育種學(xué)上,一般通過增加每穗粒數(shù)形成大穗來擴(kuò)增庫(kù)容[5],而籽粒灌漿充實(shí)程度主要取決于穗上的弱勢(shì)粒,因此在增加每穗粒數(shù)擴(kuò)庫(kù)容同時(shí)也相對(duì)增加了弱勢(shì)粒的數(shù)量,由于著生在穗底部開花遲的弱勢(shì)粒灌漿速率慢,粒重小,結(jié)實(shí)率不穩(wěn)[6],限制了大穗型水稻品種的庫(kù)容裝載能力。這不僅限制了產(chǎn)量的發(fā)揮,同時(shí)也嚴(yán)重影響籽粒的品質(zhì)。因弱勢(shì)粒在生長(zhǎng)過程中需要消耗大量的水分和養(yǎng)分,限制了水肥的高效利用[7]。
水分和氮素是影響作物產(chǎn)量的兩個(gè)主要因子,水分是養(yǎng)分運(yùn)輸?shù)妮d體,可以促進(jìn)對(duì)氮素的轉(zhuǎn)化和根系生長(zhǎng),有利于根系吸收水分,同時(shí)氮素也是土壤水分的調(diào)節(jié)劑,進(jìn)而影響作物對(duì)水分的吸收利用,并且也影響根系的生理和形態(tài)結(jié)構(gòu),這是吸收水分和養(yǎng)分的關(guān)鍵。Wang等[8]研究表明,籽粒產(chǎn)量、水分利用效率以及氮肥利用率不僅由灌溉水平?jīng)Q定,同時(shí)也與氮肥梯度間產(chǎn)生互作效應(yīng)。張自常等[9]認(rèn)為,灌溉方式和氮肥水平對(duì)產(chǎn)量和稻米品質(zhì)具有明顯的交互作用,在重干濕交替灌溉(土壤水勢(shì)-30 kPa時(shí)復(fù)水)條件下,增施氮肥可以抵消嚴(yán)重水分脅迫給產(chǎn)量和米質(zhì)帶來的不利影響。有研究認(rèn)為,水氮對(duì)水稻的產(chǎn)量、養(yǎng)分吸收、生理性狀均沒有顯著的互作效應(yīng)[10]。近些年,我國(guó)在秈粳雜交稻的選育上取得了顯著成果,尤其是甬優(yōu)系列,在長(zhǎng)江中下游地區(qū)產(chǎn)量高達(dá)13.5t/hm2[11]。有研究表明,甬優(yōu)系列秈粳雜交稻有10%以上的增產(chǎn)潛力,并且穗大粒多是其產(chǎn)量形成的優(yōu)勢(shì)[12]。目前有關(guān)水氮處理對(duì)秈粳雜交稻在弱勢(shì)粒灌漿特性影響的研究較少,還是以水肥單因素影響居多,并且和常規(guī)粳稻相比,不同穗型中的弱勢(shì)粒灌漿有哪些差異,報(bào)道不多。同時(shí)Chen等[13]研究表明,結(jié)實(shí)期進(jìn)行水分控制對(duì)水稻強(qiáng)勢(shì)粒特性均無顯著影響,為此,本研究通過不同氮水平下在結(jié)實(shí)期進(jìn)行水分處理來著重探究對(duì)弱勢(shì)粒灌漿和產(chǎn)量的影響,明確水氮處理從哪些因素對(duì)產(chǎn)量進(jìn)行調(diào)控,以期為水稻優(yōu)質(zhì)高產(chǎn)栽培理論提供依據(jù)。
試驗(yàn)于2015和2016年在揚(yáng)州大學(xué)農(nóng)學(xué)院實(shí)驗(yàn)農(nóng)場(chǎng)盆栽場(chǎng)進(jìn)行。供試材料為大穗型秈/粳雜交稻品種甬優(yōu)2640和中穗型粳稻品種淮稻5號(hào)。5月12日進(jìn)行大田育秧,6月12日移栽至盆缽,每盆3穴,淮稻5號(hào)每穴2苗,甬優(yōu)2640每穴1苗。盆缽內(nèi)土壤類型為砂壤土,土壤成分含有機(jī)質(zhì)22.7 g/ kg,速效氮68.2 mg/kg,速效磷34.3 mg/ kg,速效鉀110.2 mg/kg。甬優(yōu)2640和淮稻5號(hào)的抽穗期為8月12日至 17日,于10月16至17日進(jìn)行收割。
全生育期設(shè)置3個(gè)施氮量處理:0 N(不施氮)、2 g/盆和 4 g/盆(以純氮計(jì)),按基肥∶分蘗肥∶促花肥∶?;ǚ?4∶2∶2∶2施用,移栽前每盆施用0.5g磷酸二氫鉀。張偉楊等[14]以土壤干旱程度對(duì)小麥產(chǎn)量有無影響作為輕度和重度水分脅迫的標(biāo)準(zhǔn),一般認(rèn)為與水層灌溉相比,土壤水分脅迫對(duì)產(chǎn)量無影響甚至可以提高產(chǎn)量,這種土壤水分脅迫定義為輕度水分脅迫,反之則為重度水分脅迫。因此本研究從抽穗期至成熟期設(shè)置3種灌溉方式:水層灌溉(CI),土壤水勢(shì)0 kPa,一直保持水層1~2 cm;輕度干濕交替灌溉(WMD),土壤水勢(shì)自淺水層自然落干至土壤水勢(shì)-15 kPa,然后灌1~2 cm水層,再落干如此往復(fù);重度干濕交替灌溉灌溉(WSD),自淺水層自然落干至土壤水勢(shì)-30 kPa,然后灌水1~2 cm,再落干,如此往復(fù)。在輕干-濕交替灌溉處理和重-干濕交替灌溉的每個(gè)處理安裝真空表式土壤負(fù)壓計(jì)(中國(guó)科學(xué)院南京土壤研究所生產(chǎn)),監(jiān)測(cè)15~20 cm深土壤水勢(shì),每天12∶00記錄水勢(shì),當(dāng)讀數(shù)達(dá)到閾值時(shí),灌1~2 cm水層。兩個(gè)供試品種共計(jì)18個(gè)處理,每個(gè)處理18盆,共計(jì)324盆。用塑料大棚擋。整個(gè)生育期嚴(yán)格控制病蟲草害。
表1 產(chǎn)量、籽粒灌漿及其生理特性在年度間、品種間及處理間的方差分析
*和**分別代表在=0.05 和=0.01 水平上差異顯著,ns表示差異不顯著(>0.05)。NSC-非結(jié)構(gòu)性碳水化合物;IAA-吲哚-3-乙酸;Z-根系激素玉米素;ZR-玉米素核苷。下同。
*,**represent significance at=0.05 and=0.01 levels, respectively, and ns denotes non-significance (>0.05). NSC, Non-structural carbohydrate; IAA, Indole-3-acetic acid; Z, Zeatin; ZR, Zeatin riboside. The same as below.
