• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimizing Deep Learning Parameters Using Genetic Algorithm for Object Recognition and Robot Grasping

    2018-04-08 03:11:13DelowarHossainGenciCapiandMitsuruJindai

    Delowar Hossain, Genci Capi, and Mitsuru Jindai

    1.Introduction

    Deep learning (DL) starts an upsurge in the artificial intelligence research since Hinton et al.[1]first proposed it. After that, DL has been widely applied in different fields such as complex image recognition, signal recognition, automotive,texture synthesis, military, surveillance, natural language processing, and so on. The main focus of deep architectures is to explain the statistical variations in data and automatically discover the features abstraction from the lower level features to the higher level concepts. The aim is to learn feature hierarchies that are composed of lower level features into higher level features abstraction.

    Researches then began on analyzing DL networks for robotics applications. For robotics applications, object recognition is a very crucial research area. Nevita et al.[2]introduced the object recognition process in 1977. After then,researchers had proposed different types of methods for different types of object recognition problems[3]-[7]. Nowadays,DL is gaining popularity in the applications of robotics object recognition. Many researchers have worked on using DL[8]-[13]for several robot tasks. Those contributions make the robot applications useful in industrial applications as well as household work.

    However, the DL networks creation and training need significant effort and computation. DL has many parameters that have influenced on the network performance. Recently,researchers are working to integrate evolutionary algorithms with DL in order to optimize the network performance. Young et al.[14]addressed multi-node evolutionary neural networks for DL to automating network selection on computational clusters through hyper-parameter optimization using genetic algorithm(GA). A multilayer DL network using a GA was proposed by Lamos-Sweeney[15]. This method reduced the computational complexity and increased the overall flexibility of the DL algorithm. Lander[16]implemented an evolutionary technique in order to find the optimal abstract features for each auto-encoder and increased the overall quality and abilities of DL. Shao et al.[17]developed an evolutionary learning methodology by using the multi-objective genetic programming to generate domainadaptive global feature descriptors for image classification.

    In this paper, we propose the autonomous robot object recognition and grasping system using a GA and deep belief neural network (DBNN) method. GA is applied to optimize the parameters of DBNN method such as the number of epochs,number of hidden units, and learning rates in the hidden layers,which have much influence on the structures of the network and the quality of performance in DL networks. After optimizing the parameters, the objects are recognized by using the DBNN method. Then, the robot generates a trajectory from the initial position to the object grasping position, picks up the object, and places it in a predefined position.

    The rest of the paper is organized as follows: DBNN method is described in Section 2; the evolution of DBNN parameters is mentioned in Section 3; the GA evolution results are presented in Section 4; the GA and DBNN implementation on the robot are shown in Section 5. Finally, we conclude the paper and give the future work in Section 6.

    2.Methodology

    In this paper, we design the robot object recognition and grasping system by successfully applying the DBNN method and GA. The DBNN method is used for object recognition purpose and the GA is used to optimize the DBNN parameters.

    2.1 DBNN Method

    A DBNN is a generative graphical model composed of stochastic latent variables with multiple hidden layers of units between the input and output layers. A DBNN composes of a stack of restricted Boltzmann machines (RBMs). An RBM consists of a visible layer and a hidden layer or a hidden layer and another hidden layer. The neurons of a layer are fully connected to the neurons of another layer, but the neurons of the same layer are not internally connected with each other. An RBM reaches to the thermal equilibrium when the units of the visible layer are clamped. The general structure of a DBNN method is shown in Fig. 1. The DBNN follows two basic properties: 1) DBNN is a top-down layer-by-layer learning procedure. It has generative weights in the first two hidden layers that would find how the variables in one layer communicate with the variables of another layer, and discriminative weights in the last hidden layer which would be used to classify the objects. 2) After layer-wise learning, the values of the hidden units can be derived by bottom-up pass. It starts from the visible data vector in the bottom layer.

    Fig. 1. General structure of a DBNN method.

    The energy of the joint configurationbetween visible layer and hidden layer in RBM is with bias values

    where v is a set of visible units withand h is a set of hidden units with. nvis the total number of units in the visible layer and nhis the total number of units in the hidden layer. a is the bias term of visible units and b is the bias term of hidden units. w represents the weight between visible units and hidden units.

