• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Comparative Study on Photosynthetic Characteristics of Dryopteris fragrans and Associated Plants in Wudalianchi City, Heilongjiang Province, China

    2018-04-02 09:18:13ChenLinglingLiangYantaoWangHemengZhangTongBoZhigangZhaoZongbaoandChangYing
    關(guān)鍵詞:旅行包屋檐下屁股

    Chen Ling-ling, Liang Yan-tao, Wang He-meng, Zhang Tong, Bo Zhi-gang, Zhao Zong-bao, and Chang Ying*

    1 College of Life Sciences, Northeast Agricultural University, Harbin 150030, China

    2 Life Science Department, Daqing Normal University, Daqing 163712, Heilongjiang, China

    Introduction

    Dryopteris fragrans(L.) Schott, a deciduous perennial herb used in China for the treatment of skin diseases (Shenet al., 2006), exhibits antibacterial,antioxidant, analgesic, antitumor and immunomodulatory activities.Multiple substances, such as flavonoids,sterols and other medicinal components, have been isolated and characterized from this fern (Fanet al.,2012).Notably,D.fragranshas a very narrow geographic distribution and is limited to Asia, Europe and North America.In China, it is found exclusively in Wudalianchi City, Heilongjiang Province and thrives only in areas within volcanic geological landforms.There it grows in association with several other plant species, mainlySambucus williamsii,Artemisia sacrorum,Chelidonium majus,Sorbaria sorbifolia,Woodsia ilvensis,Potentilla asperrimaandUrtica angustifolia.The unique, but limited, geographic distribution ofD.fragranshas probably played an important role in shaping its physiological and ecological characteristics.

    Fern occupies an important place in plant phyletic evolution and uniquely exhibits independent gametophyte and sporophyte life stages.Moreover,D.fragransis a unique type of fern that grows in extreme environment.Therefore, due to its medicinal,nutritional and ornamental value, achieving optimalD.fragransgrowth is currently an important cha-llenge.Because photosynthesis is a very complex process, photosynthetic physiological ecology can systematically address this complexity through experimental indoor control methods, field sampling methods, isotopic techniques and other methods(Knight and Mitchell, 1989; Aguilaret al., 2015).Such studies can elucidate the relationships between ecological factors and multiple plant physiological phenomena.For example, on the one hand, photosynthetic efficiency of plants is influenced by external factors, such as light intensity, temperature and relative atmospheric humidity (Freeland, 1952;Arzariet al., 2005).On the other hand, internal factors, such as leaf size, leaf maturity, chlorophyll content and nitrate-reductase activity also play a role (Spoeher and Mcgee, 1924) (Osterhoutet al.,1919).In spite of this complexity, researchers have successfully employed several endangered plants.For example, researches onTrillium tschonoskiifound that this endangered plant photosynthesis(Liaoet al., 2006) and cannot adapt to humid environments (Macedoet al., 2011; Hanget al., 2008).In this study, various photosynthetic characteristics ofD.fragransand its associated plants were measured and compared, including net photosynthesis rate,chlorophyll content, nitrate reductase activity, light compensation point (LCP) and light saturation point(LSP).The results indicated that coordination exists betweenD.fragransphotosynthetic characteristics and its growth environment.Moreover, these results also served to identify factors underlying the narrow geographic distribution ofD.fragransand provided a theoretical foundation to justify protection of wild resources and facilitate artificial cultivation ofD.fragrans.

    Materials and Methods

    Natural conditions

    The experimental site was located within the mainD.fragransnatural habitat regions (Wudalianchi City,China).This area has a temperate continental monsoon climate, with average temperature of –0.5℃, average annual precipitation of 476 mm and average relative humidity of 69.2%.The frost period typically lasted from early October to early May, with an average annual frost-free period of 121 days.

    Plant materials

    Healthy representative plants ofD.fragransand its main associated plants, includingSambucus williamsii,Artemisia sacrorum,Chelidonium majus,Sorbaria sorbifolia,Woodsia ilvensis,Potentilla asperrimaandUrtica angustifoliawere chosen for sampling.Leaves, which carried out plants' major photosynthetic function, were typically sampled using two or three leaves per plant (13 cm long, 3.5 cm wide).Leaves with similar spatial orientation and angle were chosen(Caiet al., 2008) with westward posture and 30o dip angle with respect to the ground (Yanget al., 2010; Li,2005).

    Diurnal variations of photosynthetic rate (Pn)

    On sunny days in mid-July, a LCi portable photosynthesis measurement system (ADC BioScientific,Ltd., UK) was used to measure net photosynthesis rate [Pn, μmol · (m2· s-1)-1] each hour from 6: 00 a.m.to 6: 00 p.m (Jin, 2002).Each measurement was repeated 3 times.

    Measurement of light compensation point and light saturation point

    CO2concentration was set to 450 μmol · mol-1and the relative humidity to 80% as described previously(Zhanget al., 2010).The saturating light intensity was determined by varying the light intensity until it was no longer a factor limiting the photosynthesis rate.Light compensation point (LCP) was determined using photosynthetically active radiation-net photo-synthetic rate response curves.