1.3.1 根系氧化力、根系激素玉米素+玉米素核苷(Z+ZR)和吲哚-3-乙酸(IAA)含量測(cè)定
分別于抽穗期,抽穗10 d、20 d、30 d各個(gè)處理取2盆,每盆3穴,共6穴,用水沖凈盆栽土,剪下地上部用于測(cè)算地上部,剩下的根用于根干質(zhì)量及根系氧化力的測(cè)定(α-萘胺法)。激素的提取、純化和定量分析用高效液相色譜法(HPLC)進(jìn)行,具體參照Yang[15]等的方法。樣品回收率為85.5%±2.6%,每一個(gè)樣品至少重復(fù)3次。
1.3.2 籽粒灌漿動(dòng)態(tài)的測(cè)定
在抽穗期選擇穗型大小整齊的穗子掛牌,每個(gè)處理選取10盆,范圍約110~240穗,觀察供試品種開花日期并記錄在穗上。每個(gè)處理取20個(gè)大小一致的稻穗,按強(qiáng)勢(shì)粒(穗頂部一次枝梗的籽粒)和弱勢(shì)粒(穗基部2次枝梗的籽粒)分成兩組,強(qiáng)勢(shì)?;ê竺? d取一次直至花后45 d,弱勢(shì)粒從花后6 d開始取樣,間隔5 d一次,直至花后60 d。將取好的籽粒在70℃下烘干至恒重,然后剝殼稱重,測(cè)定籽粒增重動(dòng)態(tài)并參照朱慶森等方法[16]用Richards方程對(duì)籽粒灌漿過程進(jìn)行擬合,計(jì)算灌漿速率:
=/(1+e)1/N1);
對(duì)方程1)求導(dǎo),得到籽粒灌漿速率():
=e/[(1+e)(N+1)/N] 2);
方程中為粒重(mg),為最終粒重(mg),為花后天數(shù)。、、為回歸方程所確定的參數(shù),活躍灌漿期定義為達(dá)到最終粒重的5% (1)和95% (2)所經(jīng)歷的時(shí)間:
=2(+2)/3);
這段時(shí)間內(nèi)籽粒(糙米)增加的質(zhì)量除以灌漿時(shí)間(2-1)為平均灌漿速率;
mean=/[2(+2)] 4)。
1.3.3 劍葉光合速率的測(cè)定
分別于抽穗期,抽穗10 d、20 d和30 d,各處理隨機(jī)取5盆,于晴天上午9:30-11:30,用美國(guó)生產(chǎn)的LI-6400便攜式光合儀測(cè)定凈光合速率,控制條件為CO2濃度400mmol/mol,30℃,光照強(qiáng)度1200 μmol/(m2·s),每個(gè)處理選取5片葉進(jìn)行測(cè)定,部位為劍葉中部,結(jié)果取5片葉平均值。
表2 不同氮肥水平下結(jié)實(shí)期灌溉方式對(duì)水稻產(chǎn)量及其構(gòu)成因素的影響
數(shù)字后不同字母表示在同一列內(nèi)相同品種在0.05水平上差異顯著。CI-常規(guī)灌溉; WMD-輕干濕交替灌溉; WSD-重干濕交替灌溉。0N-不施氮;MN-中氮;HN-高氮。
Values within the same column for the same cultivar followed by different letters are significantly different at the 0.05 level.CI, Conventional irrigation; WMD, Alternate wetting and moderate soil drying; WSD, Alternate wetting and severe soil drying. 0N, Zero nitrogen fertilizer; MN, Medium nitrogen level; HN, High nitrogen level.