    We apply the DBNN method for object recognition purpose in the proposed experiments. The structures of the proposed implemented DBNN method is shown in Fig. 2. The DBNN method consists of one visible layer, three hidden layers, and one output layer. The visible layer consists of 784 neurons of the input image. The GA[18]finds the optimal number of hidden units in each layer. In our implementation,the number of hidden units in the 1st, 2nd, and 3rd hidden layers are 535, 229, and 355, respectively. The output layer consists of six different types of object classes. In the sampling method, we apply two different types of sampling: Contrastive divergence (CD) and persistent contrastive divergence (PCD).In the first hidden layer, we apply the PCD sampling method,as PCD explores the entire input domain. In the second and third hidden layers, we apply the CD sampling method, as CD explores near the input examples. By combining the two sampling methods, the proposed DBNN method can gather optimal features to recognize objects.

    Fig. 2. Structure of the proposed DBNN method.

    After training the input features, fine-tuned operation is performed using back propagation in order to reduce the discrepancies between the original data and its reconstruction.We use the softmax function to classify the objects. The back propagation operation will terminate if one of the following conditions is satisfied: 1) reach to the best performance, which is defined by the mean squared error (MSE), 2) reach to the maximum validation check, i.e., 6, 3) reach to the minimum gradient, or 4) reach to the maximum epoch number, i.e., 200.

    3.Evolution of DBNN Parameters

    Optimization is the process of making the DBNN method better. In the implementation, the aim is to optimize the DBNN parameters in order to improve the performance and the quality of the DL network structures.

    In order to optimize the DBNN parameters, we apply an evolutionary algorithm known as GA. A real value parallel GA[18]is employed in our optimization process, which outperforms on the single population GA in terms of the quality of the solution. Using parallel GA, we optimize the number of hidden units, the number of epochs, and the learning rates to reduce the error rate and training time. Our main contributions in parallel GA are the design of the fitness functions and the design of the parameters in the GA structure.

    The main goal is to find the optimal number of hidden units, epoch numbers, and learning rates. Therefore, the fitness is evaluated to minimize the error rate and network training time. The fitness function is defined as follows

    where eBBP is the number of misclassification divided by the total number of test data before back propagation, eABP is the number of misclassification divided by the total number of test data after back propagation, tBBP is the training time before back propagation, and tDBP is the training time during back propagation operation.

    The GA functions and parameters are presented in Table 1.A variety of mutation rates have been tried and the following mutation rates are found to be the best.

    Table 1: GA functions and parameters

    4.GA Results

    A real value parallel GA has been employed in conjunction with the mutation, selection, and crossover operation. The real value GA performs better comparing with the binary GA. The population size of GA is 100. The best objective value per subpopulation is presented in Fig. 3. It can be seen that the best objective value is 6.54599 on the 24th generation which is shown by red color. The fitness values of each individual through evolution are presented in Fig. 4. In addition, Fig. 4 shows how the number of individuals varies in every subpopulation during evolution. In the initial generation, the fitness value started from 11.5. The worst individuals were removed from the less successful subpopulations. After seven generations, from 50 to 70 in indexes of the individuals, the convergences of the individuals were better. The convergences would be the most successful at the end of the optimization on the 24th generation.

    Fig. 3. Best objective values per subpopulation.

    Fig. 4. Fitness value of individuals for all generation.

    The performances of GA with arbitrarily selected DBNN parameters were compared in [9]. In the case of arbitrarily selected DBNN parameters, the numbers of hidden units in three hidden layers are 1000, 1000, and 2000, the numbers of epochs are 200, 200, and 200, the learning rate of the 1st hidden layer is 0.001, the learning rates of the 2nd and 3rd hidden layers are both 0.1. In the case of GA, the optimal numbers of hidden units in three hidden layers are 535, 229,and 355, the numbers of epochs are 120, 207, and 221, the learning rate of the 1st hidden layer is 0.04474, the learning rates of the 2nd and 3rd hidden layers are both 0.44727. In both cases, the error rate is nearly same, i.e., 0.0133. The training time has been reduced 84% by using the optimized DBNN parameters compared with the arbitrary DBNN parameters.

    5.Experimental Results

    5.1 Robot Object Recognition Results

    In order to verify the optimized DBNN parameters, the experiments of robot object recognition were considered. A database of six robot graspable objects including four different types of screwdriver, a round ball caster, and a small electric battery was built for the experimental purpose. The database consisted of 1200 images (200 images for each object) in different orientations, positions, and lighting conditions.

