• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism

    2018-04-08 10:59:05JiapengMIAOTaoWANGHuijunWANGandJianqiSUN
    Advances in Atmospheric Sciences 2018年6期

    Jiapeng MIAO,Tao WANG,Huijun WANG,and Jianqi SUN

    1Nansen-Zhu International Research Center,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    2Joint Laboratory for Climate and Environmental Change,Chengdu University of Information Technology,Chengdu 610225,China

    3Key Laboratory of Meteorological Disaster,Nanjing University of Information Science and Technology,Nanjing 210044,China

    4Climate Change Research Center,Chinese Academy of Sciences,Beijing 100029,China

    5University of Chinese Academy of Sciences,Beijing 100049,China

    1. Introduction

    The Pacific Walker circulation(PWC)is one of the most important circulation systems in the tropics(Bjerknes,1969).Changes in the PWC are associated with major changes in rainfall in many parts of the world(Ropelewski and Halpert,1989;Veiga et al.,2005;Williams and Funk,2011).Williams and Funk(2011)suggested that the westward extension of the PWC likely contributes to increased subsidence and decreased eastern African rainfall from March to June.In addition,changes in the PWC are also related to extreme climate and weather events,such as the decreased number of severe tropical cyclones making landfall over eastern Australia and increasing potential of biomass burning in Sumatra,Indonesia(Callaghan and Power,2011;Lestari et al.,2014).Therefore,understanding the PWC is essential for predicting meteorological disasters and managing water resources.

    On the interannual timescale,the intensity of PWC shows considerable variability(Tanaka et al.,2004).It is closely associated with the El Nio–Southern Oscillation(ENSO)(e.g.,Philander,1990;Tanaka et al.,2004).For instance,the weaker PWC in 1982/83 and 1997/98 was closely linked to the super El Nio events in those years.On the interdecadal timescale,some recent studies have shown that the PWC experienced interdecadal weakening in the mid-1970s and enhancement since the late 1990s(e.g.,Burgman et al.,2008;Dong and Lu,2013;McGregor et al.,2014).McGregor et al.(2014)suggested that the recent Atlantic warming trend and related trans-basin coupling processes play key roles in the observational-based estimate of PWC enhancement since the late 1990s.In addition,some modeling and observationalbased estimates(using the HadSLP2 dataset)have shown that the PWC shows a long-term weakening trend in the 20th cen-tury under global warming(Tanaka et al.,2004;Vecchi et al.,2006;Vecchi and Soden,2007;DiNezio et al.,2009;Power and Kociuba,2011;Zhang and Li,2017).On the contrary,other modeling and observational-based estimates(using the 20CR dataset)have argued that the PWC strengthened in the 20th century(Meng et al.,2012;Sandeep et al.,2014;Li et al.,2015).Hence,there are many uncertainties about the trend of PWC in the 20th century,due to large uncertainties in the observed sea surface temperature(SST)and sea level pressure(SLP)(Deser et al.,2010;L’Heureux et al.,2013).

    Knutson and Manabe(1995)indicated two different mechanisms in determining the long-term trend of the PWC.The first mechanism works through spatially homogeneous warming in the free atmosphere,where the strengthened hydrological cycle causes enhanced upper-tropospheric warming and increased static stability(Held and Soden,2006;Vecchi and Soden,2007).The second mechanism,inhomogeneous warming,is dependent on regional differences in the strength of ocean dynamical thermostat cooling,evaporative cooling,land–sea thermal contrast,and cloud cover feedbacks(Clement et al.,1996;Meehl and Washington,1996;Bayr and Dommenget,2013).Besides,changes in the PWC are also affected by the tropical Pacific’s internal variabilities.For example,different phases of Pacific Decadal Oscillation(PDO)can provide different SST backgrounds in the central and eastern tropical Pacific,which locally influenc the strength of the PWC(Garcia and Kayano,2008;Dong and Lu,2013).In addition,decadal ENSO variations,with more central Pacific–type El Nio events,may well have led to the intensified PWC during the period 1979–2008(Sohn et al.,2013).In a recent study,Power and Kociuba(2011)clarified the relative roles of external forcing and internal variability in the observed weakening of the PWC during the 20th century,based on the HadSLP2 dataset.They pointed out that external forcing accounts for nearly 30%–70%of the weakening of the PWC,with internal variability compensating for the rest.

    Strong volcanic eruptions can induce an impact on global climate at seasonal to multidecadal timescales(e.g.,Robock,2000;Shindell et al.,2004;Gleckler et al.,2006;Em ile-Geay et al.,2008;Otter?,2008;Wang et al.,2012;Zanchettin et al.,2012).The climatic effects from strong tropical volcanic eruptions(SVEs)are mainly ow ing to the ejection of sulfur dioxide(SO2)into the stratosphere.The SO2is then converted to sulfate aerosol,which can re fl ect and scatter solar radiation and absorb both solar and terrestrial radiation.The temperature thus increases in the stratosphere but decreases in the troposphere after the eruptions.As a result,SVEs work as a narrow peak–type perturbation to the climate system(Stenchikov et al.,1998;Robock,2000).In previous modeling studies of the last millennium,most attention has been paid to the responses of the monsoon and related precipitation to SVEs(e.g.,Peng et al.,2010;Cui et al.,2014;Man et al.,2014;Liu et al.,2016;M iao et al.,2016).Besides,numerous studies have addressed SVE effects on large-scale climate modes,such as Arctic Oscillation,North Atlantic Oscillation,Atlantic Multidecadal Oscillation,and PDO(e.g.,Shindell et al.,2004;Otter? et al.,2010;Wang et al.,2012;Zanchettin et al.,2012).

    ENSO is one of the most striking interannual variabilities in the climate system.Focusing on the tropics,the relationship between El Nio events and volcanic eruptions has been a hot research topic(e.g.,Em ile-Geay et al.,2008;Ohba et al.,2013;Maher et al.,2015;Lim et al.,2016).However,there is still considerable uncertainty and no consensus has been reached on the linkage between volcanic eruptions and the responses of ENSO[see Ding et al.(2014)and many references therein].Some studies suggest that anomalous trade winds over the Pacific play a key role in triggering and promoting the development of an El Nio event(e.g.,Lai et al.,2015).Thus,a better understanding of how the PWC and related trade winds respond to SVEs is important.A reliable result would be helpful in understanding the subsequent evolution of ENSO and related coupled ocean–atmosphere processes.

    In this study,therefore,we examine how the PWC responds to SVEs using a three-member simulation(covering the period 1400–1999)performed with HadCM 3.The use of a single external forcing(volcanic forcing only)and a large number of SVEs will help us to determ ine how SVEs affect the PWC in the model.Four additional simulations(with CAM 4)are used to examine the relative importance of SVE-induced SST cooling in different regions in affecting the PWC.We also use reanalysis data to explore how the PWC responds to SVEs in the observational data.

    The remainder of the paper is organized as follows:In section 2 we describe the model,data and methods.Sections 3–5 investigate the response of the PWC to SVEs in the model and observations.Lastly,conclusions and some further discussion are given in section 6.

    2. M odel,data and methods

    HadCM 3 is a coupled ocean–atmosphere model with sea ice and land surface schemes(Gordon et al.,2000;Pope et al.,2000).Its atmosphere component is the UK Meteorological Office’s unified forecast and climate model,with a horizontal grid spacing of 2.5°×3.75°and 19 vertical levels.The ocean component is a 20-level version of the Cox(1984)model on a 1.25°×1.25°grid.Six ocean grid boxes correspond to each atmosphere model grid box and partial sea-ice cover can be included at each high-latitude ocean grid box(Johns et al.,1997).The sea-ice model uses a simple thermodynamic scheme and consists of parametrizations of ice drift and leads(Cattle and Crossley,1995).The thermodynamics of the ice model is based on the zero-layer model of Sem tner(1976),and the parametrization of ice concentration is based on that of Hibler(1979).The models mentioned above are coupled once per day,and the coupling details have been well documented in a previous study(Gordon et al.,2000).