1.3.4 莖鞘非結(jié)構(gòu)碳水化合物NSC的測(cè)定
分別于抽穗和成熟期選擇生長(zhǎng)整齊一致的水稻植株各3穴,分樣后在105℃下殺青,分部位烘干用于測(cè)定干物質(zhì)量,莖鞘干樣用Yoshida[17]蒽酮法測(cè)定可溶性總糖和淀粉含量,按以下公式進(jìn)行計(jì)算:莖鞘NSC的轉(zhuǎn)運(yùn)率(%)=(抽穗期莖鞘NSC-成熟期莖鞘NSC)/抽穗期莖鞘NSC×100,莖鞘NSC對(duì)籽粒產(chǎn)量的貢獻(xiàn)率(%)=(抽穗期莖鞘NSC-成熟期莖鞘NSC)/籽粒產(chǎn)量×100。
1.3.5 考種與計(jì)產(chǎn)
于成熟期,每個(gè)處理選取5盆用于考種,每盆為1個(gè)重復(fù),計(jì)算千粒重、結(jié)實(shí)率、每盆穗數(shù)以及每穗粒數(shù),氮肥農(nóng)學(xué)利用率=(施氮區(qū)稻谷產(chǎn)量-不施氮區(qū)稻谷產(chǎn)量)/施氮區(qū)氮肥用量,氮肥偏生產(chǎn)力=籽粒產(chǎn)量/施氮量。
采用Microsoft Excel和SPSS 22.0統(tǒng)計(jì)軟件分析實(shí)驗(yàn)數(shù)據(jù),用Sigmaplot 10.0作圖。產(chǎn)量和灌漿參數(shù)以及生理特性的年度、品種、氮肥、灌溉處理間方差分析表明,各指標(biāo)在年度間所有組合均差異不顯著,因此灌溉方式,氮肥處理對(duì)水稻產(chǎn)量、灌漿以及生理特性在年度間具有很好的重演性(表1),文中數(shù)據(jù)均用兩年平均值表示。
兩個(gè)品種在同一施氮水平下,WMD處理下(土壤水勢(shì)達(dá)-15 kPa時(shí)復(fù)水)結(jié)實(shí)率最高,與對(duì)照相比差異顯著,而WSD處理(土壤水勢(shì)達(dá)-30 kpa時(shí)復(fù)水)則顯著降低了結(jié)實(shí)率,與其他兩種水勢(shì)條件相比為最低。與此同時(shí),在同一水勢(shì)條件下,以0N+WMD結(jié)實(shí)率最高,隨著氮肥的施用量提高,結(jié)實(shí)率呈下降趨勢(shì),所以在良好的水勢(shì)條件下,氮肥過高對(duì)籽粒結(jié)實(shí)率不利,但在WSD條件,隨氮肥梯度升高,結(jié)實(shí)率卻增加,說明相比0N,施氮會(huì)在嚴(yán)重水分脅迫下會(huì)對(duì)結(jié)實(shí)率有補(bǔ)償效應(yīng)。在千粒重上,在氮肥水平相同的情況下,千粒重均以WMD處理最高,且在CI條件下,隨著氮肥水平梯度升高,千粒重在HN下最低,在WMD件下,三種氮肥梯度之間,千粒重差異不顯著,而在WSD下,趨勢(shì)和結(jié)實(shí)率變化一致。在產(chǎn)量上,在相同水勢(shì)CI下,MN最高;在WMD下,HN最高,但與MN差異不顯著;在WSD下,HN水平最高。在同一氮肥水平下,與CI相比,WMD處理顯著提高了產(chǎn)量,幅度為7.4%~11.1%,WSD處理則反之(表2)。由圖2可知,兩個(gè)品種的氮肥偏生產(chǎn)力和氮肥農(nóng)學(xué)利用率在各個(gè)水分條件下均以MN水平顯著高于HN,在相同氮肥條件下表現(xiàn)為WMD>CI>W(wǎng)SD;兩個(gè)品種間比較,甬優(yōu)2640的氮肥利用效率顯著高于淮稻5號(hào)(圖1)。
CI-常規(guī)灌溉;WMD-輕干濕交替灌溉;WSD-重干濕交替灌溉; MN-中氮;HN-高氮。
Fig. 1. Effects of irrigation regimes during grain filling under different nitrogen rates on the nitrogen use efficiency and harvest index of rice.
用Richards生長(zhǎng)方程擬合強(qiáng)弱勢(shì)粒灌漿速率(表3) ,結(jié)果表明抽穗后控水,兩個(gè)供試品種的強(qiáng)勢(shì)粒的粒重和灌漿速率在各水氮處理下均無顯著差異,并且顯著高于弱勢(shì)粒;因此本研究著重分析對(duì)弱勢(shì)粒的影響。與強(qiáng)勢(shì)粒相比,兩個(gè)品種的弱勢(shì)粒達(dá)到最大灌漿速率的時(shí)間較遲,尤其是大穗型品種甬優(yōu)2640。兩個(gè)品種的弱勢(shì)粒在最大灌漿速率、平均灌漿速率以及最終粒重上,在CI條件下表現(xiàn)為0N最高,HN最低;在WMD處理下,以MN水平較高;而在重度水分脅迫WSD處理下,都表現(xiàn)為HN>MN>0N;其次,在相同氮肥水平下,相比CI,WMD處理提高了灌漿速率和粒重,而WSD處理則反之,兩個(gè)品種九個(gè)處理間均以MN+WMD最好。而在活躍灌漿期上,在相同水勢(shì)條件下,隨著氮肥水平梯度上升,活躍灌漿期增長(zhǎng);在同一氮肥水平下,隨著水分脅迫加劇,活躍灌漿期也大大縮短。
表3 不同氮肥水平下結(jié)實(shí)期灌溉方式對(duì)水稻籽粒灌漿參數(shù)的影響
數(shù)據(jù)后不同字母表示同一欄內(nèi)相同品種在0.05水平上差異顯著。CI-常規(guī)灌溉;WMD-輕干濕交替灌溉;WSD-重干濕交替灌溉;0N-不施氮;MN-中氮;HN-高氮。
Values within the same column for the same cultivar followed by different letters are significantly different at the 0.05 level. CI, Conventional irrigation; WMD, Alternate wetting and moderate soil drying; WSD, Alternate wetting and severe soil drying. 0N, Zero nitrogen fertilizer; MN, Medium nitrogen level; HN, High nitrogen level.