    At first, the universal serial bus (USB) camera took a snapshot of the experimental environment and this snapshot would be converted to a grayscale image. Then, a morphological structuring element operation was applied in order to detect the existing objects in the environment. The detected objects were separated based on the centroid of the objects in the size of 28 pixels × 28 pixels. Each image was converted to the input vector of 784 neurons by reshaping operation. In addition, normalization and shuffling operations were performed. After then, these input vectors passed through the three hidden layers. As output, the DBNN generates six probability values for each input vector because we train the database using six different types of objects. From this probability values, the objects are recognized. For example, an object image, a red-black screwdriver in this case, is considered as input in Fig. 5. After processing this 28 pixels × 28 pixels image, the input vector passed through three hidden layers. As output, the DBNN generated six probability values including 0.0001, 0.0028, 0.9999, 0.0001, 0.0000, and 0.0000. The highest probability value is 0.9999 which is belonged to the 3rd object. By the same ways, other objects can be recognized.

    Fig. 5. Sample object recognition process for a red-black screwdriver.

    5.2 Robot Object Grasping Results

    For robot object grasping purpose, a PUMA robot manipulator from DENSO Corporation is used. The robot has six degrees of freedom. The robot can grasp any object within the size of 32 mm depth and 68 mm width using the robot gripper. A sequence of experiments for object recognition and robot pick-place operations in different positions, orientations,and lighting conditions were run. The snapshots of the realtime experiments are shown in Fig. 6.

    We designed a graphical user interface (GUI). The robot recognized the requested objects using DBNN method when the user required for an intended object by clicking on GUI.The robot found the grasping position based on the object center. The robot generated a trajectory from the initial position to the object grasping position. After reaching to the object position, the robot adjusted its gripper orientation based on the object orientation. Then the robot grasped the intended object,generated another path trajectory to the predefined destination position, placed the object, and returned to the initial position.At the same way, the remaining objects can be recognized and the robot can perform the pick-place operations.

    Fig. 6. Snapshots for object recognition and robot grasping process.

    6.Conclusions and Future Work

    We proposed a GA based DBNN parameters optimization method for robot object recognition and grasping. The proposed method optimized the number of hidden units, the number of epochs, and the learning rates in three hidden layers. We applied the optimized method on the real-time object recognition and robot grasping tasks. The objects were recognized by using the optimized DBNN method, then the robot grasped the objects and placed them in the predefined position. The experimental results show that the proposed method is efficient enough for robot object recognition and grasping tasks.

    The most important part of the future work is to integrate multi-population genetic algorithm (MPGA) with DBNN method. Therefore, we plan to investigate the MPGA performance with the different number of subpopulations and other genetic parameters.

    [1]G. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep belief nets,”Neural Computation, vol. 18,no. 7, pp. 1527-1554, 2006.

    [2]R. Nevita and T. Binford, “Description and recognition of curved objects,”Artificial Intelligence, vol. 8, no. 1, pp. 77-98, 1977.

    [3]D. G. Lowe, “Three-dimensional object recognition from single two-dimensional images,”Artificial Intelligence, vol.33, no. 1, pp. 355-395, 1987.

    [4]M. Lades, J. C. Vorbruggen, J. Buhmannet al., “Distortion invariant object recognition in the dynamic link architecture,”IEEE Trans. on Computers, vol. 42, no. 3, pp.300-311, 1993.

    [5]J. R. R. Uijlings, K. E. A. V. D. Sande, T. Gevers, and A. W.M. Smeulders, “Selective search for object recognition,”Intl.Journal of Computer Vision, vol. 104, no. 2, pp. 154-171,2013.

    [6]P. Agrawal, R. Girshick, and J. Malik, “Analyzing the performance of multilayer neural networks for object recognition,” inProc. of European Conf. on Computer Vision, 2014, pp. 329-344.

    [7]P. Wohlhart and V. Lepeti, “Learning descriptors for object recognition and 3D pose estimation,” inProc. of IEEE Conf.on Computer Vision and Pattern Recognition, 2015, pp.3109-3118.

    [8]D. Hossain and G. Capi, “Application of deep belief neural network for robot object recognition and grasping,” inProc.of the 2nd IEEE Intl. Workshop on Sensing, Actuation, and Motion Control, 2016, pp. 1-4.

    [9]D. Hossain, G. Capi, and M. Jindai, “Object recognition and robot grasping: A deep learning based approach,” inProc. of the 34th Annual Conf. of the Robotics Society of Japan,2016, pp. 1-4.

    [10]I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,”Intl. Journal of Robotics Research, vol. 34,no. 4-5, pp. 705-724, 2013.

    [11]L. Pinto and A. Gupta, “Supersizing self-supervision:Learning to grasp from 50K tries and 700 robot hours,” inProc. of IEEE Intl. Conf. on Robotics and Automation, 2016,pp. 16-21.