    We analyzed three simulations covering the period 1400–1999,hereafter referred to as VOLC(r1,r2,r3)(Schurer et al.,2013).They were run utilizing volcanic forcing throughout the simulation,with the follow ing additional forcings set as constant(dates in parentheses indicate the year of constant forcing):solar forcing(1400),well-mixed greenhouse gases(1400),land use(1400),ozone(pre-industrial levels),and orbital forcing(1400)(Schurer et al.,2014).The volcanic forcing used here is from Crowley et al.(2008).The reconstructed aerosol optical depth(AOD)was supplied in four bands(90°–30°N,30°N–equator,equator–30°S,30°–90°S),and employed in the model.The ensembles were all initialized with ocean conditions in the year 1400 from All LONG(a long simulation with all relevant forcings covering the period 800–2000 performed with HadCM 3),but with different atmospheric initial states near 1400 of All LONG.Due to the large number of SVE samples in this experiment,our results should be convincing.In addition,the climatological PWC in VOLC captures the large-scale overturning characteristics over the tropical Pacific,which constitute a good starting point to address the response of the PWC to SVEs[Fig.S1 in electronic supplementary material(ESM)].

    Besides,we used CAM 4 to examine the underlying mechanisms behind the response of the PWC to the SVEs.CAM 4 is the atmospheric component of the NCAR’s Community Earth System Model(Gent et al.,2011).The default finite volume scheme and 26 layers in the vertical direction were used.The experiments were performed with“F 2000”con figuration,with prescribed climatological SST and sea ice and an active land model.Further details of the experiments are clarified in section 4.

    Fig.1. (a)Time series of tropical AOD during 1400–1999,based on Crowley et al.(2008).(b)SEA of the simulated monthly anomalies of globally averaged top-of-the-atmosphere radiative fluxes(units:W m?2).Month 0 on the x-axis is the peak time of the SVEs.Orange point means the volcanic eruption time.Positive values denote downward flux.

    In addition,we used surface air temperature(SAT),SLP and wind fields covering the period 1851–2014 from version 2c of the monthly 20CR dataset(Whitaker et al.,2004;Compo et al.,2006;Compo et al.,2011;Hirahara et al.,2014),to explore how the PWC responds to SVEs in observations.The observed SST data were from ERSST.v3b(Xue et al.,2003;Smith et al.,2008).

    To examine the influenc of volcanic eruptions on climate variation,we used the superposed epoch analysis(SEA)method(Robock and Mao,1995)in this study.This is a statistical technique aimed at revealing the degree of correlation between two data sequences,which can resolve significant signal-to-noise ratios and is often adopted in volcanic-related studies(e.g.,Adams et al.,2003;Cui et al.,2014).In this study,the essence of SEA was to extract subsets of the PWC index from the whole simulation within five years near each peak time of the SVEs,and then to superpose all extracted subsets by adding them according to the peak time.Significance was calculated using a standard Monte Carlo randomization procedure(10000 times for this study).Furthermore,we used composite analysis to illustrate the anomalous pattern of atmospheric circulation over the tropics in the posteruption years.Statistical analysis was performed by applying thet-test.Before both SEA and composite analysis,we removed the seasonal cycle from the monthly data,because the SVEs occurred in different months.We chose 54 SVE samples(from three ensemble members)during the last 600 years with an anomalous tropical AOD,as shown in Fig.1a.

    Fig.4. Composite anomalies of simulated(a)850-hPa velocity potential(units:105 m2 s?1)and(b)200-hPa velocity potential(units:105 m2 s?1)in the first year after the peak time of the SVEs.The reference period is 1401–1999.Areas with anomalies significant at the 95%confidence level are shaded with light gray.

    In addition,two kinds of in dices were used to reveal the evolution of the PWC before and after the SVEs.One was the large-scale tropical Indo-Pacific SLP gradient(dslp)index,which was computed from the difference in SLP averaged over the central-eastern Pacific(5°S–5°N,160°–80°W)and over the Indian Ocean–western Pacific(5°S–5°N,80°–160°E)(Vecchi et al.,2006).The other was the surface wind(Us)index,defined astheaveraged Pacificsurfacezonal wind(5°S–5°N,150°E–150°W)(Luo et al.,2012;Ma and Zhou,2016).For the output from the CAM 4 experiments,the U850 index[averaged zonal wind over(5°S–5°N,150°E–150°W)was used instead.The Nio3.4 SST index,defined as the SST anomalies averaged over the Nio3.4 area(5°S–5°N,120°–170°W),was used to reveal the evolution of ENSO before and after the SVEs.

    3. Response of the PWC to SVEs in the model

    Fig.5. Composite anomalies of simulated(a)SAT(units:°C),(b)SLP(units:hPa)and(c)SST(units:°C)in the first year after the peak time of the SVEs.The reference period is 1401–1999.Areas with anomalies significant at the 95%confidence level are denoted with dots.

    Figure 1b illustrates the SEA of the globally averaged top-of-the-atmosphere radiative flux anomalies around SVEs.Volcanic aerosols resultin a reduction of thedownward shortwave and outgoing longwave radiation.The first effect is due to the property of aerosol particles of reflecting and scatter-ing incoming solar radiation,of which the peak value is about?4.6 W m?2.The latter effect is due to absorption of upward long wave radiation from the troposphere and surface by sulfate aerosols,of which the peak value is about 2 W m?2.Hence,the total radiation decreases significantly,with a peak value of nearly?2.6 W m?2after the SVEs.The radiative effect can persist for more than two years.

    The radiative forcing leads to significantly anomalous changes over the tropical Pacific in the model.Figures 2a and b show the results of the SEA of the simulated dslp index and Us index.The two kinds of PWC index both change significantly in the first year after the peak time of the SVEs.The decreased dslp index suggests a reduced tropical SLP gradient between the central-eastern Pacific and Indian Ocean–western Pacific.At the same time,the increased Us index indicates weakened trade winds over the tropical Pacific.Changes in these two in dices suggest that SVEs can lead to a weakened PWC in the first year after the peak time of SVEs in the model.

    Figure 3a illustrates the composite anomalies of the lower-tropospheric wind field in the first year after the peak time of SVEs.significant westerly wind anomalies are evident over the tropical Pacific.In contrast,there are noticeable easterly wind anomalies over the tropics in the upper troposphere(Fig.3b).Meanwhile,an anomalous lowertropospheric divergence and upper-tropospheric convergence can be found over the Maritime Continent,suggesting suppressed convection over this region(Fig.4).Correspondingly,the anomalous lower-tropospheric convergence and uppertropospheric divergence weaken the descending motion over the central-eastern tropical Pacific(Fig.4).Overall,atmospheric circulation anomalies also indicate that the PWC is significantly weakened after SVEs in the model.However,no similar weakening of the PWC can be found in the year before SVEs.Furthermore,this weakening begins to recover in the second year after SVEs(Fig.S2 in ESM).

    Fig.6. (a)Annual climatological precipitation(units:mm d?1)during 1401–1999 in the simulation.Composite anomalies of simulated(b)precipitation(units:mm d?1)and(c)evaporation(units:mm d?1)in the first year after the peak time of the SVEs.The reference period is 1401–1999.Areas with anomalies significant at the 95%confidence level are denoted with dots.

    To understand the mechanisms behind the PWC’s response,we examine the anomalies of associated oceanic and atmospheric variables over the tropical and subtropical Pacific following the SVEs.Figure 5a shows the response of SAT to the SVEs.In the first year after the peak time,cooling over land is stronger than that over the ocean,which is mainly caused by their different heat capacities.Therefore,surface temperature over the Maritime Continent gets much lower than that over the central-eastern tropical Pacific.As a result,due to the non-uniform zonal temperature anomalies in the tropics,SLP increases over the Maritime Continent and decreases in the central tropical Pacific(Fig.5b).Therefore,the SLP gradient between the eastern tropical Pacific and the Maritime Continent is reduced,which weakens the trade winds over the tropical Pacific and leads to a weakened PWC in the first year after the peak time of the SVEs.Meanwhile,through the positive Bjerknes feedback,weakened trade winds can cause an El Nio-like warming over the tropical Pacific(Fig.5c),which in turn contributes to the reduced zonal SLP gradient and weakened PWC.