    Measurement of chlorophyll content

    A soaking extraction method was applied to extract chlorophyll using a mixed ethanol-acetone solution.Chlorophyll content was determined using spectrophotometry (Shuet al., 2010).Three individualD.fragransplants growing at the same location were used to measurePnand were chosen to determine chlorophyll a and chlorophyll b contents using the Beer-Lambert law.

    Measurement of nitrate reductase activity

    The activity of nitrate reductase was measured as previously described (Fresneauet al., 2007; Giaimoet al., 2002).NaNO2was used to generate a standard curve and the activity of nitrate reductase was determined from the curve.

    Results

    Diurnal variations of Pn in D.fragrans and its main associated plants

    白天明又苦笑了一下,他說(shuō):“蘇石在城里沒(méi)事,沒(méi)啥大事,這是他叫我?guī)Щ貋?lái)給你的。”他指了指屋檐下的那旅行包,鼓鼓囊囊的。他又說(shuō):“我先走了,有什么事你問(wèn)爸吧,剛才我都跟爸說(shuō)了?!闭f(shuō)著,白天明就跟小偷似的,拎起自己的包,折轉(zhuǎn)屁股溜了。

    The diurnal variations in leaf net photosynthetic rate(Pn) forD.fragransand its main associated plants are shown in Fig.1, showing dramatic changes for all the plants studied.Moreover, the diurnalPnprofiles ofD.fragrans,W.ilvensisandU.angustifoliaexhibited unimodal change pro files, whileC.majusandA.gmeliniiexhibited bimodal rate change pro files.The maximal photosynthesis rate (Pmax) forS.williamsiiandP.asperrimawere the highest and were mainly observed at noon or 1: 00 p.m.OnlyC.majus andP.asperrimaexhibited an additionalPmaxpeak around 11: 00 a.m.Pmaxvalues were the lowest inD.fragransandA.gmelinii(Fig.2).

    Comparison of monthly variations of chlorophyll content in D.fragrans and its main associated plants

    The results demonstrated that leaf chlorophyll content directly correlated with photosynthetic capacity for all the plants grown under similar conditions within a certain range (Figs.3-5).During the growth period from April to October, the chlorophyll was tested content monthly for all the plants, except for a gap in some data for April (Fig.4), when the average temperature was only –11.2℃.Due to the cold temperatures,S.williamsii,S.sorbifoliaandU.angustifolialeaves were not completely grown by this time point and data were not collected.

    Fig.1 Diurnal variations of Pn

    Chlorophyll content changes followed a consistent pattern, with a gradual decrease from May to July,followed by an increase from July to September.In October,C.majus,S.sorbifoliaandU.angustifoliaplants lost their leaves.The chlorophyll a/b ratio changes were quite stable across the entire growing season, with the most values remaining between 1.5 and 3.0 and exhibiting common trends.However, early in the growing season, chlorophyll a/b values were the highest, followed by a slow decline until they reached their lowest values in July and August.Therefore,the chlorophyll content was maximal, the chlorophyll a/b value was the lowest.With leaf aging, the ratio gradually rose again, during spring and autumn, the chlorophyll a/b ratio was larger, favoring absorption of longer light wavelengths.In summer, chlorophyll a/b value was relatively lower, favoring absorption of shorter wavelengths.Therefore, chlorophyll a,chlorophyll b, chlorophyll a+b and chlorophyll a/b each varied significantly for different months.

    Fig.2 Average diurnal Pmax of D.fragrans and associated plants

    Fig.3 Chlorophyll a content of D.fragrans and main associated plants

    Fig.4 Chlorophyll b content of D.fragrans and main associated plants

    Fig.5 showed that changes in chlorophyll a,chlorophyll b and chlorophyll a+b values exhibited similar trends.However, these values were much higher forA.sacrorumandC.majus, with large variations among different months.In contrast, forP.asperrima,S.williamsii,D.fragrans,S.sorbifolia,W.ilvensisandC.majus, these values were lower,with only minimal variation.InD.fragrans, these values were only a little higher than forC.majusandW.ilvensis.It was well known that chlorophyll a mainly absorbed red light, while chlorophyll b absorbs blue light.Red light absorption forD.fragranswas initially higher than forW.ilvensisandC.majus, while blue light absorption byD.fragranswas still higher than that ofW.ilvensisbut lower than that ofC.majuslater, from August to October.To summarize, plant chlorophyll content had a direct effect on photosynthetic efficiency.Thus, in thisD.fragranscommunity,whenW.ilvensisexhibited higher photosynthetic efficiency,C.majusphotosynthetic efficiency was noticeably lower, whileD.fragransefficiency fell among values for these species.

    Fig.5 Chlorophyll a+b comparisons for D.fragrans and associated plants for each month

    Low chlorophyll a/b values for smaller plants have established that they utilize blue-purple wavelengths more efficiently.Fig.6 showed the highest maximum chlorophyll a/b value forD.fragransfollowed byA.gmelinii,W.ilvensis,C.majus,U.angustifolia,P.asperrima,S.sorbifolia,S.williamsii.These results showed thatD.fragranswas poorly adapted to its environment relative to its associated plants.