    [12]J. Redmon and A. Angelova, “Real-time grasp detection using convolutional neural networks,” inProc. of IEEE Intl.Conf. on Robotics and Automation, 2015, pp. 1316-1322.

    [13]S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen,“Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection,” inProc. of Intl. Symposium on Experimental Robotics, 2016, pp. 173-184.

    [14]S. Young, D. Rose, T. Karnowski, S. Lim, and R. Patton,“Optimizing deep learning hyper-parameters through an evolutionary algorithm,” inProc. of the Workshop on MachineLearninginHigh-PerformanceComputing Environments, 2015, pp. 4:1-18.

    [15]J. Lamos-Sweeney, “Deep learning using genetic algorithms,” M.S. thesis, Dept. Rochester Institute of Technology, NY, USA, 2012.

    [16]S. Lander, “An evolutionary method for training auto encoders for deep learning networks,” M.S. thesis, Dept.Computer Science, Missouri Univ., USA, 2014.

    [17]L. Shao, L. Liu, and X. Li, “Feature learning for image classification via multi-objective genetic programming,”IEEE Trans. on Neural Networks and Learning Systems, vol.25, no. 7, pp. 1359-1371, 2014.

    [18]G. Capi and K. Doya, “Evolution of recurrent neural controllers using an extended parallel genetic algorithm,”Robotics and Autonomous System, vol. 52, no. 2-3, pp. 148-159, 2005.