    Changes in trade winds over the Pacific are also associated with the intensity of the Intertropical Convergence Zone(ITCZ)and the South Pacific convergence zone(SPCZ).Figure 6a shows the annual climatological precipitation in the VOLC simulation.It indicates the location of the climatological ITCZ and SPCZ in the model.After the SVEs,the simulated precipitation decreases over Southeast Asia,Australia,and areas where the ITCZ and SPCZ are mainly located.Nevertheless,it increases south of the ITCZ and north of the SPCZ.This anomalous precipitation pattern suggests that the ITCZ and SPCZ are weakened and shift toward the equator after SVEs,which is conducive to the weakening of trade winds.

    Due to SVE-induced large-scale surface cooling,evaporation decreases significantly over the tropics,and thus reduces the water vapor transport for the ITCZ and SPCZ.As a result,the ITCZ and SPCZ are weakened.Similar processes can be found in the Norwegian Earth System Model(Pausata et al.,2015)and the ECHO-G coupled model(Lim et al.,2016).More importantly,due to large-scale surface cooling over the subtropical and midlatitude Pacific,stronger cooling can be found in the whole troposphere over the cloudless subtropics(Fig.7).It can enlarge the temperature contrast from midlatitudes to the equator,which is favorable for equatorward displacements of the ITCZ and SPCZ(Broccoli et al.,2006;Stevenson et al.,2016).

    Fig.7. Composite anomalies of simulated air temperature(units:°C)over the Pacific(120°E–80°W)in the first year after the peak time of the SVEs.The reference period is 1401–1999.Areas with anomalies significant at the 95%confidence level are denoted with dots.

    Fig.8. Differences in SLP(units:hPa)between CAM 4 experiments:(a)EXP2 minus EXP1;(b)EXP3 minus EXP1;(c)EXP4 minus EXP1;(d)EXP2 minus EXP3.Areas with anomalies significant at the 95%confidence level are denoted with dots.

    Overall,SVE-induced changes of the east–west SLP gradient and the weakening and equatorward displacements of the ITCZ and SPCZ can lead to a weakened PWC in the first year after the peak time of the SVEs in HadCM 3.

    4. Atmospheric model simulations

    The above results suggest that both the tropical and subtropical/midlatitude surface temperature anomalies can lead to a weakening of the PWC.To find out their relative contribution,we performed four additional simulations using CAM 4.Firstly,we carried out a control simulation(EXP1)with the model’s climatological SST and sea-ice boundary conditions(“-compset F 2000”).In the sensitivity experiments,similar runs were performed but with added SVE-induced SST anomalies(Fig.5c,black frame)in the subtropical/midlatitude Pacific[(15°–50°N,140°E–70°W);(15°–50°S,160°E–70°W)]and around the Maritime Continent[(30°S–20°N,90°–160°E),excluding the overlapping region)to the climatological SST.Specifically,EXP2 resembled the control run but added all the SST anomalies over these three regions.EXP3(EXP4)was also similar to the control run but only added SST anomalies around the Maritime Continent(in the subtropical/midlatitude Pacific).Each run was integrated for 60 years and the average for the last 40 years is analyzed.

    The difference between EXP2and EXP1 reflects the combined impact of strong cooling over the Maritime Continent and subtropical/midlatitude Pacific on the atmospheric circulations.As shown in Fig.8a,SLP increases over the Maritime Continent and decreases over the central-eastern tropical Pacific.As a result,westerly and easterly wind anomalies can be found over the tropical Pacific in the lower and upper troposphere,respectively(Figs.9a and e),indicating that the PWC is significant weakened.The difference in U850 index between EXP2 and EXP1(Fig.10)further con firms that SVE-induced negative SST anomalies play an important role in weakening the PWC.Compared with the U850 index anomaly in HadCM 3,the larger change of U850 index between EXP2 and EXP1 is likely caused by the sustained SST cooling forcing in the CAM 4 experiments.In contrast,almost the same increase(decrease)in SLP over the Maritime Continent(central-eastern tropical Pacific)(Figure 8b),and associated weakening of the PWC(Figs.9b and f),can be found in EXP3.The comparison between changes in U850 index suggests that influenc from the negative SST forcing around the Maritime Continent can account for approximately 93%of the weakening of the PWC in the all-forcing experiment(i.e.,EXP2).This means that the SST cooling around the Maritime Continent plays a dominant role in weakening the PWC following SVEs.In the comparison between EXP4 and EXP1,there are no significant changes in the east–west SLP gradient(Fig.8c)and lower-tropospheric wind fields(Fig.9c)over the tropical Pacific.However,the changes in precipitation between the two experiments indicates equator ward displacements of the ITCZ and SPCZ(Fig.S3 in ESM),which cause easterly wind anomalies in the upper troposphere over the western-central tropical Pacific(Fig.9g).Therefore,the subtropical and midlatitude cooling can also contribute to the weakened PWC.Nevertheless,its contribution is much weaker(accounting for about 6%of the change in U850 index in EXP2).

    Fig.9. As in Fig.8 but for the(a–d)850-hPa wind field(units:m s?1)and(e–h)200-hPa wind field(units:m s?1).Areas with anomalies significant at the 95%confidence level are shaded with gray.

    5. Response of the PWC to SVEs in the observations

    In the observations,there are five SVEs over the past more than 100 years.They was the Krakatau eruption(1883),the Santa Maria eruption(1902),the Agung eruption(1963),the El Chich′on eruption(1982),and the Pinatubo eruption(1991).A weakened PWC also can be observed following these SVEs.Based on the 20CR data,the dslp index decreases in the first post-eruption year(Fig.11).At the same time,the Us index increases significantly.Both of these indices indicate an interannual weakening of the PWC following the SVEs.Correspondingly,the Nio 3.4 index also increases significantly in the first post-eruption year,indicating an El Nio-like SST anomaly during this period.

    To further explore how the PWC responds to SVEs in the observations,we also analyze the anomalous spatial temperature and circulation patterns in the first post-eruption year.Follow ing the SVEs,significant westerly wind anomalies can be observed over the tropical Pacific in the lower troposphere(Fig.12a).Correspondingly,significant easterly wind anomalies are evident in the upper troposphere(Fig.12b).Additionally,there is an anomalous lower-tropospheric divergence and upper-tropospheric convergence over the Maritime Continent,suggesting suppressed convection over this region(Fig.13a).On the contrary,the anomalous lower-tropospheric convergence and upper-tropospheric divergence weaken the descending motion over the central-eastern Pacific(Fig.13b).These changes indicate that the PWC is significantly weakened after SVEs in the observations,which con firms the SEA of the observed PWC indices.

    Fig.10. U850 index anomaly(units:m s?1)in the first year after the peak time of the SVEs for HadCM 3,and differences in U850 index between the CAM 4 experiments.

    Fig.11. SEA of the observed(a)dslp index(units:hPa),(b)Us index(units:m s?1)and(c)Nio3.4 index(units:°C).Year 1 on the x-axis is the first post-eruption year.

    6. Summary and discussion

    Fig.12. Composite anomalies of observed(a)850-hPa wind(units:m s?1)and(b)200-hPa wind(units:m s?1)in the first year after the eruption time of the SVEs.The reference period is 1851–2014.The shading indicates anomalies exceeding one standard deviation,which was calculated for the period 1851–2014.

    Fig.13. Composite anomalies of observed(a)850-hPa velocity potential(units:106 m2 s?1)and(b)200-hPa velocity potential(units:106 m2 s?1)in the first year after the eruption time of the SVEs.The reference period is 1851–2014.The dots indicate anomalies exceeding one standard deviation,which was calculated for the period 1851–2014.

    This study investigated the response of the PWC to SVEs using three-member simulations,with volcanic forcing only,covering the last 600 years.The two kinds of PWC index employed both change significantly in the first year after SVEs.The dslp index decreases,whereas the Us index increases,suggesting an interannual weakening of the PWC during this period.The related circulation anomalies following SVEs further confirm this change in the PWC.In the observations,a similar weakening of the PWC can be found after the SVEs.