    Fig.6 Comparison of chlorophyll a/b for each plant species averaged over all the months

    Variation in activity of nitrate reductase in D.fragrans and associated plants

    As shown in Fig.8, the maximum nitrate reductase activity varied.The highest maximum nitrate reductase activity value was observed forS.williamsii, while the minimum was forA.gmelinii.Notably,the average nitrate reductase activity inD.fragranswas higher than only that ofA.gmelinii.In addition,becausePnshowed a positive correlation with enzyme activity, the relatively lowD.fragransnitrate reductase activity reflected its relatively lower photosynthesis rate and weaker photo-synthesis capacity than its associated plants.

    Fig.7 Monthly variation in nitrate reductase activity for all the studied plants

    Fig.8 Comparison of maximum nitrate reductase activity in D.fragrans and associated plants

    Variation of LCP and LSP in D.fragrans and its main associated plants

    A common pattern in LCP seasonal dynamic variation was observed overall (Figs.9 and 10).With the attainment of leaf maturity and increase in chlorophyll content, LCP appeared to decline generally, reaching a minimum in July.Subsequently, with leaf aging and reduction of chlorophyll content, LCP steadily and consistently increased, reaching a peak in September.A low LCP, small canopy density and strong light intensity in the rocky environment ofD.fragranscommunity gave rise to excessive photosynthesis,which greatly impacted growth.Therefore, in these eight species, the chlorophyll content and associated leaf growth both peaked in July, followed by a steady decrease with leaf aging.Generally, LSP could be utilized to measure plant photosynthetic capacity,as a higher LSP correlates with a largerPnvalue.Compared with its associated plants,D.fragransexhibited a relatively low LSP, suggesting a narrower ecological amplitude to light adaptation.

    Fig.9 LCP variation D.fragrans and main associated plants

    Fig.10 LSP variation in D.fragrans and associated plants

    Discussion

    The net photosynthetic rate (Pn) in different habitats was a single peak pattern.In the summer morning, leaf photosynthetic rate ofD.fragransand other associated plants increased gradually.With the increased of the height of the sun, maximum value was at 1: 00 p.m.This was due to the high temperature and light in the northeast in summer, but in the morning the temperature was low, with the increased of PAR and temperaturePnwas also rising to and peak at the same time.Then the temperature was higher,the leaf water content was reduced, and the stomata were partially closed, which resulted in the decrease of Ci concentration and the decreased ofPn.Plant net photosynthetic rate determines the level of accumulation of plant photosynthetic products, which can further affect the speed of plant growth (Zhanget al., 2014).D.fragrans niche similarity and niche overlap of this plant were higher, which showed that their niches were more similar (Huanget al.,2013).Previous findings had shown that the growth ofD.fragransresponded to specifically defined environment factors.Here, measurements of photosynthetic rate and other photosynthetic physiological indices demonstrated that these values were not higher forD.fragrans, but were lower among most of its associated plants.For example, a lowerPnvalue reflected a weak photosynthetic capacity forD.fragransrelative to other plants in this community.In addition, the lowPnchanged at noon coupled with a higher light energy utilization rate both suggested thatD.fragranshad a certain resistance to strong light.

    Strong light environment was not conducive to the synthesis of chlorophyll and chloroplast development.Chlorophyll content and chlorophyll a/b had a direct effect on the photosynthetic rate.Chlorophyll a/b were small, meant the higher the use of blue violet, the higher ability to adapt to less light environment (Liet al., 2011).When chlorophyll a and chlorophyll b decreased, photosynthetic activity of plants increased.Compared with associated plants, the total chlorophyll content and chlorophyll a to chlorophyll b content ratio inD.fragransremained consistently at a middle level, demonstrating thatD.fragransmight adapt to light, but had weak competitive ability.At the same time, the study found thatD.fragransnitrate reductase activity varied significantly in different seasons, reaching the maximum in July before declining.

    The heliophytes had high LCP and LSP; however,the shade plants had low LCP and LSP (Liet al., 2011).In our study, low LCP and LSP values forD.fragranssuggested it had a stronger ability to utilize weak light than its associated plants.Overall, the results of this study linked the narrow geographic distribution ofD.fragransto its growth disadvantage relative to its associated plants.

    Conclusions

    Photosynthesis is one of the most significant physiological processes underlying plant growth and greatly impacts subsequent plant size and development.D.fragransis mainly distributed in rocks, an inhospitable environment that is neither warm nor damp enough for most plants to thrive.Therefore, during competition within a mixed plant community, the success ofD.fragranspartly depends on its growth speed.BecausePndetermined the rate of plant growth to a certain extent, this factor should play a role.Moreover, because previous researches indicated thatD.fragransgrowth characteristics helped it to adapt to environmental factors, photosynthetic physiological indices and the photosynthetic rate ofD.fragransand its main associated plants were analyzed.The study showed thatD.fragranswere not dominant and exhibit even lower values than for the associated plants.By comparing these photosynthetic characteristics, a potential coordination betweenD.fragransand the growing environment were observed that partly explained the reason behind the narrow geographic distribution ofD.fragrans.Moreover, the information obtained from the analyses should provide a theoretical basis for further resource protection, exploitation and artificial cultivation ofD.fragrans.

    Aguilar E, Allende L, Del Toro F J,et al.2015.Effects of elevated CO2and temperature on pathogenicity determinants and virulence of potato virus X/Potyvirus-associated synergism.Molecular Plant-microbe Interactions, 28: 1364-1373.