    免费观看人在逋| www.精华液| 亚洲七黄色美女视频| 精品人妻1区二区| 黑人欧美特级aaaaaa片| 这个男人来自地球电影免费观看| 国产91精品成人一区二区三区| 老司机靠b影院| 国产探花在线观看一区二区| 久久这里只有精品19| 十八禁网站免费在线| 特级一级黄色大片| 欧美中文日本在线观看视频| 日日干狠狠操夜夜爽| www日本黄色视频网| 亚洲色图av天堂| 欧美一级毛片孕妇| 免费人成视频x8x8入口观看| 日韩精品免费视频一区二区三区| 亚洲色图av天堂| 欧美大码av| 精品久久久久久久末码| 男女下面进入的视频免费午夜| 亚洲熟女毛片儿| 亚洲成av人片在线播放无| 欧美乱妇无乱码| 久久中文看片网| 亚洲自拍偷在线| 色哟哟哟哟哟哟| 国内精品一区二区在线观看| 久99久视频精品免费| 男女之事视频高清在线观看| 天堂动漫精品| 久久国产乱子伦精品免费另类| 亚洲精品av麻豆狂野| 狠狠狠狠99中文字幕| 91字幕亚洲| 欧美性长视频在线观看| 99久久99久久久精品蜜桃| 黑人欧美特级aaaaaa片| 最近最新中文字幕大全免费视频| 午夜福利18| av福利片在线观看| 校园春色视频在线观看| 国产熟女午夜一区二区三区| 日韩av在线大香蕉| 宅男免费午夜| 亚洲 国产 在线| 久热爱精品视频在线9| 成人亚洲精品av一区二区| 毛片女人毛片| 一边摸一边抽搐一进一小说| 精品久久久久久久末码| 久久国产乱子伦精品免费另类| 中文字幕久久专区| 久久久国产成人精品二区| 国产成人av教育| 嫁个100分男人电影在线观看| 美女黄网站色视频| 久久久久国产精品人妻aⅴ院| 人妻丰满熟妇av一区二区三区| 国产v大片淫在线免费观看| 久久精品成人免费网站| 极品教师在线免费播放| 男女午夜视频在线观看| 精品国产超薄肉色丝袜足j| 蜜桃久久精品国产亚洲av| 久99久视频精品免费| 欧美日韩亚洲综合一区二区三区_| 成人三级黄色视频| 三级男女做爰猛烈吃奶摸视频| 精品国产乱子伦一区二区三区| 日本撒尿小便嘘嘘汇集6| 欧美在线一区亚洲| 亚洲精品在线观看二区| 亚洲av五月六月丁香网| 黄色a级毛片大全视频| av片东京热男人的天堂| a级毛片在线看网站| 久久伊人香网站| 巨乳人妻的诱惑在线观看| 一边摸一边做爽爽视频免费| 特级一级黄色大片| 99热这里只有精品一区 | 亚洲第一电影网av| 午夜福利成人在线免费观看| 级片在线观看| √禁漫天堂资源中文www| 精品日产1卡2卡| 少妇的丰满在线观看| 国产亚洲av嫩草精品影院| 亚洲一码二码三码区别大吗| 国产伦人伦偷精品视频| 99国产综合亚洲精品| 美女午夜性视频免费| 国产精品电影一区二区三区| 成在线人永久免费视频| 亚洲国产看品久久| 99re在线观看精品视频| 欧美av亚洲av综合av国产av| 免费在线观看视频国产中文字幕亚洲| 色尼玛亚洲综合影院| 欧美色视频一区免费| 制服丝袜大香蕉在线| 亚洲熟妇熟女久久| 国产精品一区二区三区四区久久| 五月玫瑰六月丁香| 美女免费视频网站| 在线a可以看的网站| 免费在线观看日本一区| 欧美中文综合在线视频| e午夜精品久久久久久久| 一进一出抽搐动态| 男人的好看免费观看在线视频 | 嫁个100分男人电影在线观看| 99精品欧美一区二区三区四区| 久久精品国产清高在天天线| 啦啦啦免费观看视频1| 国产精品亚洲一级av第二区| 午夜日韩欧美国产| 亚洲在线自拍视频| 欧美成人免费av一区二区三区| 中文字幕精品亚洲无线码一区| 91国产中文字幕| 亚洲九九香蕉| 国产精品九九99| 变态另类丝袜制服| 国产一区在线观看成人免费| 女同久久另类99精品国产91| 亚洲自偷自拍图片 自拍| 高潮久久久久久久久久久不卡| 美女扒开内裤让男人捅视频| 老司机午夜十八禁免费视频| 国模一区二区三区四区视频 | av在线播放免费不卡| www.自偷自拍.com| 亚洲中文字幕一区二区三区有码在线看 | 日本免费一区二区三区高清不卡| 国产亚洲av高清不卡| 亚洲精品中文字幕在线视频| 日韩欧美在线二视频| 午夜免费观看网址| 久久久久久久久久黄片| 日本精品一区二区三区蜜桃| 久久精品人妻少妇| 在线观看免费视频日本深夜| 亚洲国产精品合色在线| 中文资源天堂在线| 久久国产精品人妻蜜桃| 成人午夜高清在线视频| 免费av毛片视频| 小说图片视频综合网站| 特级一级黄色大片| 成人一区二区视频在线观看| 亚洲av中文字字幕乱码综合| 99国产精品99久久久久| 夜夜躁狠狠躁天天躁| 亚洲欧美激情综合另类| 一本一本综合久久| 