    Based on the model result,the SVE-induced stronger cooling over the Maritime Continent can reduce the SLP gradient from the eastern tropical Pacific to the western tropical Pacific.As a result,the trade winds are weakened in the first post-eruption year.At the same time,convection is suppressed over the Maritime Continent.In addition,the descending motion over the central-eastern tropical Pacific is also weakened.Therefore,the PWC weakens in the first post-eruption year.In addition,an SVE-induced weaker and equator ward-shifted ITCZ and SPCZ also contribute to the weakening of the PWC after the SVEs.The additional CAM 4 experiments further confirmed the influences from surface cooling over the Maritime Continent and subtropical/midlatitude Pacific regions on the PWC.Moreover,they revealed that the strong cooling over the Maritime Continent plays a dominate role in the weakening of the PWC after SVEs.

    Fig.14. Composite anomalies of observed(a)SAT(units:°C),(b)SLP(units:hPa)and(c)SST(units:°C)in the first year after the eruption time of the SVEs.The reference period is 1851–2014.The dots indicate anomalies exceeding one standard deviation,which was calculated for the period 1851–2014.

    In the observations,similar responses of the PWC and related processes can be found after the SVEs.However,some differences exist between the model and observations.Following the SVEs,the observed central-eastern tropical Pacific warming is much stronger than that in the model(Figs.5 and 14),having formed a typical El Nio event after the SVEs(Figs.11c and 14c).Differently,in HadCM 3 only El Niolike SST anomalies,rather than El Nio events,can be found in the tropical Pacific follow ing the SVEs.The SVE-induced warming in the central-eastern tropical Pacific is weaker.The different responses of Nio3.4 index in the observations and model also confirm this difference(Figs.2c and 11c).Actually,weaker warming in the central-eastern tropical Pacific has been documented in other model results(e.g.,Ohba et al.,2013;Stevenson et al.,2016),and this may be caused by a weaker positive Bjerknes feedback in the models,which needs further investigation.Additionally,a too-small number of SVE samples in the observations could make the preeruption Pacific states more important and thus should not be neglected for post-eruption climate changes in that region.This may be another reason for the model–observation difference.

    Acknowledgements.We thank the two anonymous reviewers and editor for their valuable comments and suggestions,which helped improve the quality of this paper significantly.This research was supported by the National Key R&D Program of China(Grant No.2016YFA0600701),the National Natural Science Foundation of China(Grant Nos.41661144005,41575086 and 41320104007),and the CAS–PKU Joint Research Program.The authors are grateful to Dr.Schurer A.P.for providing the coupled model output.

    Electronic supplementary material:Supplementary material is available in the online version of this article at https://doi.org/10.1007/s00376-017-7134-y.

    Adams,J.B.,M.E.Mann,and C.M.Ammann,2003:Proxy evidence for an El Nio-like response to volcanic forcing.Nature,426,274–278,https://doi.org/10.1038/nature02101.

    Bayr,T.,and D.Dommenget,2013:The tropospheric land–sea warming contrast as the driver of tropical sea level pressure changes.J.Climate,26,1387–1402,https://doi.org/10.1175/jcli-d-11-00731.1.

    Bjerknes,J.,1969:Atmospheric teleconnections from the equatorial Pacific.Mon.Wea.Rev.,97,163–172,https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    Broccoli A.J.,K.A.Dahl,and R.J.Stouffer,2006:Response of the ITCZ to Northern Hem isphere cooling.Geophys.Res.Lett.,33,L01702,https://doi.org/10.1029/2005gl024546.

    Burgman,R.J.,A.C.Clement,C.M.Mitas,J.Chen,and K.Esslinger,2008:Evidence for atmospheric variability over the Pacific on decadal timescales.Geophys.Res.Lett.,35,L01704,https://doi.org/10.1029/2007GL031830.

    Callaghan,J.,and S.B.Power,2011:Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century.Climate Dyn.,37,647–662,https://doi.org/10.1007/s00382-010-0883-2.

    Cattle,H.,and J.Crossley,1995:Modelling arctic climate change.Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,352,201–213,https://doi.org/10.1098/rsta.1995.0064.

    Clement,A.C.,R.Seager,M.A.Cane,and S.E.Zebiak,1996:An ocean dynamical thermostat.J.Climate,9,2190–2196,https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    Compo,G.P.,J.S.Whitaker,and P.D.Sardeshmukh,2006:Feasibility of a 100-year reanalysis using only surface pressure data.Bull.Amer.Meteor.Soc.,87,175–190,https://doi.org/10.1175/bams-87-2-175.

    Compo,G.P.,and Coauthors,2011:The twentieth century reanalysis project.Quart.J.Roy.Meteor.Soc.,137,1–28,https://doi.org/10.1002/qj.776.

    Cox,M.D.,1984:A primitive equation 3-dimensional model of the ocean.GFDL Ocean Group Technical Rep 1,143 pp.

    Crowley,T.J.,G.A.Zielinski,B.M.Vinther,R.Udisti,K.Kreutz,J.Cole-Dai,and E.Castellano,2008:Volcanism and the little ice age.PAGES News,16,22–23.

    Cui,X.D.,Y.Q.Gao,and J.Q.Sun,2014:The response of the East Asian summer monsoon to strong tropical volcanic eruptions.Adv.Atmos.Sci.,31,1245–1255,https://doi.org/10.1007/s00376-014-3239-8.

    Deser,C.,A.S.Phillips,and M.A.Alexander,2010:Twentieth century tropical sea surface temperature trends revisited.Geophys.Res.Lett.,37,L10701,https://doi.org/10.1029/2010GL043321.

    DiNezio,P.N.,A.C.Clement,G.A.Vecchi,B.J.Soden,B.P.Kirtman,and S.-K.Lee,2009:Climate response of the equatorial Pacific to global warming.J.Climate,22,4873–4892,https://doi.org/10.1175/2009JCLI2982.1.

    Ding,Y.N.,J.A.Carton,G.A.Chepurin,G.Stenchikov,A.Robock,L.T.Sentman,and J.P.Krasting,2014:Ocean response to volcanic eruptions in coupled model intercomparison project 5 simulations.J.Geophys.Res.,119,5622–5637.https://doi.org/10.1002/2013JC009780.

    Dong,B.W.,and R.Y.Lu,2013:Interdecadal enhancement of the walker circulation over the tropical Pacific in the late 1990s.Adv.Atmos.Sci.,30,247–262,https://doi.org/10.1007/s00376-012-2069-9.

    Emile-Geay,J.,R.Seager,M.A.Cane,E.R.Cook,and G.H.Haug,2008:Volcanoes and ENSO over the past m illennium.J.Climate,21,3134–3148,https://doi.org/10.1175/2007 JCLI1884.1.

    Garcia,S.R.,and M.T.Kayano,2008:Climatological aspects of Hadley,Walker and monsoon circulations in two phases of the Pacific Decadal Oscillation.Theor.Appl.Climatol.,91,117–127,https://doi.org/10.1007/s00704-007-0301-9.

    Gent,P.R.,and Coauthors,2011:The community climate system model version 4.J.Climate,24,4973–4991,https://doi.org/10.1175/2011jcli4083.1.

    Gleckler,P.J.,T.M.L.Wigley,B.D.Santer,J.M.Gregory,K.AchutaRao,and K.E.Taylor,2006:Volcanoes and climate:Krakatoa’s signature persists in the ocean.Nature,439,675–675,https://doi.org/10.1038/439675a.

    Gordon,C.,C.Cooper,C.A.Senior,H.Banks,J.M.Gregory,T.C.Johns,J.F.B.Mitchell,and R.A.Wood,2000:The simulation of SST,sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments.Climate Dyn.,16,147–168,https://doi.org/10.1007/s003820050010.

    Held,I.M.,and B.J.Soden,2006:Robust responses of the hydrological cycle to global warming.J.Climate,19,5686–5699,https://doi.org/10.1175/JCLI3990.1.

    Hibler III,W.D.,1979:A dynamic thermodynamic sea ice model.J.Phys.Oceanogr.,9,815–846.https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    Hirahara,S.,M.Ishii,and Y.Fukuda,2014:Centennial-scale sea surface temperature analysis and its uncertainty.J.Climate,27,57–75,https://doi.org/10.1175/jcli-d-12-00837.1.