在品種間,大穗型品種甬優(yōu)2640與中穗型品種淮稻5號(hào)相比,在各水氮處理?xiàng)l件下淮稻5號(hào)的最大灌漿速率、平均灌漿速率、最終粒重都顯著高于甬優(yōu)2640,而活躍灌漿期顯著低于甬優(yōu)2640(表3),這說明淮稻5號(hào)的弱勢(shì)粒灌漿強(qiáng)度顯著強(qiáng)于甬優(yōu)2640,甬優(yōu)2640最終的生長(zhǎng)量較小,與常規(guī)粳稻淮稻5號(hào)相比,秈粳雜交稻甬優(yōu)2640強(qiáng)弱勢(shì)粒之間粒重差距更大,并且淮稻5號(hào)的弱勢(shì)粒花后40 d逐漸趨于平緩,粒重變化不大,而甬優(yōu)2640的弱勢(shì)粒直至花后60 d依然呈現(xiàn)增長(zhǎng)趨勢(shì)(圖2)。
CI+0N-常規(guī)灌溉+不施氮;CI+MN-常規(guī)灌溉+中氮;CI+HN-常規(guī)灌溉+高氮;WMD+0N-輕干濕交替灌溉+不施氮; WMD+MN-輕干濕交替灌溉+中氮;WMD+HN-輕干濕交替灌溉+高氮;WSD+0N-重干濕交替灌溉+不施氮;WSD+MN-重干濕交替灌溉+中氮;WSD+HN-重干濕交替灌溉+高氮。S-強(qiáng)勢(shì)粒;I-弱勢(shì)粒。
Fig. 2. Effects of irrigation regimes during grain filling under different nitrogen rates on grain weight of rice.
CI-常規(guī)灌溉;WMD-輕干濕交替灌溉;WSD-重干濕交替灌溉;0N-不施氮;MN-中氮;HN-高氮。
Fig. 3. Effects of irrigation regimes during grain filling under different nitrogen rates on the root oxidation activity of rice.
兩個(gè)供試品種的根系氧化力從抽穗到成熟期,單位根干質(zhì)量根系氧化力隨著抽穗進(jìn)程而降低。以甬優(yōu)2640為例(圖3),與CI相比,輕干濕交替灌溉(WMD)顯著增加了單位根干質(zhì)量的氧化力,而WSD則相反,即加快了根系氧化力的下降,且在相同灌溉水分條件下,根系氧化力都隨氮肥的梯度升高而升高,且MN與HN之間差異不顯著,兩個(gè)品種的變化趨勢(shì)一致。
兩個(gè)供試品種根系中的IAA和Z+ZR的含量在抽穗后呈逐漸下降的趨勢(shì),在相同水分灌溉條件下,兩種激素的含量都隨著氮素水平的上升而增加,WMD處理下的根系兩種激素含量顯著高于CI和WSD,WSD則顯著降低了兩種激素的含量,且顯著低于CI處理(圖4)。
隨著抽穗的進(jìn)程,甬優(yōu)2640(A-C)和淮稻5號(hào)(D-F)劍葉的凈光合速率均呈下降的趨勢(shì)(圖5)。在相同灌溉水分條件下,光合速率和蒸騰速率均隨氮肥梯度增加而升高。與CI相比,各個(gè)氮肥處理下,輕干濕交替灌溉(WMD)顯著增加了劍葉的凈光合速率,WSD則相反。在蒸騰速率上甬優(yōu)2640(G-I)和淮稻5號(hào)(J-L)呈逐漸下降趨勢(shì),相同灌溉方式下,隨氮肥用量梯度上升而增加;抽穗期(0 d)相同氮肥水平下各水分處理間差異不顯著,在抽穗后10-30 d之間,常規(guī)灌溉CI顯著高于其他兩種灌溉模式,WMD和WSD之間差異不顯著(圖5) 。
CI-常規(guī)灌溉;WMD-輕干濕交替灌溉;WSD-重干濕交替灌溉;0N-不施氮;MN-中氮;HN-高氮。
Fig. 4. Effects of irrigation regimes during grain filling under different nitrogen rates on the root hormone of rice.
在抽穗期兩個(gè)供試品種NSC含量隨氮肥梯度升高而增加,在相同氮肥條件下,三種灌溉方式之間無顯著差異(A,E),而在成熟期三種水勢(shì)條件下的NSC含量為WMD<CI<WSD,在相同水勢(shì)條件下,HN>MN>0N,這可能是HN條件下,有較低的結(jié)實(shí)率,從而“滯留”了NSC往籽粒運(yùn)輸,相同氮肥水平下,均以WMD處理最低(B,F(xiàn))。在NSC轉(zhuǎn)運(yùn)率上,三種灌溉方式為WMD>CI>W(wǎng)SD,且在相同水勢(shì)條件下,轉(zhuǎn)運(yùn)率為0N>MN>HN,NSC對(duì)籽粒產(chǎn)量的貢獻(xiàn)率與轉(zhuǎn)運(yùn)率變化趨勢(shì)一致(圖6)。
通徑分析表明,產(chǎn)量各構(gòu)成因素中,每穗粒數(shù)(0.647)對(duì)產(chǎn)量的直接貢獻(xiàn)最大,在抽穗后水氮耦合對(duì)產(chǎn)量的直接影響,結(jié)實(shí)率(0.214)貢獻(xiàn)最大,而千粒重貢獻(xiàn)為負(fù)值(-0.036);其次,結(jié)實(shí)率通過對(duì)NSC轉(zhuǎn)運(yùn)量的間接作用(0.084)對(duì)產(chǎn)量影響最大;而在各生理指標(biāo)中,根系氧化力(0.543)對(duì)產(chǎn)量的直接貢獻(xiàn)最大,其次是光合速率(0.225),而根系激素和光合速率通過根系氧化力(0.376)的間接作用對(duì)產(chǎn)量影響最大(表4)。
CI-常規(guī)灌溉;WMD-輕干濕交替灌溉;WSD-重干濕交替灌溉;0N-不施氮;MN-中氮;HN-高氮。
Fig. 5. Effects of irrigation regimes during grain filling under different nitrogen rates on leaf photosynthesis(A-F) and transpiration(G-L) of rice.