    Arzari R, Tadmor Y, Meir A,et al.2005.Light signaling genes and their manipulation towards modulation of phy-tonutrients content in tomato fruits.Biotech aology Advances, 28: 108-118.

    Cai R G, Zhang M, Yin Y P,et al.2008.Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to nitrogen application during grain filling of field-grow wheat.Agricultural Sciences in China, 7(2): 157-167.

    Fan H Q, Shen Z B Chen Y F,et al.2012.Study on antifungal susceptibility of different extract ofDryopteris fragrans.Journal ofChinese Medicinal Materials, 35: 1981-1985.

    Freeland R O.1952.Effect of age of leaves upon the rate of photosynthesis in some conifers.Plant Physiology, 27: 685-690.

    Fresneau C, Ghashghaie J, Cornicet G,et al.2007.Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durumL.): role of leaf internal CO2.Journal of Experimental Botany, 67(5): 2983-2992.

    Giaimo J M, Gusev A V, Wasielewski M R,et al.2002.Excited-state symmetry breaking in cofacial and linear dimers of a green perylenediimide chlorophyll analogue leading to ultrafast charge separation.Journal of the American Chemical Society, 124(29): 8530-8531.

    Hang G f, Zhai S H, Wen-Hua S U,et al.2008.Effects of light intensity and air temperature on the photosynthesis of Neottopteris Nidus.Journal of Kunming University, 4: 62-63.

    Huang Q Y, Lichun H U, Fan R,et al.2013.Characteristics of plant niche on medicinal herbDryopteris fragrans(L.) Schott.Journal of Northeast Agricultural University, 44(7): 143-148.

    Jin Z X.2002.The Photosynthetic characteristics of the main species of the Hep-tacodium miconioides community in Tiantai mountain of Zhejiang Province, China.Acta Ecologica Sinica, 1645-1652.

    Macedo A F, Leal-Costa M V, Tavares E S,et al.2011.The effect of light quality nn leaf production and development of in avitro-ultured plants ofAlternanthera brasilianaKuntze.Environmental and Experimental Botany, 70: 43-50.

    Knight S L, Mitchell C A.1989.Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce.Sci Hortic(Amsterdam), 35: 37-49.

    Li F W.2005.Studies on the photosynthetic characterizations and distributions of rear earth elements in fern Dicranopteris dichotoma.Institute of Botany, the Chinese Academy of Sciences, Beijing.

    Li L, Li X Y, Lin L S,et al.2011.Comparison of chlorophyll content and fluorescence parameters of six pasture species in two habitats in China.Chinese Journal of Plant Ecology, 35(6): 672-680.

    Li Y H, Zhang K M, Hong-Fang Y U,et al.2011.Photosynthetic characteristics of ten cultivars of autumn chrysanthemum (Dendranthema morifolium) and correlation analysis between net photosynthetic rate and some physio cological factors.Journal ofPlaut Resources and Euviroumeut, 21(1): 70-76.

    Liao J X, Ge Y, Guan B H,et al.2006.Photosynthetic characteristics and growth ofMosla hangchowensisand M-dianthera under different irradiances.Biol Plantarum, 50: 737-740.

    Osterhout W J, Haas A R.1919.The temperature coefficient of photosynthesis.The Journal of General Physiology, 1: 295-298.

    Shen Z B, Luo W Y, Yan Y S,et al.2006.Study on terpene ofDryopteris fragransL.Journal of Chinese Medicinal Materials, 29:334-335.

    Shu Z Z, Zhang X S, Chen J,et al.2010.The simplification of chlorophyll content measurement.Plant Physiology Communications, 6(4): 399-402.

    Spoeher H A, Mcgee J M.1924.Absorption of carbon dioxide the first step in photosynthesis.Science, 59: 513-514.

    Yang X Y, Wang X F, Wei M,et al.2010.Changes of nitrate reductase activity in cucumber seedlings in response to nitrate stress.Agricultural Sciences in China, 9(2): 216-222.

    Zhang Z W, Zhang B Y, Tong H F,et al.2010.Photosynthetic LCP and LSP of different grapevine cultivars.Journal of Northwest Forestry University, 25(1): 24-29.

    Zhang Y Q, Li S W, Wei F U,et al.2014.Effects of nitrogen application on yield, photosynthetic characteristics and water use efficiency of hybrid millet.Journal of Plant Nutrition and Fertilizer, 5:1119-1126.