免费看十八禁软件| 桃红色精品国产亚洲av| 一本久久中文字幕| 国产熟女午夜一区二区三区| 99精品久久久久人妻精品| 真人一进一出gif抽搐免费| 我要搜黄色片| 一夜夜www| 一个人免费在线观看电影 | 日本黄大片高清| 黄色a级毛片大全视频| 校园春色视频在线观看| 夜夜夜夜夜久久久久| 99精品久久久久人妻精品| 黄色片一级片一级黄色片| 精品无人区乱码1区二区| 三级毛片av免费| 在线观看午夜福利视频| 男女视频在线观看网站免费 | 亚洲精品av麻豆狂野| 9191精品国产免费久久| 不卡av一区二区三区| 亚洲色图av天堂| 免费无遮挡裸体视频| 国产精品一区二区免费欧美| www.熟女人妻精品国产| 色av中文字幕| 91麻豆av在线| 久久精品国产99精品国产亚洲性色| 女警被强在线播放| 欧美人与性动交α欧美精品济南到| 亚洲人成电影免费在线| 欧美在线一区亚洲| 黄频高清免费视频| 男女之事视频高清在线观看| 丝袜人妻中文字幕| 亚洲人成77777在线视频| 国产私拍福利视频在线观看| 久久天堂一区二区三区四区| 国产欧美日韩精品亚洲av| 99国产综合亚洲精品| av视频在线观看入口| 国产伦人伦偷精品视频| 免费搜索国产男女视频| 国产精品 国内视频| 两性夫妻黄色片| 精品欧美国产一区二区三| 色噜噜av男人的天堂激情| 成人av一区二区三区在线看| 12—13女人毛片做爰片一| 亚洲美女黄片视频| 欧美黄色片欧美黄色片| 在线永久观看黄色视频| 午夜a级毛片| 亚洲美女视频黄频| 18禁国产床啪视频网站| 99热只有精品国产| 国产亚洲欧美在线一区二区| 免费搜索国产男女视频| 国产精品美女特级片免费视频播放器 | 91九色精品人成在线观看| 香蕉久久夜色| 国产精品一区二区精品视频观看| 国产精品亚洲一级av第二区| 男女午夜视频在线观看| 亚洲精品色激情综合| 19禁男女啪啪无遮挡网站| 老汉色av国产亚洲站长工具| 丁香欧美五月| 亚洲美女视频黄频| 亚洲精品美女久久av网站| 久久久久久久午夜电影| 18禁黄网站禁片免费观看直播| 一级a爱片免费观看的视频| 国产在线观看jvid| av在线播放免费不卡| 免费在线观看完整版高清| АⅤ资源中文在线天堂| 亚洲中文av在线| 床上黄色一级片| 国产高清视频在线观看网站| 欧美日韩中文字幕国产精品一区二区三区| 麻豆国产97在线/欧美 | 亚洲成人国产一区在线观看| 他把我摸到了高潮在线观看| 男女做爰动态图高潮gif福利片| or卡值多少钱| 麻豆国产97在线/欧美 | 久久精品成人免费网站| 亚洲精品久久国产高清桃花| 两性夫妻黄色片| 日本一区二区免费在线视频| 亚洲人成伊人成综合网2020| 少妇的丰满在线观看| www.精华液| 黄色a级毛片大全视频| 一级毛片精品| 熟妇人妻久久中文字幕3abv| 丁香六月欧美| 啦啦啦观看免费观看视频高清| 日本一本二区三区精品| 91在线观看av| 亚洲中文字幕一区二区三区有码在线看 | 国内毛片毛片毛片毛片毛片| av在线天堂中文字幕| 国产精品自产拍在线观看55亚洲| 1024香蕉在线观看| 99热只有精品国产| 亚洲精品国产精品久久久不卡| 亚洲精品美女久久av网站| 在线观看美女被高潮喷水网站 | 久久久久久久久免费视频了| 久久久久免费精品人妻一区二区| 亚洲一区中文字幕在线| 成人国产一区最新在线观看| 亚洲,欧美精品.| 少妇被粗大的猛进出69影院| 午夜a级毛片| 19禁男女啪啪无遮挡网站| 免费观看人在逋| 精品熟女少妇八av免费久了| 国产成人一区二区三区免费视频网站| 怎么达到女性高潮| 欧美成人午夜精品| 中文字幕人成人乱码亚洲影| 国产又色又爽无遮挡免费看| 99热只有精品国产| 日韩大码丰满熟妇| 女人被狂操c到高潮| 天堂影院成人在线观看| 波多野结衣巨乳人妻| 亚洲中文字幕一区二区三区有码在线看 | 精品欧美一区二区三区在线| 嫁个100分男人电影在线观看| 1024视频免费在线观看| 三级毛片av免费| 黄色a级毛片大全视频| 看黄色毛片网站| 精品福利观看| 国产三级中文精品| 国产成年人精品一区二区| 国产成人精品久久二区二区91| 国产精品美女特级片免费视频播放器 | 国产av不卡久久| 最近最新中文字幕大全免费视频| 国产精品 国内视频| 非洲黑人性xxxx精品又粗又长| 怎么达到女性高潮| 亚洲午夜精品一区,二区,三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品在线美女| 国产一区二区在线观看日韩 | 日本一二三区视频观看| 