水分灌溉和氮肥是水稻栽培上的兩個(gè)重要因素[18-20],有研究表明[8],相比水層灌溉,輕干濕交替灌溉可以調(diào)節(jié)地上部冠層結(jié)構(gòu),能控制不必要的營(yíng)養(yǎng)生長(zhǎng),從而增源擴(kuò)庫(kù)達(dá)到產(chǎn)量增加的目的,重干濕交替灌溉雖然也可以調(diào)節(jié)冠層結(jié)構(gòu),但卻嚴(yán)重影響了地上部生長(zhǎng)發(fā)育從而導(dǎo)致產(chǎn)量降低;同時(shí)不同施氮量及分施氮肥對(duì)水稻產(chǎn)量和氮肥利用率的提升有很好的效果[21-25],但是水肥結(jié)合的栽培方式對(duì)水稻產(chǎn)量、籽粒灌漿的影響目前研究較少,且結(jié)論不一。王紹華等[26]研究認(rèn)為,合理的施氮量與輕度水分脅迫相結(jié)合,可以提高水稻氮肥利用率,增加產(chǎn)量的同時(shí)可以減少稻田氮損失;陳新紅等[27]研究表明水氮對(duì)水稻產(chǎn)量有明顯互作效應(yīng)。本研究表明,產(chǎn)量在CI處理下,與MN水平相比,兩個(gè)品種在HN水平下都呈顯著降低趨勢(shì),但在WSD處理下HN水平卻顯著提高,由此可見產(chǎn)量不僅由灌溉水平?jīng)Q定,同時(shí)也與氮肥之間發(fā)生了交互作用。雖然氮肥農(nóng)學(xué)利用率和氮肥偏生產(chǎn)力在各個(gè)灌溉水平下隨氮肥梯度升高而降低,但在WMD處理下,產(chǎn)量在MN與HN下差異不顯著,因此WMD處理與MN產(chǎn)生了協(xié)同互作效應(yīng),這與Wang等[8]研究一致,并且MN的氮肥利用率和偏生產(chǎn)力都顯著高于HN,因此WMD+MN處理對(duì)產(chǎn)量的形成為最佳組合。本研究還發(fā)現(xiàn)在抽穗后,在產(chǎn)量構(gòu)成因素上,水氮耦合對(duì)結(jié)實(shí)率的調(diào)控作用最大;在生理方面,水氮耦合對(duì)根系氧化物的影響最大,兩者具體表現(xiàn)在各自對(duì)產(chǎn)量的直接貢獻(xiàn)上(表4)。
表4 產(chǎn)量構(gòu)成因素及生理特性對(duì)產(chǎn)量的貢獻(xiàn)
1-每盆穗數(shù);2-每穗粒數(shù);3-結(jié)實(shí)率;4-千粒重;5-根系氧化力;6-根系激素含量;7-光合速率;8-NSC轉(zhuǎn)運(yùn)量。
1, Panicle number per pot;2, Spikelet number per panicle;3, Seed setting rate;4, 1000-grain weight;5, Root oxidation activity;6, Hormone content of root;7, Photosythetic rate;8, NSC remobilization rate.
CI-常規(guī)灌溉;WMD-輕干濕交替灌溉;WSD-重干濕交替灌溉;0N-不施氮;MN-中氮;HN-高氮。
Fig. 6. Effects of irrigation regimes during grain filling under different nitrogen rates on non-structural carbohydrate(NSC) content(A-F), remobilization (C, G), accumulation(D, H) of stem in rice.
本研究表明,灌漿速率越大表明灌漿強(qiáng)度越強(qiáng),相應(yīng)的活躍灌漿期就越短,由于抽穗后進(jìn)行水分處理,而稻穗頂部一次枝梗的強(qiáng)勢(shì)粒在氮肥間影響差異較小,所以在一定程度上排除了強(qiáng)勢(shì)粒對(duì)水稻稻穗最終生長(zhǎng)量的影響,因此我們可以定性認(rèn)為稻穗基部的弱勢(shì)粒灌漿優(yōu)劣,就會(huì)對(duì)最終的結(jié)實(shí)率以及粒重有較大的影響,進(jìn)而影響產(chǎn)量。陳婷婷等[28]研究表明,與CI相比,WMD和WSD對(duì)強(qiáng)勢(shì)粒的灌漿速率和粒重?zé)o顯著影響;WMD顯著增加了弱勢(shì)粒的灌漿速率和粒重,WSD則顯著降低了弱勢(shì)粒的灌漿速率和粒重;也有研究表明[29],在低肥處理下,弱勢(shì)粒的籽粒充實(shí)度和粒重最高,并且顯著高于高氮處理。本研究表明,在CI條件下,灌漿速率和最終粒重在HN水平下呈下降趨勢(shì),這是因?yàn)樵谒殖渥愕臈l件下,氮肥施用量越高越不利于物質(zhì)的運(yùn)轉(zhuǎn),其生理機(jī)制需要進(jìn)一步研究。但在WSD條件下隨氮肥梯度增加而上升,因此,我們觀察到對(duì)于0 N處理來說,在嚴(yán)重水分脅迫下,MN和HN水平對(duì)灌漿速率和粒重具有“補(bǔ)償”效應(yīng)。相關(guān)性分析表明,弱勢(shì)粒的灌漿速率和最終粒重與結(jié)實(shí)率和千粒重之間呈極顯著正相關(guān)(=0.694**~0.972**),所以進(jìn)一步說明弱勢(shì)粒的灌漿對(duì)產(chǎn)量有很重要的影響(圖7)。在兩個(gè)水稻品種各自處理當(dāng)中弱勢(shì)粒灌漿均以WMD+MN水平最優(yōu),因?yàn)樵赪MD+MN組合下,首先在減少氮肥施用的情況下在灌漿中后期依然維持較高的根系氧化力,促進(jìn)了對(duì)水肥的吸收,進(jìn)而促進(jìn)地上部發(fā)育增加光合同化物[30-32],然后根系中有較高的IAA和Z+ZR含量以及葉片光合性能,可以在延緩植株衰老的同時(shí)[33-37],增加光合同化物以及莖稈中NSC向籽粒中運(yùn)輸,為灌漿中后期以弱勢(shì)粒灌漿為主的階段奠定了良好的生理基礎(chǔ),進(jìn)而提高了弱勢(shì)粒的灌漿水平和粒重。
**表示在0.01水平上顯著。
Fig. 7. Correlations between grain filling rate, final weight of inferior spikelets and seed setting rate, 1000-grain weight.