    Johns,T.C.,R.E.Carnell,J.F.Crossley,J.F.Gregory,J.F.B.Mitchell,C.A.Senior,S.F.B.Tett,and R.A.Wood,1997:The second Hadley centre coupled ocean-atmosphere GCM:Model description,spinup and validation.Climate Dyn.,13,103–134,https://doi.org/10.1007/s003820050155.

    Knutson,T.R.,and S.Manabe,1995:Time-mean response over the tropical Pacific to increased CO2in a coupled oceanatmosphere model.J.Climate,8,2181–2199,https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    Lai,A.W.C.,M.Herzog,and H.F.Graf,2015:Two key parameters for the El Nio continuum:Zonal wind anomalies and Western Pacific subsurface potential temperature.Climate Dyn.,45,3461–3480.https://doi.org/10.1007/s00382-015-2550-0.

    Lestari,R.K.,M.Watanabe,Y.Imada,H.Shiogama,R.D.Field,T.Takemura,and M.Kimoto,2014:Increasing potential of biomass burning over Sumatra,Indonesia induced by anthropogenic tropical warming.Environmental Research Letters,9,104010,https://doi.org/10.1088/1748-9326/9/10/104010.

    L’Heureux,M.L.,S.Lee,and B.Lyon,2013:Recent multidecadal strengthening of the Walker circulation across the tropical Pacific.Nat.Clim.Change,3,571–576,https://doi.org/10.1038/NCLIMATE1840.

    Li,T.,L.Zhang,and H.Murakami,2015:Strengthening of the walker circulation under globalwarming in an aqua-planet general circulation model simulation.Adv.Atmos.Sci.,32,1473–1480,https://doi.org/10.1007/s00376-015-5033-7.

    Lim,H.-G.,S.-W.Yeh,J.-S.Kug,Y.-G.Park,J.-H.Park,R.Park,and C.-K.Song,2016:Threshold of the volcanic forcing that leads the El Nio-like warming in the last millennium:Results from the ERIK simulation.Climate Dyn.,46,3725–3736,https://doi.org/10.1007/s00382-015-2799-3.

    Liu,F.,J.Chai,B.Wang,J.Liu,X.Zhang,and Z.Y.Wang,2016:Global monsoon precipitation responses to large volcanic eruptions.Sci Rep,6,24331,https://doi.org/10.1038/srep24331.

    Luo,J.-J.,W.Sasaki,and Y.Masumoto,2012:Indian Ocean warming modulates Pacific climate change.Proc.Natl.Acad.Sci.U.S.A.,109,18 701–18 706,https://doi.org/10.1073/pnas.1210239109.

    Ma,S.M.,and T.J.Zhou,2016:Robust strengthening and westward shift of the tropical Pacific walker circulation during 1979–2012:A comparison of 7 sets of reanalysis data and 26 CMIP5 models.J.Climate,29,3097–3118,https://doi.org/10.1175/Jcli-D-15-0398.1.

    Maher,N.,S.McGregor,M.H.England,and A.S.Gupta,2015:Effects of volcanism on tropical variability.Geophys.Res.Lett.,42,6024–6033,https://doi.org/10.1002/2015 GL064751.

    Man,W.M.,T.J.Zhou,and J.H.Jungclaus,2014:Effects of large volcanic eruptions on global summer climate and east Asian monsoon changes during the last millennium:Analysis of MPI-ESM simulations.J.Climate,27,7394–7409,https://doi.org/10.1175/Jcli-D-13-00739.1.

    McGregor,S.,A.Timmermann,M.F.Stuecker,M.H.England,M.Merri field,F.-F.Jin,and Y.Chikamoto,2014:Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming.Nature Climate Change,4,888–892,https://doi.org/10.1038/NCLIMATE2330.

    Meehl,G.A.,and W.M.Washington,1996:El Nio-like climate change in a model with increased atmospheric CO2concentrations.Nature,382,56–60,https://doi.org/10.1038/382056a0.

    Meng,Q.J.,M.Latif,W.Park,N.S.Keenlyside,V.A.Semenov,and T.Martin,2012:Twentieth century Walker Circulation change:Data analysis and model experiments.Climate Dyn.,38,1757–1773,https://doi.org/10.1007/s00382-011-1047-8.

    M iao,J.P.,T.Wang,Y.L.Zhu,J.Z.M in,H.J.Wang,and D.Guo,2016:Response of the East Asian winter monsoon to strong tropical volcanic eruptions.J.Climate,29,5041–5057,https://doi.org/10.1175/JCLI-D-15-0600.1.

    Ohba,M.,H.Shiogama,T.Yokohata,and M.Watanabe,2013:Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM.J.Climate,26,5169–5182,https://doi.org/10.1175/jcli-d-12-00471.1.

    Otter?,O.H.,2008:Simulating the effects of the 1991 Mount Pinatubo volcanic eruption using the ARPEGE atmosphere general circulation model.Adv.Atmos.Sci.,25,213–226,https://doi.org/10.1007/s00376-008-0213-3.

    Otter?,O.H.,M.Bentsen,H.Drange,and L.L.Suo,2010:External forcing as a metronome for Atlantic multidecadal variability.Nature Geoscience,3,688–694,https://doi.org/10.1038/NGEO955.

    Pausata,F.S.R.,L.Chafik,R.Caballero,and D.S.Battisti,2015:Impacts of high-latitude volcanic eruptions on ENSO and AMOC.Proc.Natl.Acad.Sci.U.S.A.,112,13 784–13 788,https://doi.org/10.1073/pnas.1509153112.

    Peng,Y.B.,C.M.Shen,W.-C.Wang,and Y.Xu,2010:Response of summer precipitation over eastern China to large volcanic eruptions.J.Climate,23,818–824,https://doi.org/10.1175/2009JCLI2950.1.

    Philander,S.G.,1990:,,and the Southern Oscillation.Academ ic Press,293 pp.

    Pope,V.D.,M.L.Gallani,P.R.Rowntree,and R.A.Stratton,2000:The impact of new physical parametrizations in the Hadley Centre climate model:HadAM 3.Climate Dyn.,16,123–146,https://doi.org/10.1007/s003820050009.

    Power,S.B.,and G.Kociuba,2011:What caused the observed twentieth-century weakening of the walker circulation?J.Climate,24,6501–6514,https://doi.org/10.1175/2011JCLI 4101.1.

    Robock,A.,2000:Volcanic eruptions and climate.Rev.Geophys.,38,191–219,https://doi.org/10.1029/1998RG000054.

    Robock,A.,and J.P.Mao,1995:The volcanic signal in surface temperature observations.J.Climate,8,1086–1103,https://doi.org/10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2.

    Ropelewski,C.F.,and M.S.Halpert,1989:Precipitation patterns associated with the high index phase of the southern oscillation.J.Climate,2,268–284,https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.

    Sandeep,S.,F.Stordal,P.D.Sardeshmukh,and G.P.Compo,2014:Pacific Walker Circulation variability in coupled and uncoupled climate models.Climate Dyn.,43,103–117,https://doi.org/10.1007/s00382-014-2135-3.

    Sem tner,A.J.,Jr.,1976:A model for the thermodynamic grow th of sea ice in numerical investigations of climate.J.Phys.Oceanogr.,6,379–389,https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    Schurer,A.P.,S.F.B.Tett,and G.C.Hegerl,2014:Small influenc of solar variability on climate over the past m illennium.Nat.Geosci.,7,104–108,https://doi.org/10.1038/NGEO2040.

    Schurer,A.P.,S.F.B.Tett,M.Mineter,and G.C.Hegerl,2013:Euroclim500—Causes of change in European mean and extreme climateover the past500 years:Climate variable output from HadCM 3 numerical model.NCAS British Atmospheric Data Centre.

    Shindell,D.T.,G.A.Schmidt,M.E.Mann,and G.Faluvegi,2004:Dynamic winter climate response to large tropical volcanic eruptions since 1600.J.Geophys.Res.,109,D05104,https://doi.org/10.1029/2003JD004151.

    Smith,T.M.,R.W.Reynolds,T.C.Peterson,and J.Law rimore,2008:Improvements to NOAA’s historical merged land–ocean surface temperature analysis(1880–2006).J.Climate,21,2283–2296,https://doi.org/10.1175/2007jcli2100.1.