久久久久久国产a免费观看| 亚洲精品色激情综合| 丰满人妻一区二区三区视频av | 在线永久观看黄色视频| 国产一区二区在线观看日韩 | 搞女人的毛片| 老司机深夜福利视频在线观看| 欧美乱色亚洲激情| 亚洲国产欧美网| 老司机在亚洲福利影院| 午夜激情av网站| 午夜视频精品福利| 一区二区三区高清视频在线| 成人av一区二区三区在线看| av天堂在线播放| 男人舔奶头视频| 国产真人三级小视频在线观看| 国产欧美日韩精品亚洲av| 麻豆国产97在线/欧美 | 日韩欧美国产一区二区入口| 97人妻精品一区二区三区麻豆| 久久欧美精品欧美久久欧美| 午夜视频精品福利| 国产三级中文精品| 又紧又爽又黄一区二区| av免费在线观看网站| 天天一区二区日本电影三级| 黄色毛片三级朝国网站| 日本熟妇午夜| 一区二区三区激情视频| 日本五十路高清| 久久人人精品亚洲av| 99久久久亚洲精品蜜臀av| 国产野战对白在线观看| 国产精品久久久久久精品电影| 国产一区二区在线观看日韩 | 国产高清videossex| 最新美女视频免费是黄的| 欧美最黄视频在线播放免费| 亚洲成av人片在线播放无| 日韩国内少妇激情av| 51午夜福利影视在线观看| 免费在线观看完整版高清| 亚洲精品国产精品久久久不卡| 我要搜黄色片| 极品教师在线免费播放| 国产高清有码在线观看视频 | 美女黄网站色视频| 国产精品久久久人人做人人爽| 黄片小视频在线播放| a级毛片a级免费在线| 一级片免费观看大全| 成年免费大片在线观看| 首页视频小说图片口味搜索| 两人在一起打扑克的视频| 国产又黄又爽又无遮挡在线| 精品久久久久久成人av| 黄色a级毛片大全视频| 亚洲国产日韩欧美精品在线观看 | 国产精品99久久99久久久不卡| 亚洲中文字幕日韩| 一区二区三区高清视频在线| 精华霜和精华液先用哪个| 淫秽高清视频在线观看| 两个人视频免费观看高清| 亚洲精华国产精华精| 一进一出抽搐动态| 久久草成人影院| 黄色a级毛片大全视频| 啦啦啦韩国在线观看视频| 99国产精品99久久久久| 老司机深夜福利视频在线观看| 一进一出抽搐gif免费好疼| 色在线成人网| 一a级毛片在线观看| 国产主播在线观看一区二区| 丰满人妻一区二区三区视频av | 国产精品亚洲美女久久久| 成人av一区二区三区在线看| 少妇被粗大的猛进出69影院| 亚洲九九香蕉| 十八禁人妻一区二区| 最近最新中文字幕大全电影3| 午夜福利成人在线免费观看| 法律面前人人平等表现在哪些方面| 级片在线观看| 无限看片的www在线观看| ponron亚洲| 丰满人妻一区二区三区视频av | 亚洲人成网站在线播放欧美日韩| 亚洲精品一卡2卡三卡4卡5卡| 成年版毛片免费区| 久久欧美精品欧美久久欧美| 国产成年人精品一区二区| av超薄肉色丝袜交足视频| 很黄的视频免费| 免费看日本二区| 99国产精品99久久久久| 亚洲精品一卡2卡三卡4卡5卡| 97碰自拍视频| 精华霜和精华液先用哪个| 国产精品精品国产色婷婷| 黄片大片在线免费观看| 一级作爱视频免费观看| 97超级碰碰碰精品色视频在线观看| 99久久综合精品五月天人人| 桃红色精品国产亚洲av| 欧美乱妇无乱码| 免费看日本二区| 国产又黄又爽又无遮挡在线| 亚洲av成人一区二区三| 精品一区二区三区视频在线观看免费| 亚洲成人精品中文字幕电影| 日本精品一区二区三区蜜桃| 免费搜索国产男女视频| 97超级碰碰碰精品色视频在线观看| 中文字幕最新亚洲高清| netflix在线观看网站| 曰老女人黄片| 亚洲成人中文字幕在线播放| www.999成人在线观看| 一本一本综合久久| 两个人看的免费小视频| 亚洲va日本ⅴa欧美va伊人久久| 在线观看一区二区三区| 日韩大尺度精品在线看网址| 亚洲avbb在线观看| 日本黄色视频三级网站网址| 巨乳人妻的诱惑在线观看| 天堂动漫精品| 久久久久久亚洲精品国产蜜桃av| 国产成人精品久久二区二区免费| 国产午夜福利久久久久久| 色噜噜av男人的天堂激情| 精品久久久久久久毛片微露脸| 制服诱惑二区| 国产亚洲精品一区二区www| 久久欧美精品欧美久久欧美| 长腿黑丝高跟| 国产成人影院久久av| 欧美中文综合在线视频| 亚洲国产欧美网| av福利片在线观看| 国产91精品成人一区二区三区| 国产高清有码在线观看视频 | 五月伊人婷婷丁香| 亚洲av美国av| 欧美日韩乱码在线| 非洲黑人性xxxx精品又粗又长| 国产又黄又爽又无遮挡在线| 超碰成人久久| 欧美av亚洲av综合av国产av| 国产精品爽爽va在线观看网站| 亚洲欧美一区二区三区黑人| 