    猜你喜歡
    旅行包屋檐下屁股
    同在一個(gè)屋檐下的困擾
    中老年保健(2022年1期)2022-08-17 06:15:32
    給麥先生的信
    出色
    智族GQ(2020年1期)2020-03-11 13:14:38
    打針要扎在屁股上
    善待屁股
    特別健康(2018年4期)2018-07-03 00:38:12
    神奇屁股在哪里
    光合之家——一個(gè)屋檐下
    輕裝出行
    關(guān)于“報(bào)屁股”(外一章)
    同一屋檐下的你
    久久久久久久久免费视频了| 色综合站精品国产| 欧美成人性av电影在线观看| 久久狼人影院| 成人三级黄色视频| 啦啦啦免费观看视频1| 亚洲精品一区av在线观看| 国产精品影院久久| 欧美日本亚洲视频在线播放| 亚洲精品在线观看二区| 自线自在国产av| 999精品在线视频| 老熟妇仑乱视频hdxx| 嫩草影视91久久| 国产精品久久久久久亚洲av鲁大| 久久久国产欧美日韩av| 亚洲精品久久成人aⅴ小说| 宅男免费午夜| 久久久久九九精品影院| 国产在线精品亚洲第一网站| av免费在线观看网站| 亚洲国产看品久久| 日韩av在线大香蕉| 国产精品久久电影中文字幕| 婷婷亚洲欧美| 在线观看一区二区三区| 亚洲国产精品成人综合色| 性欧美人与动物交配| 国产熟女xx| 人人妻,人人澡人人爽秒播| 久久久久久国产a免费观看| 99在线视频只有这里精品首页| 中文字幕最新亚洲高清| 亚洲精品中文字幕在线视频| 欧美激情极品国产一区二区三区| 精品无人区乱码1区二区| 免费一级毛片在线播放高清视频| 久久久久久人人人人人| АⅤ资源中文在线天堂| 精品一区二区三区四区五区乱码| 亚洲一区二区三区不卡视频| avwww免费| 久久精品国产亚洲av高清一级| 女人被狂操c到高潮| 制服诱惑二区| 波多野结衣巨乳人妻| 久久久久久九九精品二区国产 | 亚洲自拍偷在线| 亚洲人成77777在线视频| 人人妻人人澡人人看| 中文字幕av电影在线播放| 丝袜在线中文字幕| 老汉色av国产亚洲站长工具| 免费在线观看亚洲国产| 757午夜福利合集在线观看| 国产成人系列免费观看| 深夜精品福利| 午夜精品在线福利| 黄色a级毛片大全视频| 久久精品91蜜桃| 日韩欧美三级三区| 日本一区二区免费在线视频| 美国免费a级毛片| 精品人妻1区二区| 欧美性猛交╳xxx乱大交人| 欧美色欧美亚洲另类二区| 亚洲国产欧美网| 国产精品久久久久久亚洲av鲁大| 一夜夜www| 老司机午夜福利在线观看视频| 美国免费a级毛片| 精品人妻1区二区| 久久国产乱子伦精品免费另类| 50天的宝宝边吃奶边哭怎么回事| 精品欧美一区二区三区在线| 中文字幕最新亚洲高清| 啦啦啦观看免费观看视频高清| 国产精品 欧美亚洲| 夜夜躁狠狠躁天天躁| 国产黄片美女视频| 99久久久亚洲精品蜜臀av| 国产又色又爽无遮挡免费看| 欧美激情极品国产一区二区三区| 久久精品成人免费网站| 黄色片一级片一级黄色片| 久久久久久久久免费视频了| 精品卡一卡二卡四卡免费| 婷婷精品国产亚洲av| 亚洲专区中文字幕在线| av天堂在线播放| 一进一出好大好爽视频| 成人亚洲精品一区在线观看| 欧美zozozo另类| 日本一区二区免费在线视频| 观看免费一级毛片| 久久精品亚洲精品国产色婷小说| 日本免费一区二区三区高清不卡| 久久精品国产亚洲av香蕉五月| 黄频高清免费视频| 国产欧美日韩一区二区精品| 欧美日韩亚洲国产一区二区在线观看| 国产成人精品久久二区二区免费| 亚洲一区二区三区色噜噜| 老汉色∧v一级毛片| 999久久久国产精品视频| 午夜福利在线在线| 久久中文看片网| 国内毛片毛片毛片毛片毛片| 一级作爱视频免费观看| 欧美国产日韩亚洲一区| 一本综合久久免费| 免费无遮挡裸体视频| 天天躁夜夜躁狠狠躁躁| 亚洲av成人不卡在线观看播放网| 97人妻精品一区二区三区麻豆 | 精品人妻1区二区| 午夜福利一区二区在线看| 丝袜美腿诱惑在线| 国产精品久久视频播放| 女警被强在线播放| 桃色一区二区三区在线观看| 日本三级黄在线观看| 久久久久精品国产欧美久久久| 国产激情偷乱视频一区二区| 人人妻人人看人人澡| 日韩国内少妇激情av| 日韩中文字幕欧美一区二区| 亚洲全国av大片| 亚洲成人国产一区在线观看| 亚洲av熟女| 日韩一卡2卡3卡4卡2021年| www国产在线视频色| 黑人欧美特级aaaaaa片| 国产aⅴ精品一区二区三区波| 午夜久久久在线观看| 日日夜夜操网爽| 亚洲av成人一区二区三| www日本在线高清视频| 