    Sohn,B.J.,S.-W.Yeh,J.Schmetz,and H.-J.Song,2013:Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results.Climate Dyn.,40,1721–1732,https://doi.org/10.1007/s00382-012-1484-z.

    Stenchikov,G.L.,I.Kirchner,A.Robock,H.-F.Graf,J.C.AntuA,R.G.Grainger,A.Lambert,and L.Thomason,1998:Radiative forcing from the 1991 Mount Pinatubo volcanic eruption.J.Geophys.Res.,103,13 837–13 857,https://doi.org/10.1029/98JD00693.

    Stevenson,S.,B.Otto-Bliesner,J.Fasullo,and E.Brady,2016:“El Nio Like”hydroclimate responses to last millennium volcanic eruptions.J.Climate,29,2907–2921,https://doi.org/10.1175/jcli-d-15-0239.1.

    Tanaka,H.L.,N.Ishizaki,and A.Kitoh,2004:Trend and interannual variability of Walker,monsoon and Hadley circulations defined by velocity potential in the upper troposphere.Tellus A,56,250–269,https://doi.org/10.3402/tellusa.v56i3.14410.Vecchi,G.A.,and B.J.Soden,2007:Global warming and the weakening of the tropical circulation.J.Climate,20,4316–4340,https://doi.org/10.1175/JCLI4258.1.

    Vecchi,G.A.,B.J.Soden,A.T.Wittenberg,I.M.Held,A.Leetmaa,and M.J.Harrison,2006:Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing.Nature,441,73–76,https://doi.org/10.1038/nature04744.

    Veiga,J.A.P.,V.B.Rao,and S.H.Franchito,2005:Heat and moisture budgets of the Walker circulation and associated rainfall anomalies during El Nio events.InternationalJournal of Climatology,25,193–213,https://doi.org/10.1002/joc.1115.

    Wang,T.,O.H.Otter?,Y.Q.Gao,and H.J.Wang,2012:The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions.Climate Dyn.,39,2917–2936,https://doi.org/10.1007/s00382-012-1373-5.

    Whitaker,J.S.,G.P.Compo,X.Wei,and T.M.Ham ill,2004:Reanalysis w ithout radiosondes using ensemble data assimilation.Mon.Wea.Rev.,132,1190–1200,https://doi.org/10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2.

    Williams,A.P.,and C.Funk,2011:A westward extension of the warm pool leads to a westward extension of the Walker circulation,drying eastern Africa.Climate Dyn.,37,2417–2435,https://doi.org/10.1007/s00382-010-0984-y.

    Xue,Y.,T.M.Smith,and R.W.Reynolds,2003:Interdecadal changes of 30-Yr SST normals during 1871–2000.J.Climate,16,1601–1612,https://doi.org/10.1175/1520-0442-16.10.1601.

    Zanchettin,D.,C.Timmreck,H.-F.Graf,A.Rubino,S.Lorenz,K.Lohmann,K.Kruger,and J.H.Jungclaus,2012:Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions.Climate Dyn.,39,419–444,https://doi.org/10.1007/s00382-011-1167-1.

    Zhang,L.,and T.Li,2017:Relative roles of differential SST warming,uniform SST warming and land surface warming in determining the walker circulation changes under global warming.Climate Dyn.,48,987–997,https://doi.org/10.1007/s00382-016-3123-6.