大穗型秈粳雜交稻甬優(yōu)2640與中穗型常規(guī)粳稻淮稻5號(hào)相比,其弱勢(shì)粒籽粒灌漿速率和粒重顯著低于淮稻5號(hào),我們推測(cè)是因?yàn)轲畠?yōu)2640的穎花量多,庫(kù)容大,所以相對(duì)而言其弱勢(shì)粒的基數(shù)大,從而單個(gè)弱勢(shì)粒的灌漿相對(duì)較慢以及生長(zhǎng)量小。韋還和等[38]研究發(fā)現(xiàn),大穗型秈粳雜交稻甬優(yōu)538常規(guī)粳稻及秈稻相比,穗基部籽粒灌漿速率和終極生長(zhǎng)量都最低,有效灌漿時(shí)間更長(zhǎng),這與本研究基本一致。
本研究為盆缽栽培,雖然可以在施肥和控水處理上進(jìn)行精確控制,但是實(shí)際生長(zhǎng)狀況還是與大田不同(例如光照,土壤水肥的保持力等),部分結(jié)果仍需大田進(jìn)一步驗(yàn)證。
施氮量和灌溉方式對(duì)水稻產(chǎn)量和籽粒灌漿的影響有明顯的互作效應(yīng)。中等施氮量與輕干濕交替灌溉相結(jié)合(MN+WMD),可以促進(jìn)弱勢(shì)粒灌漿,提高弱勢(shì)粒粒重,進(jìn)而提高產(chǎn)量和氮肥利用效率。本研究在中等施氮量與輕干濕交替灌溉(MN+WMD)最優(yōu)栽培模式下,根系激素含量的增加和葉片光合速率的提高以及花后莖中NSC向籽粒轉(zhuǎn)運(yùn)的促進(jìn)是提高弱勢(shì)粒灌漿和粒重、增加產(chǎn)量和氮肥利用效率的重要生理原因;而大穗型品種秈粳雜交稻甬優(yōu)2640與中穗型常規(guī)粳稻淮稻5號(hào)相比,雖然弱勢(shì)粒灌漿速率和粒重低,但是具有更大優(yōu)勢(shì)的庫(kù)容量,從而產(chǎn)量最終較高。
[1] Kato T, Takeda K. Associations among characters related to yield sink capacity in space-planted rice., 1996, 36: 1135-1139.
[2] Kato T, Shinmura D, Taniguchi A. Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types., 2007, 10: 442-450.
[3] Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical since the release of IR8 and its challenge of increasing rice yield potential., 1999, 39: 1552-1559.
[4] Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice: A super-domesticate in China.-, 2007, 100: 959-966.
[5] Peng S, Khush G S, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential., 2008, 108: 32-38.
[6] Mohapatra P K, Patel R, Sahu S K. Time of flowering affects grain quality and spikelet partitioning within the rice panicle., 1993, 20: 231-242.
[7] Yang J C, Zhang J H. Grain-filling problem in ‘super’ rice., 2010, 61(1):1.
[8] Wang Z, Zhang W, Beebout S S, Zhang H, Liu L, Yang J, Zhang J. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates., 2016, 193: 54-69.
[9] 張自常, 李鴻偉, 曹轉(zhuǎn)勤, 王志琴, 楊建昌. 施氮量和灌溉方式的交互作用對(duì)水稻產(chǎn)量和品質(zhì)的影響. 作物學(xué)報(bào),2013,39(1): 84-92.
Zhang Z C, Li H W, Cao Z Q, Wang Z Q, Yang J C. Effect of interaction between nitrogen rate and irrigation regime on grain yield and quality of rice., 2013, 39(1): 84-92.(in Chinese with English abstract)
[10] Cabangon R J, Tuong T P, Castillo E G. Effect of irrigation method and N-fertilizer management on rice yield,water productivity and nutrient-use efficiencies in typical lowland rice conditions in China., 2004, 2: 195-206.
[11] 王曉燕, 韋還和, 張洪程, 孫健, 張建民, 李超, 陸惠斌, 楊筠文, 馬榮榮, 許久夫, 王玨, 許躍進(jìn), 孫玉海. 水稻甬優(yōu) 12 產(chǎn)量 13.5 t·hm–2以上超高產(chǎn)群體的生育特征. 作物學(xué)報(bào), 2014, 40(12): 2149-2159.
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H. Population characteristics for super-high yielding hybrid rice Yongyou 12(>13.5 t ha–1)., 2014, 40(12): 2149-2159. (in Chinese with English abstract)
[12] 姜元華, 張洪程, 趙可, 許俊偉, 韋還和, 龍厚元, 王文婷, 戴其根, 霍中洋, 許軻, 魏海燕, 郭保衛(wèi). 長(zhǎng)江下游地區(qū)不同類型水稻品種產(chǎn)量及其構(gòu)成因素特征的研究. 中國(guó)水稻科學(xué), 2014, 28(6): 621-631.