国产乱人伦免费视频| 免费在线观看影片大全网站| 免费看a级黄色片| 黄色女人牲交| 国产一区二区三区在线臀色熟女| 亚洲性夜色夜夜综合| 亚洲精华国产精华精| 精品无人区乱码1区二区| 日韩欧美国产在线观看| 国产精品乱码一区二三区的特点| 麻豆久久精品国产亚洲av| 97人妻精品一区二区三区麻豆 | 免费看十八禁软件| 欧美色欧美亚洲另类二区| 日韩大尺度精品在线看网址| 麻豆成人av在线观看| 精华霜和精华液先用哪个| 国产一区二区三区在线臀色熟女| 国产成人啪精品午夜网站| 日本黄色视频三级网站网址| 欧美性猛交黑人性爽| 性欧美人与动物交配| 两性午夜刺激爽爽歪歪视频在线观看 | 国语自产精品视频在线第100页| 亚洲精品色激情综合| 日本一区二区免费在线视频| 久久国产精品影院| 久久久久久大精品| 久久伊人香网站| 亚洲精品国产区一区二| cao死你这个sao货| 男男h啪啪无遮挡| 国产又爽黄色视频| aaaaa片日本免费| 国产精品亚洲美女久久久| 在线永久观看黄色视频| 亚洲免费av在线视频| 曰老女人黄片| 黄色视频不卡| 国产久久久一区二区三区| 一区二区三区高清视频在线| av视频在线观看入口| 中文在线观看免费www的网站 | 欧美激情 高清一区二区三区| 人成视频在线观看免费观看| 99在线视频只有这里精品首页| 大香蕉久久成人网| 美女 人体艺术 gogo| 色尼玛亚洲综合影院| 成人18禁高潮啪啪吃奶动态图| 亚洲专区字幕在线| 久久久久久免费高清国产稀缺| 色在线成人网| 美女高潮到喷水免费观看| 一边摸一边抽搐一进一小说| 桃色一区二区三区在线观看| 中文字幕最新亚洲高清| 女性被躁到高潮视频| www.自偷自拍.com| 久久久水蜜桃国产精品网| 十八禁人妻一区二区| 成人三级做爰电影| 婷婷亚洲欧美| 精品国产一区二区三区四区第35| 制服丝袜大香蕉在线| 久久久久久亚洲精品国产蜜桃av| 黑人操中国人逼视频| 久久久久久免费高清国产稀缺| 国产精品久久久久久精品电影 | 欧美乱码精品一区二区三区| 久久人人精品亚洲av| 黄频高清免费视频| 日日摸夜夜添夜夜添小说| 啦啦啦免费观看视频1| 麻豆国产av国片精品| 超碰成人久久| 亚洲av日韩精品久久久久久密| 欧美另类亚洲清纯唯美| 亚洲精品在线观看二区| 欧美色视频一区免费| 免费在线观看视频国产中文字幕亚洲| 久久香蕉国产精品| 两个人看的免费小视频| 国产不卡一卡二| 在线观看日韩欧美| 亚洲国产高清在线一区二区三 | 国产激情偷乱视频一区二区| 免费在线观看完整版高清| 在线av久久热| 日韩欧美国产一区二区入口| 一本一本综合久久| 国语自产精品视频在线第100页| 女性生殖器流出的白浆| 黄色丝袜av网址大全| 国产av在哪里看| 亚洲五月婷婷丁香| 国产精品免费视频内射| 成在线人永久免费视频| 99精品在免费线老司机午夜| 亚洲,欧美精品.| 国产成人欧美在线观看| 好男人电影高清在线观看| 国产亚洲欧美在线一区二区| 精品一区二区三区四区五区乱码| 中文字幕高清在线视频| 在线观看www视频免费| 亚洲精品久久成人aⅴ小说| 国产伦人伦偷精品视频| 非洲黑人性xxxx精品又粗又长| 久久 成人 亚洲| 老司机靠b影院| 日韩三级视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 观看免费一级毛片| 不卡一级毛片| 亚洲精品美女久久久久99蜜臀| 成年人黄色毛片网站| 啦啦啦观看免费观看视频高清| 12—13女人毛片做爰片一| 十八禁网站免费在线| 无人区码免费观看不卡| 亚洲国产欧美网| 无遮挡黄片免费观看| 最近最新中文字幕大全免费视频| 高清在线国产一区| 久久久久久免费高清国产稀缺| 国产三级黄色录像| 欧美色欧美亚洲另类二区| 亚洲精品在线美女| 人成视频在线观看免费观看| 欧美性长视频在线观看| 免费看美女性在线毛片视频| 亚洲av片天天在线观看| 女性生殖器流出的白浆| 成人欧美大片| 亚洲av成人av| 久久人妻av系列| 国产不卡一卡二| 免费在线观看成人毛片| 亚洲精品在线美女| 亚洲五月婷婷丁香| 一边摸一边做爽爽视频免费| 国产成人精品久久二区二区91| 热re99久久国产66热| 久久中文看片网| 校园春色视频在线观看| 欧美在线黄色| 国产97色在线日韩免费| 悠悠久久av| www.www免费av| 757午夜福利合集在线观看| 亚洲人成77777在线视频| 精品国产乱子伦一区二区三区| 国产主播在线观看一区二区| 熟女少妇亚洲综合色aaa.