    精品久久久久久,| 999久久久精品免费观看国产| 搡老岳熟女国产| 精品人妻1区二区| 亚洲精品一区av在线观看| 少妇粗大呻吟视频| 美女国产高潮福利片在线看| 99国产极品粉嫩在线观看| 99国产极品粉嫩在线观看| 久久人人97超碰香蕉20202| 纯流量卡能插随身wifi吗| 亚洲国产高清在线一区二区三 | 天堂动漫精品| 一区福利在线观看| 男人舔女人下体高潮全视频| 久久亚洲精品不卡| 国产精品一区二区三区四区久久 | 天天躁夜夜躁狠狠躁躁| 真人一进一出gif抽搐免费| 亚洲黑人精品在线| 这个男人来自地球电影免费观看| 亚洲国产看品久久| 婷婷六月久久综合丁香| 亚洲视频免费观看视频| 在线永久观看黄色视频| 日韩精品青青久久久久久| 乱人伦中国视频| 人人妻,人人澡人人爽秒播| 在线观看一区二区三区| 男女之事视频高清在线观看| 国产精品久久电影中文字幕| 侵犯人妻中文字幕一二三四区| 欧美+亚洲+日韩+国产| 99精品欧美一区二区三区四区| 51午夜福利影视在线观看| 两人在一起打扑克的视频| 亚洲 欧美一区二区三区| 日本黄色视频三级网站网址| 男女床上黄色一级片免费看| 日韩有码中文字幕| 亚洲av片天天在线观看| 精品久久久久久,| 亚洲九九香蕉| 国产亚洲欧美98| 99精品在免费线老司机午夜| 国产成人欧美| 18禁国产床啪视频网站| 国产精品 国内视频| 午夜福利成人在线免费观看| 亚洲av五月六月丁香网| 国产欧美日韩一区二区三| 麻豆av在线久日| 色尼玛亚洲综合影院| 国语自产精品视频在线第100页| 精品电影一区二区在线| 99在线人妻在线中文字幕| 欧美人与性动交α欧美精品济南到| 亚洲avbb在线观看| 国产视频一区二区在线看| 丰满的人妻完整版| 99riav亚洲国产免费| 久久人妻av系列| 夜夜看夜夜爽夜夜摸| 国产一卡二卡三卡精品| 禁无遮挡网站| 中文字幕高清在线视频| 国产野战对白在线观看| 一个人观看的视频www高清免费观看 | av天堂在线播放| 亚洲av日韩精品久久久久久密| 成人手机av| 欧美国产日韩亚洲一区| 91九色精品人成在线观看| 看免费av毛片| 久久久国产成人精品二区| 亚洲第一电影网av| 可以在线观看毛片的网站| 黄色丝袜av网址大全| 18美女黄网站色大片免费观看| 久久精品成人免费网站| 久久久久久亚洲精品国产蜜桃av| 天堂影院成人在线观看| 在线十欧美十亚洲十日本专区| 亚洲电影在线观看av| 亚洲第一青青草原| 黄频高清免费视频| 香蕉丝袜av| 国产三级黄色录像| 婷婷六月久久综合丁香| 宅男免费午夜| 欧美激情高清一区二区三区| 久久香蕉激情| 久久国产精品人妻蜜桃| 韩国av一区二区三区四区| 成人av一区二区三区在线看| 欧美黑人精品巨大| 亚洲精品中文字幕一二三四区| 别揉我奶头~嗯~啊~动态视频| 人妻久久中文字幕网| 亚洲一区二区三区不卡视频| 女人被躁到高潮嗷嗷叫费观| 久久狼人影院| 亚洲无线在线观看| 禁无遮挡网站| 国产片内射在线| 久久国产亚洲av麻豆专区| 国产精品98久久久久久宅男小说| 动漫黄色视频在线观看| 无遮挡黄片免费观看| 日韩三级视频一区二区三区| 免费人成视频x8x8入口观看| 国产成人av教育| 级片在线观看| 韩国av一区二区三区四区| 国产视频一区二区在线看| 免费看a级黄色片| 久久久久久久久中文| 色婷婷久久久亚洲欧美| 日韩免费av在线播放| 亚洲片人在线观看| 老汉色av国产亚洲站长工具| 日本 欧美在线| bbb黄色大片| 级片在线观看| 亚洲av五月六月丁香网| 国产在线观看jvid| 99国产精品免费福利视频| 俄罗斯特黄特色一大片| 性色av乱码一区二区三区2| 波多野结衣一区麻豆| 亚洲精品国产色婷婷电影| 欧美 亚洲 国产 日韩一| 午夜福利高清视频| av视频免费观看在线观看| av有码第一页| 在线观看免费日韩欧美大片| 精品久久久久久成人av| 看黄色毛片网站| 在线观看www视频免费| av视频免费观看在线观看| 亚洲黑人精品在线| 亚洲一区高清亚洲精品| 可以在线观看毛片的网站| 国语自产精品视频在线第100页| 亚洲av成人不卡在线观看播放网| 欧美黑人精品巨大| 一个人免费在线观看的高清视频| 国产高清有码在线观看视频 | 欧美丝袜亚洲另类 | 一区二区三区精品91| 日韩一卡2卡3卡4卡2021年| 亚洲一区高清亚洲精品| 看片在线看免费视频| 变态另类成人亚洲欧美熟女 | 国产成人一区二区三区免费视频网站| 丰满人妻熟妇乱又伦精品不卡| 免费一级毛片在线播放高清视频 | 1024视频免费在线观看| 操出白浆在线播放| 一级毛片精品| 国产精品免费视频内射| 男女午夜视频在线观看| 十八禁网站免费在线| 这个男人来自地球电影免费观看| 色综合欧美亚洲国产小说| 一级毛片高清免费大全| 夜夜看夜夜爽夜夜摸| 亚洲国产看品久久| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩一区二区精品| 日本三级黄在线观看| 亚洲最大成人中文| 日本五十路高清| 亚洲av电影在线进入| 亚洲人成伊人成综合网2020| 免费一级毛片在线播放高清视频 | 久久久精品欧美日韩精品| 亚洲五月婷婷丁香| 亚洲欧洲精品一区二区精品久久久| 成人欧美大片| 老司机在亚洲福利影院| 亚洲精品一区av在线观看| 国产在线观看jvid| www.999成人在线观看| 91av网站免费观看| 欧美色视频一区免费| 少妇的丰满在线观看| 久久国产亚洲av麻豆专区| 亚洲成人精品中文字幕电影| 一个人观看的视频www高清免费观看 | 亚洲国产日韩欧美精品在线观看 | 亚洲欧美一区二区三区黑人| 日日摸夜夜添夜夜添小说| 精品国产一区二区三区四区第35| 亚洲aⅴ乱码一区二区在线播放 | 欧美在线一区亚洲| 亚洲av片天天在线观看| 99国产精品免费福利视频| 女人精品久久久久毛片| 亚洲电影在线观看av| 欧美日韩亚洲综合一区二区三区_| 国产成人欧美在线观看| 成人av一区二区三区在线看| 久久久久国内视频| 99国产精品一区二区三区| 国产精品一区二区三区四区久久 | 国产精品久久电影中文字幕| 午夜影院日韩av| 亚洲人成电影观看| 岛国在线观看网站| 成在线人永久免费视频| 九色国产91popny在线| 久久人人精品亚洲av| 亚洲精品久久国产高清桃花| 99久久99久久久精品蜜桃| 婷婷六月久久综合丁香| 老司机午夜十八禁免费视频| 亚洲中文字幕一区二区三区有码在线看 | 国产成人啪精品午夜网站| 少妇粗大呻吟视频| 一本久久中文字幕| 国产亚洲精品一区二区www| 亚洲av美国av| 亚洲男人的天堂狠狠| 午夜精品国产一区二区电影| 亚洲精品久久国产高清桃花| 搡老熟女国产l中国老女人| 亚洲视频免费观看视频| 1024香蕉在线观看| 精品国产一区二区久久| 日本黄色视频三级网站网址| 免费人成视频x8x8入口观看| 午夜福利影视在线免费观看| 天堂动漫精品| 久久午夜综合久久蜜桃| av欧美777| 午夜老司机福利片| 久久婷婷成人综合色麻豆| 最近最新中文字幕大全免费视频| 中文字幕最新亚洲高清| 男人舔女人的私密视频| 91国产中文字幕| av电影中文网址| 国产欧美日韩一区二区三| 国产精品秋霞免费鲁丝片| 欧美精品亚洲一区二区| 国产一区二区激情短视频| 多毛熟女@视频| 嫩草影视91久久| 一个人观看的视频www高清免费观看 | 亚洲av五月六月丁香网| 女性生殖器流出的白浆| 91老司机精品| 男女做爰动态图高潮gif福利片 | 每晚都被弄得嗷嗷叫到高潮| 男人的好看免费观看在线视频 | 亚洲在线自拍视频| 亚洲激情在线av| 最新在线观看一区二区三区| 波多野结衣高清无吗| 一本久久中文字幕| 久热爱精品视频在线9| videosex国产| xxx96com| 久久中文看片网| 两人在一起打扑克的视频| 精品一区二区三区视频在线观看免费| 国产成人精品在线电影| 国产高清videossex| 神马国产精品三级电影在线观看 | 欧美激情 高清一区二区三区| 中国美女看黄片| 9191精品国产免费久久| 欧美激情 高清一区二区三区| 制服诱惑二区| 一二三四在线观看免费中文在| 国产精品久久久人人做人人爽| 一边摸一边抽搐一进一小说| 搡老熟女国产l中国老女人| 在线天堂中文资源库| 老司机福利观看| 人人妻,人人澡人人爽秒播| 香蕉国产在线看| 国产精品一区二区精品视频观看| 欧美日本中文国产一区发布| 最近最新中文字幕大全电影3 | 99re在线观看精品视频| 性欧美人与动物交配| 自线自在国产av| 一本久久中文字幕| 国产亚洲精品久久久久久毛片| 淫秽高清视频在线观看| 精品高清国产在线一区| 国产亚洲欧美在线一区二区| 精品国内亚洲2022精品成人| 国产精品一区二区三区四区久久 | 国产片内射在线| 搡老岳熟女国产| 波多野结衣一区麻豆| 又黄又爽又免费观看的视频| 欧美日韩乱码在线| 热re99久久国产66热| 美女高潮喷水抽搐中文字幕| 国产人伦9x9x在线观看| 国产蜜桃级精品一区二区三区| 国产国语露脸激情在线看| 精品一区二区三区视频在线观看免费| 国产精品 国内视频| 成人永久免费在线观看视频| 丝袜美腿诱惑在线| 亚洲av片天天在线观看| 日韩视频一区二区在线观看| 精品国产超薄肉色丝袜足j| 琪琪午夜伦伦电影理论片6080| 国产麻豆69| 91在线观看av| 亚洲久久久国产精品| 老司机午夜福利在线观看视频| 国产精品99久久99久久久不卡| 日韩欧美一区视频在线观看| 一级作爱视频免费观看| 亚洲精品中文字幕在线视频| 青草久久国产| 亚洲中文字幕日韩| 桃红色精品国产亚洲av| 动漫黄色视频在线观看| 香蕉国产在线看| 亚洲成人免费电影在线观看| 在线观看免费日韩欧美大片| 日韩中文字幕欧美一区二区| 91国产中文字幕| 成人国产综合亚洲| 欧美在线一区亚洲| 成年版毛片免费区| 免费搜索国产男女视频| 99国产精品一区二区三区| 国产成人精品在线电影| 色播在线永久视频| 大陆偷拍与自拍| 亚洲中文日韩欧美视频| 久久久久久国产a免费观看| 91大片在线观看| 男女下面进入的视频免费午夜 | 一区在线观看完整版| 国产精品一区二区精品视频观看| 91成年电影在线观看| 日韩大尺度精品在线看网址 | 欧美久久黑人一区二区| 亚洲,欧美精品.