Jiang Y H, Zhang H C, Zhao K, Xu J W, Wei H H, Long H Y, Wang W T, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Difference in yield and its components characteristics of different type rice cultivars in the lower reaches of the Yangtze River., 2014, 28(6): 621-631. (in Chinese with English abstract)
[13] Chen T, Xu Y, Wang J, Wang Z, Yang J, Zhang J. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling., 2013, 64(8): 2523.
[14] 張偉楊, 徐云姬, 錢希旸, 李銀銀, 王志琴, 楊建昌. 小麥籽粒游離多胺對(duì)土壤干旱的響應(yīng)及其與籽粒灌漿的關(guān)系. 作物學(xué)報(bào), 2016, 42(6):860-872.
Zhang W Y, Xu Y J, Qian X Y, Li Y Y, Wang Z Q, Yanng J C. Free Polyamines in Grains in Response to Soil Drought and Their Relationship with Grain Filling of Wheat., 2016, 42(6):860-872.(in Chinese with English abstract)
[15] Yang J C, Zhang J H, Huang Z, Wang Z Q, Zhu Q S, Liu L J. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice.,2002,90: 369-377.
[16] Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars., 1995, 35: 827-831.
[17] Yoshida S, Forno D, Cock J, Gomez K. Determination of sugar and starch in plant tissue//Yoshida S. Laboratory Manual for Physiological Studies of Rice. Philippines: The International Rice Research Institute, 1976: 46-49.
[18] 王成璦, 王伯倫, 張文香, 趙磊, 趙秀哲, 高連文. 土壤水分脅迫對(duì)水稻產(chǎn)量和品質(zhì)的影響. 作物學(xué)報(bào), 2006, 32(1): 131-137.
Wang C Y, Wang B L, Zhang W X, Zhao L, Zhao X S, Gao L W. Effects of Water Stress of Soil on Rice Yield and Quality., 2006, 32(1): 131-137. (in Chinese with English abstract)
[19] Tuong T P, Bouman B A M, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia., 2005, 8: 231-241.
[20] Yang J C, Liu K, Wang Z Q, Du Y, Zhang J H. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential., 2007, 49: 1445-1454.
[21] 蔡一霞,王維,朱智偉,張祖建,郎有忠,朱慶森. 結(jié)實(shí)期水分脅迫對(duì)不同氮肥水平下水稻產(chǎn)量及其品質(zhì)的影響.應(yīng)用生態(tài)學(xué)報(bào), 2006, 17(7): 1201-1206.
Cai Y X, Wang W, Zhu Z W, Zhang Z J, Lang Y Z, Zhu Q S. Effects of water stress during grain-filling period on rice grain yield and its quality under different nitrogen levels., 2006, 17(7): 1201-1206. (in Chinese with English abstract)
[22] 魏海燕, 張洪程, 戴其根, 霍中洋, 許柯, 杭杰, 馬群, 張勝飛, 張慶, 劉艷陽(yáng). 不同水稻氮利用效率基因型的物質(zhì)生產(chǎn)與積累特性. 作物學(xué)報(bào),2007(11): 1802-1809.
Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Hang J, Ma Q, Zhang S F, Zhang Q, Liu Y Y. Characteristics of Matter Production and Accumulation in Rice Genotypes with Different N Use Efficiency., 2007(11): 1802 -1809. (in Chinese with English abstract)
[23] Jiao Z H, Hou A, Shi Y, Huang G H, Wang Y H, Chen X . Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community., 2006, 37(13-14): 1889-1903.
[24] Xue Y, Duan H, Liu L, Wang Z, Yang J, Zhang J. An improved crop management increases grain yield and nitrogen and water use efficiency in rice., 2013, 53: 271-284.
[25] 薛亞光, 陳婷婷, 楊成, 王志琴, 劉立軍, 楊建昌. 中粳稻不同栽培模式對(duì)產(chǎn)量及其生理特性的影響. 作物學(xué)報(bào), 2010, 36(3): 466-476.
Xue Y G, Chen T T, Yang C, Wang Z Q, Liu L J, Yang J C. Effects of Different Cultivation Patterns on the Yield and Physiological Characteristics in Mid-Season Japonica Rice., 2010, 36(3): 466-476. (in Chinese with English abstract)
[26] 王紹華, 曹衛(wèi)星, 丁艷鋒, 田永超, 姜東. 水氮互作對(duì)水稻氮吸收與利用的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2004, 37(4): 497-501.
Wang S H, Cao W X, Ding Y F, Tian Y C, Jiang D. Interactions of Water Management and Nitrogen Fertilizer on Nitrogen Absorption and Utilization in Rice., 2004, 37(4): 497-501. (in Chinese with English abstract)
[27] 陳新紅, 劉凱, 王志琴, 楊建昌. 水稻水氮互作效應(yīng)與產(chǎn)量模型研究. 西北農(nóng)林科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2006, 34(9): 141-148.
Chen X H, Liu K, Wang Z Q, Yang J C. Studies on interactions between soil moisture and nitrogen and yield models in rice., 2006, 34(9): 141-148. (in Chinese with English abstract)
[28] 陳婷婷, 許更文, 錢希旸, 王志琴, 張耗, 楊建昌. 花后輕干-濕交替灌溉提高水稻籽粒淀粉合成相關(guān)基因的表達(dá). 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(7): 1288-1299.
Chen T T, Xu G W, Qian X Y, Wang Z Q, Zhang H, Yang J C. Post-anthesis alternate wetting and moderate soil drying irrigation enhance gene expressions of enzymes involved in starch synthesis in rice grains., 2015, 48(7): 1288-1299. (in Chinese with English abstract)
[29] 徐云姬, 張偉楊, 錢希旸, 李銀銀, 張耗, 楊建昌.施氮量對(duì)小麥籽粒灌漿的影響及其生理機(jī)制. 麥類作物學(xué)報(bào), 2015, 35(8): 1119-1126.