| 最好的美女福利视频网| 一进一出抽搐动态| 国产一区二区三区视频了| 久久天躁狠狠躁夜夜2o2o| 又黄又粗又硬又大视频| 香蕉丝袜av| 中文字幕av电影在线播放| 久久久久久久久久黄片| 一本精品99久久精品77| 日韩欧美一区二区三区在线观看| 熟女少妇亚洲综合色aaa.| 午夜福利18| av福利片在线| 99久久久亚洲精品蜜臀av| 高清毛片免费观看视频网站| 侵犯人妻中文字幕一二三四区| 成人午夜高清在线视频 | 国产黄色小视频在线观看| 色综合婷婷激情| 亚洲熟妇中文字幕五十中出| 久久国产精品人妻蜜桃| 免费在线观看完整版高清| 亚洲第一电影网av| 午夜福利一区二区在线看| 99久久综合精品五月天人人| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 成人国语在线视频| 男女午夜视频在线观看| 欧美黄色淫秽网站| 禁无遮挡网站| 久久精品91蜜桃| 亚洲精品久久国产高清桃花| 国产精品亚洲一级av第二区| 日韩高清综合在线| 亚洲熟女毛片儿| 夜夜爽天天搞| 国产精品1区2区在线观看.| 久久精品国产亚洲av高清一级| 国产伦在线观看视频一区| 亚洲人成77777在线视频| 国产精品野战在线观看| 久久久久久久午夜电影| 在线国产一区二区在线| 精品乱码久久久久久99久播| 国产在线精品亚洲第一网站| 国产私拍福利视频在线观看| 国产av一区在线观看免费| 国产主播在线观看一区二区| 国内久久婷婷六月综合欲色啪| 国产不卡一卡二| 亚洲欧美精品综合久久99| 午夜福利18| 国产视频内射| 日本免费一区二区三区高清不卡| 国产麻豆成人av免费视频| 少妇粗大呻吟视频| 三级毛片av免费| 999精品在线视频| 国产成人精品无人区| 国产精品野战在线观看| 午夜免费成人在线视频| 久久精品国产亚洲av高清一级| 欧美日韩亚洲国产一区二区在线观看| 亚洲 欧美 日韩 在线 免费| 美女高潮到喷水免费观看| 国产亚洲欧美98| 欧美不卡视频在线免费观看 | 国产三级黄色录像| 亚洲avbb在线观看| 精品少妇一区二区三区视频日本电影| 国产精品日韩av在线免费观看| 精品久久久久久成人av| 午夜视频精品福利| а√天堂www在线а√下载| 可以在线观看毛片的网站| 国产av一区二区精品久久| 国产激情久久老熟女| 国产一区在线观看成人免费| 欧美日韩亚洲国产一区二区在线观看| 男女做爰动态图高潮gif福利片| 日韩欧美在线二视频| 男女做爰动态图高潮gif福利片| 国产成人啪精品午夜网站| 国产主播在线观看一区二区| 亚洲天堂国产精品一区在线| 99精品欧美一区二区三区四区| 欧美久久黑人一区二区| 国产精品一区二区三区四区久久 | 国产又色又爽无遮挡免费看| 可以免费在线观看a视频的电影网站| 亚洲精品在线美女| 男人的好看免费观看在线视频 | www.自偷自拍.com| 亚洲人成电影免费在线| av中文乱码字幕在线| 久久久久久亚洲精品国产蜜桃av| 精品国产一区二区三区四区第35| 国内久久婷婷六月综合欲色啪| 在线永久观看黄色视频| 精品第一国产精品| 久久久水蜜桃国产精品网| 国产1区2区3区精品| 淫秽高清视频在线观看| 亚洲自偷自拍图片 自拍| 亚洲av第一区精品v没综合| 国产精品国产高清国产av| av超薄肉色丝袜交足视频| 国产视频一区二区在线看| 午夜福利视频1000在线观看| 日韩欧美 国产精品| 18禁黄网站禁片午夜丰满| 国产精品久久久久久亚洲av鲁大| 国产单亲对白刺激| 婷婷六月久久综合丁香| 精品久久久久久久久久免费视频| 美女高潮到喷水免费观看| 亚洲国产欧美网| 免费观看人在逋| 欧美性长视频在线观看| 中国美女看黄片| 亚洲精品在线美女| 美女 人体艺术 gogo| 久久人人精品亚洲av| 99久久综合精品五月天人人| 他把我摸到了高潮在线观看| 免费在线观看日本一区| 听说在线观看完整版免费高清| 国产免费男女视频| 最近最新免费中文字幕在线| 亚洲国产高清在线一区二区三 | 精品不卡国产一区二区三区| 真人一进一出gif抽搐免费| 日本免费一区二区三区高清不卡| 欧美黄色淫秽网站| 男女做爰动态图高潮gif福利片| 中文在线观看免费www的网站 | 久9热在线精品视频| 久久久久久九九精品二区国产 | 国产亚洲精品一区二区www| 日本免费a在线| 亚洲国产精品合色在线| 高清毛片免费观看视频网站| 国产爱豆传媒在线观看 | 成人永久免费在线观看视频| 免费人成视频x8x8入口观看| 午夜两性在线视频| 国产麻豆成人av免费视频| 午夜影院日韩av| 午夜福利成人在线免费观看| 黄色毛片三级朝国网站| 黑丝袜美女国产一区| 色婷婷久久久亚洲欧美| 嫁个100分男人电影在线观看| 每晚都被弄得嗷嗷叫到高潮| e午夜精品久久久久久久| 国产又色又爽无遮挡免费看| 国产在线精品亚洲第一网站| 亚洲av电影在线进入| 亚洲va日本ⅴa欧美va伊人久久| 夜夜爽天天搞| 丝袜在线中文字幕| 十分钟在线观看高清视频www| av在线播放免费不卡| 日韩欧美国产在线观看| 亚洲中文av在线| 一本大道久久a久久精品| 一个人观看的视频www高清免费观看 | 在线观看免费日韩欧美大片| www.