香蕉国产在线看| 免费看日本二区| 日日摸夜夜添夜夜添小说| 老司机靠b影院| 男女下面进入的视频免费午夜| 亚洲人成77777在线视频| 一级作爱视频免费观看| 久久久久久久久免费视频了| 精品不卡国产一区二区三区| 97人妻精品一区二区三区麻豆| 丝袜美腿诱惑在线| x7x7x7水蜜桃| 精品一区二区三区av网在线观看| 亚洲国产精品合色在线| 不卡一级毛片| 欧美午夜高清在线| 久久久久久久精品吃奶| 午夜激情福利司机影院| 中文字幕精品亚洲无线码一区| 国产高清videossex| 国产精品免费视频内射| 香蕉av资源在线| 18禁裸乳无遮挡免费网站照片| 黄色毛片三级朝国网站| 成人av一区二区三区在线看| 岛国视频午夜一区免费看| 91国产中文字幕| 一本大道久久a久久精品| 色在线成人网| а√天堂www在线а√下载| 欧美成人免费av一区二区三区| 悠悠久久av| 久久久久久久午夜电影| 很黄的视频免费| 久久国产精品影院| 18禁国产床啪视频网站| 首页视频小说图片口味搜索| 熟妇人妻久久中文字幕3abv| 变态另类丝袜制服| 国产熟女午夜一区二区三区| 免费在线观看日本一区| 午夜福利18| 亚洲欧美一区二区三区黑人| 欧美一级毛片孕妇| 曰老女人黄片| 国产三级黄色录像| 中文字幕精品亚洲无线码一区| 黑人操中国人逼视频| www.自偷自拍.com| 午夜福利在线观看吧| www.熟女人妻精品国产| 三级男女做爰猛烈吃奶摸视频| 午夜福利免费观看在线| 国产成人av教育| 麻豆成人av在线观看| 一区福利在线观看| 日韩高清综合在线| 欧美精品啪啪一区二区三区| 午夜免费观看网址| 在线观看日韩欧美| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久久久黄片| 久久久国产成人免费| 亚洲国产欧美网| 午夜福利18| 日本一区二区免费在线视频| 超碰成人久久| 99热只有精品国产| 精品无人区乱码1区二区| 最近最新中文字幕大全电影3| 每晚都被弄得嗷嗷叫到高潮| 免费看美女性在线毛片视频| 窝窝影院91人妻| 国产在线观看jvid| 亚洲aⅴ乱码一区二区在线播放 | 日日爽夜夜爽网站| 久久精品国产清高在天天线| 国产亚洲av嫩草精品影院| 欧美久久黑人一区二区| 国产不卡一卡二| 久久久久国内视频| 免费在线观看视频国产中文字幕亚洲| 丁香欧美五月| 69av精品久久久久久| 黄色丝袜av网址大全| 小说图片视频综合网站| 国产一区二区在线av高清观看| 两人在一起打扑克的视频| 女人爽到高潮嗷嗷叫在线视频| 丁香欧美五月| 亚洲aⅴ乱码一区二区在线播放 | 精品国内亚洲2022精品成人| 嫩草影视91久久| 黄色视频,在线免费观看| 老司机午夜福利在线观看视频| 99国产精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久久久午夜电影| 国产97色在线日韩免费| 一二三四在线观看免费中文在| 久久精品影院6| 给我免费播放毛片高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成网站在线播放欧美日韩| 1024香蕉在线观看| 18美女黄网站色大片免费观看| 久久久久久久久中文| 久久精品夜夜夜夜夜久久蜜豆 | 麻豆成人午夜福利视频| 搞女人的毛片| 日韩欧美免费精品| 九色国产91popny在线| 黄色 视频免费看| 亚洲精品久久国产高清桃花| 99国产精品99久久久久| av在线播放免费不卡| 国产精品久久视频播放| 中文在线观看免费www的网站 | 久久久久久大精品| 99久久综合精品五月天人人| 在线视频色国产色| 18禁裸乳无遮挡免费网站照片| 国产乱人伦免费视频| www.999成人在线观看| 最新美女视频免费是黄的| 久久久久亚洲av毛片大全| 日本 欧美在线| 亚洲专区国产一区二区| 天堂动漫精品| 久久久国产成人精品二区| av中文乱码字幕在线| cao死你这个sao货| 亚洲天堂国产精品一区在线| 久久精品aⅴ一区二区三区四区| av福利片在线| 不卡av一区二区三区| 欧美日韩乱码在线| 99热这里只有是精品50| 亚洲男人天堂网一区| 很黄的视频免费| www.自偷自拍.com| 在线观看午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 九九热线精品视视频播放| 亚洲男人的天堂狠狠| 中文字幕人成人乱码亚洲影| 男人的好看免费观看在线视频 | 女同久久另类99精品国产91| 国产三级黄色录像|