Xu Y G, Zhang W Y, Qian X Y, Li Y Y, Zhang H, Yang J C. Effect of nitrogen on grain filling of wheat and its physiological mechanism., 2015, 35(8): 1119-1126. (in Chinese with English abstract)
[30] Kato T, Sakurai N, Kuraishi S. The changes of endogenous abscisic acid in developing,grains of two rice cultivars with different grain size.,1993, 62: 456-461.
[31] 劉立軍, 吳長(zhǎng)付, 張耗, 楊建昌, 趙步洪. 實(shí)地氮肥管理對(duì)稻米品質(zhì)的影響. 中國(guó)水稻科學(xué), 2007, 21(6): 625-630.
Liu L J, Wu C F, Zhang H, Yang J C, Zhao B H. Effect of site-specific nitrogen management on rice quality., 2007, 21(6): 625-630. (in Chinese with English abstract)
[32] Yang J C, Zhang J H, Wang Z Q, Liu K, Wang P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene., 2006, 57: 149-160.
[33] Yang J, Zhang J, Liu K, Wang Z, Liu L. Abscisic acid and ethyleneinteract in wheat grains in response to soil drying duringgrain filling., 2006, 271: 293-303.
[34] Javid M G, Sorooshzadeh A, Sanavy. Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress., 2011, 65(2): 305-313.
[35] Saini H S, Westgate M E. Reproductive development in grain crops during drought., 2000, 68: 59-96.
[36] Inthapan P, Fukai S. Growth and yield of rice cultivars under sprinkler irrigation in south-eastern Queensland: 2. Comparison with maize and grain sorghum under wet and dry conditions., 1988, 28:243-248.
[37] Tao H, Brueck H, Ditten K, Kreye C, Lin S, Sattelmacher, B. Growth and yield formation of rice (L.) in the water-saving ground cover rice production system (GCRPS)., 2006, 95(1): 1-12.
[38] 韋還和, 孟天瑤, 李超, 張洪程, 史天宇, 馬榮榮, 王曉燕, 楊筠文, 戴其根, 霍中洋, 許軻, 魏海燕, 郭保衛(wèi). 秈粳交超級(jí)稻甬優(yōu)538的穗部特征及籽粒灌漿特性. 作物學(xué)報(bào), 2015, 41(12): 1858-1869.
Wei H H, Meng T Y, Li C, Zhang H C, Shi T Y, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Panicle Traits and Grain-filling Characteristics of Japonica/Indica Hybrid Super Rice Yongyou 538., 2015, 41(12): 1858-1869. (in Chinese with English abstract)
Effects of Irrigation Regimes During Grain Filling Under Different Nitrogen Rates on Inferior Spikelets Grain-Filling and Grain Yield of Rice
ZHU Kuanyu1, ZHAN Mingfei1, CHEN Jing1, WANG Zhiqin1, YANG Jianchang1, ZHAO Buhong2,*
(Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Co-Innovation Center for Modern Production Technology of Grain Crops,,;Lixiahe Region Agricultural Research Institute of Jiangsu,,;)
【Objective】 To investigate the effects of water and nitrogen application on yield and grain filling, 【Method】 an/hybrid Yongyou 2640 with large-panicle and ainbred Huaidao 5 with mid-panicle were grown in pots. After field seedling nursing then transplanting to pots, we designed three N rates, namely 0N (0 g N/pot), medium N level(MN, 2 g N/pot), and high N level(HN, 4 g N/pot), and three irrigation regimes post-anthesis consisting of conventional irrigation (CI, soil water potential was kept at 0 kPa), alternate wetting and moderate drying irrigation (WMD, rewatered when soil water potential reached -15 kPa), and alternate wetting and severe drying irrigation (WSD, rewatered when soil water potential reached -30 kPa). 【Result】 In the CI regime, MN showed the highest grain yield; in the WMD regimes, however, there was no significant difference in grain yield between MN and HN. Furthermore, in the WSD regime, grain yield under HN was the highest. In terms of grain filling, the superior spikelets present no significant difference in grain filling rate and final grain weight compared with all water-nitrogen treatments; Inferior spikelets performs better in grain filling rate and final grain weight at 0N and MN under CI and WMD regimes. However, in the WSD regime, 0N led to the lowest while HN showed the highest grain filling and final grain weight, but not significantly different to MN. The above results showed that there was an obvious interaction between water and nitrogen. Among the varieties, grain filling rate and grain weight of inferior spikelets of/hybrid Yongyou 2640 were lower than that ofinbred Huaidao 5, and the advantage of grain yield of Yongyou 2640 stemed from higher spikelet number per panicle. Finally, in the WMD+MN treatment, there was a higher nitrogen efficiency, creating higher grain yield with less nitrogen, and achieving the purpose of water and nitrogen saving. Secondly, it also eahanced the activity of root and leaves, improving the non-structural carbohydrate(NSC) remobilization, which promoted the upground biomass development and dry matter translocation in order to strengthen the inferior spikelets filling to induce an increase in grain yield. Therefore, it turns out to be the best water-nitrogen management in this research.
rice; yield; superior spikelets; inferior spikelets; interaction; physiological traits
Corresponding author,:
S143.1;S511.01
A
1001-7216(2018)02-0155-14
2017-05-24;
2017-08-23。
國(guó)家863計(jì)劃資助項(xiàng)目(2014AA10A605-4);國(guó)家自然科學(xué)基金資助項(xiàng)目(31471447, 31461143015, 31471438);江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金資助項(xiàng)目[CX(16)1001,CX(17)3042];江蘇省自然科學(xué)基金資助項(xiàng)目(BK20131238);2015年江蘇省水利科技項(xiàng)目(92)。
通訊聯(lián)系人,E-mail:zhaobuhongnks@126.com
10.16819/j.1001-7216.2018.7060