| 日本在线视频免费播放| 两个人免费观看高清视频| 99久久综合精品五月天人人| 日韩精品免费视频一区二区三区| 国产麻豆成人av免费视频| 色哟哟哟哟哟哟| 嫁个100分男人电影在线观看| 亚洲专区字幕在线| 高清黄色对白视频在线免费看| 亚洲欧美日韩高清在线视频| 免费高清视频大片| 日韩大尺度精品在线看网址 | 亚洲精品av麻豆狂野| АⅤ资源中文在线天堂| 国产激情欧美一区二区| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 少妇裸体淫交视频免费看高清 | 国产欧美日韩一区二区精品| 999久久久国产精品视频| 欧美人与性动交α欧美精品济南到| 女同久久另类99精品国产91| 成人手机av| 亚洲精品在线美女| 操出白浆在线播放| 亚洲精品一区av在线观看| e午夜精品久久久久久久| 午夜影院日韩av| 国产成人欧美在线观看| 日韩精品免费视频一区二区三区| 夜夜夜夜夜久久久久| 午夜免费成人在线视频| 久久久久久亚洲精品国产蜜桃av| 国产一区二区三区视频了| tocl精华| 此物有八面人人有两片| 欧美丝袜亚洲另类 | 亚洲熟妇中文字幕五十中出| 久久青草综合色| 长腿黑丝高跟| 一级毛片精品| 叶爱在线成人免费视频播放| 久久久久国产精品人妻aⅴ院| 91av网站免费观看| 手机成人av网站| 啪啪无遮挡十八禁网站| 一区二区三区激情视频| 欧美日韩福利视频一区二区| 18禁观看日本| 99香蕉大伊视频| 国产欧美日韩一区二区三区在线| 国产熟女午夜一区二区三区| 999久久久国产精品视频| x7x7x7水蜜桃| 国产又爽黄色视频| 亚洲精品国产色婷婷电影| 在线免费观看的www视频| 啦啦啦观看免费观看视频高清 | 精品国产国语对白av| 天天添夜夜摸| 91九色精品人成在线观看| 香蕉丝袜av| 99国产精品一区二区三区| 一个人观看的视频www高清免费观看 | 女性被躁到高潮视频| 国产午夜精品久久久久久| 欧美国产日韩亚洲一区| 久久久国产欧美日韩av| 99香蕉大伊视频| 麻豆成人av在线观看| 国产成人精品在线电影| 人人澡人人妻人| 美女免费视频网站| 国产精品美女特级片免费视频播放器 | 亚洲情色 制服丝袜| 欧美+亚洲+日韩+国产| 满18在线观看网站| √禁漫天堂资源中文www| 自线自在国产av| 大型av网站在线播放| 国产日韩一区二区三区精品不卡| 久久久久久人人人人人| 国产精品爽爽va在线观看网站 | 国产av精品麻豆| 国内精品久久久久精免费| 亚洲国产欧美日韩在线播放| 亚洲性夜色夜夜综合| 法律面前人人平等表现在哪些方面| 久久精品国产综合久久久| 精品乱码久久久久久99久播| 亚洲人成伊人成综合网2020| 日韩免费av在线播放| 妹子高潮喷水视频| 久久久久久亚洲精品国产蜜桃av| 首页视频小说图片口味搜索| 老汉色∧v一级毛片| 色播亚洲综合网| 在线国产一区二区在线| 十八禁网站免费在线| 熟女少妇亚洲综合色aaa.| 日本免费一区二区三区高清不卡 | x7x7x7水蜜桃| 久久久久久人人人人人| 一级片免费观看大全| 亚洲自偷自拍图片 自拍| 大陆偷拍与自拍| 国产成人免费无遮挡视频| 一进一出好大好爽视频| 亚洲国产精品久久男人天堂| 精品国产一区二区三区四区第35| 黄片大片在线免费观看| 久久欧美精品欧美久久欧美| 校园春色视频在线观看| 人人妻人人爽人人添夜夜欢视频| 伦理电影免费视频| 美女高潮到喷水免费观看| 亚洲av成人一区二区三| 久久久久久久久久久久大奶| 老司机靠b影院| 欧美色欧美亚洲另类二区 | 精品久久久久久成人av| 国产91精品成人一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 一区福利在线观看| 欧美最黄视频在线播放免费| 丝袜美腿诱惑在线| 侵犯人妻中文字幕一二三四区| 久久精品成人免费网站| www.自偷自拍.com| www.精华液| 日本精品一区二区三区蜜桃| 91在线观看av| 1024视频免费在线观看| 999久久久国产精品视频| 成年女人毛片免费观看观看9| 国产不卡一卡二| 我的亚洲天堂| 黑丝袜美女国产一区| 亚洲av五月六月丁香网| 99精品久久久久人妻精品| 亚洲欧美日韩无卡精品| 亚洲欧洲精品一区二区精品久久久| 18禁国产床啪视频网站| 可以在线观看毛片的网站| 男女之事视频高清在线观看| 精品国产超薄肉色丝袜足j| 日本撒尿小便嘘嘘汇集6| 日韩欧美一区视频在线观看| 国产精品野战在线观看| 日韩av在线大香蕉| 欧美一区二区精品小视频在线| 女人精品久久久久毛片| 在线永久观看黄色视频| 看片在线看免费视频| cao死你这个sao货| 纯流量卡能插随身wifi吗| 大码成人一级视频| 一二三四社区在线视频社区8| 成人欧美大片| 人成视频在线观看免费观看| 成人av一区二区三区在线看| 精品午夜福利视频在线观看一区| 久久精品国产清高在天天线| 精品久久久久久久人妻蜜臀av | 国产1区2区3区精品| 91av网站免费观看| 亚洲精品在线美女| 狂野欧美激情性xxxx| 国产私拍福利视频在线观看| 丝袜美足系列| 麻豆av在线久日| www.自偷自拍.com| 在线播放国产精品三级| 成人亚洲精品一区在线观看| 变态另类成人亚洲欧美熟女 | 亚洲国产精品sss在线观看| 国产av一区在线观看免费| 淫秽高清视频在线观看| 亚洲欧美精品综合一区二区三区| 69精品国产乱码久久久| 啦啦啦免费观看视频1| 一级毛片女人18水好多| а√天堂www在线а√下载| 老汉色∧v一级毛片| 91麻豆av在线| 变态另类丝袜制服| 757午夜福利合集在线观看| 欧美色视频一区免费| 欧美在线黄色| 国产精品野战在线观看| 中亚洲国语对白在线视频| 非洲黑人性xxxx精品又粗又长| 久久国产乱子伦精品免费另类| 亚洲国产精品久久男人天堂| 91成年电影在线观看| 亚洲欧美日韩另类电影网站| 日本vs欧美在线观看视频| 国产av一区二区精品久久| 男男h啪啪无遮挡| 老鸭窝网址在线观看| 韩国精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| avwww免费| 国产高清videossex| 亚洲片人在线观看| 在线免费观看的www视频| 成人欧美大片| 久久人妻熟女aⅴ| 香蕉久久夜色| 一个人免费在线观看的高清视频| 国产成人av激情在线播放| 999久久久精品免费观看国产| 欧美成狂野欧美在线观看| 女人被躁到高潮嗷嗷叫费观| 午夜精品久久久久久毛片777| 一区二区三区激情视频| 国产亚洲av嫩草精品影院| 又紧又爽又黄一区二区| 最近最新免费中文字幕在线| 黄网站色视频无遮挡免费观看| 午夜免费激情av| 亚洲全国av大片| 日韩有码中文字幕| 亚洲成人久久性| 男女下面插进去视频免费观看| 久久精品亚洲精品国产色婷小说| 亚洲av成人av| 美国免费a级毛片| 久久精品国产亚洲av高清一级| 国产乱人伦免费视频| 欧美日韩福利视频一区二区| 久久国产精品男人的天堂亚洲| 国产精品久久电影中文字幕| 国产私拍福利视频在线观看| 国产精品电影一区二区三区| 欧美激情高清一区二区三区| 黑人巨大精品欧美一区二区mp4| 一个人观看的视频www高清免费观看 | 国产高清激情床上av| 国产激情欧美一区二区| 久久人妻熟女aⅴ| 亚洲国产高清在线一区二区三 | 99riav亚洲国产免费| 亚洲精品国产区一区二| 精品无人区乱码1区二区| 国产真人三级小视频在线观看| 人妻久久中文字幕网| 色综合亚洲欧美另类图片| 成人精品一区二区免费| a级毛片在线看网站| 老熟妇仑乱视频hdxx| 国产欧美日韩综合在线一区二区| 亚洲 国产 在线| 法律面前人人平等表现在哪些方面| 国产91精品成人一区二区三区| 黄色a级毛片大全视频| 国产三级黄色录像| 亚洲一区二区三区不卡视频| 久久亚洲真实| 欧美亚洲日本最大视频资源| 可以在线观看的亚洲视频| 一区福利在线观看| 啦啦啦韩国在线观看视频| 久久久精品欧美日韩精品| 精品福利观看| tocl精华|