自偷自拍.com| 熟女少妇亚洲综合色aaa.| 99热只有精品国产| 亚洲av片天天在线观看| 国产精品久久久久久人妻精品电影| 亚洲三区欧美一区| 女警被强在线播放| 99re在线观看精品视频| 淫妇啪啪啪对白视频| 免费高清在线观看日韩| 白带黄色成豆腐渣| 国产欧美日韩一区二区精品| 精品久久久久久,| www.熟女人妻精品国产| 变态另类丝袜制服| 国产精品电影一区二区三区| 天堂√8在线中文| 精品高清国产在线一区| 满18在线观看网站| 成人国产综合亚洲| 免费搜索国产男女视频| 一级黄色大片毛片| 亚洲人成电影免费在线| 国产一区在线观看成人免费| 夜夜躁狠狠躁天天躁| av在线天堂中文字幕| 国产乱人伦免费视频| 好男人在线观看高清免费视频 | 亚洲欧洲精品一区二区精品久久久| 国产av不卡久久| 欧美乱色亚洲激情| 十八禁人妻一区二区| 韩国精品一区二区三区| 日韩欧美在线二视频| 国产av不卡久久| 欧美乱色亚洲激情| 国产精华一区二区三区| 女人高潮潮喷娇喘18禁视频| 在线播放国产精品三级| 久久久久久久午夜电影| 成年版毛片免费区| 日韩有码中文字幕| 亚洲自拍偷在线| 中文在线观看免费www的网站 | aaaaa片日本免费| 国产激情欧美一区二区| 成人国产综合亚洲| 欧美人与性动交α欧美精品济南到| 久久久国产欧美日韩av| 久久热在线av| 极品教师在线免费播放| 午夜两性在线视频| 桃色一区二区三区在线观看| 国产私拍福利视频在线观看| 欧美日本视频| 俺也久久电影网| 女人高潮潮喷娇喘18禁视频| 中文在线观看免费www的网站 | 亚洲成a人片在线一区二区| 久热这里只有精品99| 国产1区2区3区精品| 大型av网站在线播放| 精品不卡国产一区二区三区| 久久性视频一级片| 老司机靠b影院| 99热6这里只有精品| 一本综合久久免费| 久久天堂一区二区三区四区| 色尼玛亚洲综合影院| 国产精品一区二区三区四区久久 | 白带黄色成豆腐渣| 国产精华一区二区三区| 黄色 视频免费看| 无人区码免费观看不卡| 亚洲电影在线观看av| 久久久国产成人免费| av天堂在线播放| 欧美中文综合在线视频| 亚洲激情在线av| 黄色丝袜av网址大全| 亚洲熟妇中文字幕五十中出| 国产1区2区3区精品| av在线天堂中文字幕| 美女国产高潮福利片在线看| 99riav亚洲国产免费| 亚洲全国av大片| 精品欧美一区二区三区在线| 国产91精品成人一区二区三区| 国产1区2区3区精品| 黄色视频,在线免费观看| 免费无遮挡裸体视频| 亚洲五月婷婷丁香| 久久欧美精品欧美久久欧美| 国产亚洲欧美精品永久| 欧美午夜高清在线| 亚洲 欧美一区二区三区| 国产精品av久久久久免费| 日韩精品中文字幕看吧| 18禁裸乳无遮挡免费网站照片 | 在线天堂中文资源库| 成人精品一区二区免费| 一个人免费在线观看的高清视频| 亚洲一区二区三区不卡视频| 欧美成人性av电影在线观看| 国语自产精品视频在线第100页| 国产成人影院久久av| 黄色 视频免费看| 无人区码免费观看不卡| 在线视频色国产色| 成年女人毛片免费观看观看9| 一区福利在线观看| 午夜久久久久精精品| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 亚洲精品中文字幕一二三四区| 黄色成人免费大全| 香蕉国产在线看| 国产精品影院久久| 亚洲av电影不卡..在线观看| 宅男免费午夜| 免费一级毛片在线播放高清视频| 精品国产乱码久久久久久男人| 亚洲一区中文字幕在线| 高清毛片免费观看视频网站| 999久久久国产精品视频| 国产精品亚洲av一区麻豆| 亚洲精品久久成人aⅴ小说| 最近最新中文字幕大全电影3 | 亚洲av片天天在线观看| 男人的好看免费观看在线视频 | 亚洲国产精品成人综合色| 国产精品久久久久久亚洲av鲁大| 最近最新中文字幕大全电影3 | 在线观看舔阴道视频| 一本久久中文字幕| 美女午夜性视频免费| 亚洲av中文字字幕乱码综合 | 成人国产一区最新在线观看| 国产高清videossex| 免费女性裸体啪啪无遮挡网站| 一区二区三区高清视频在线| 在线播放国产精品三级| 免费女性裸体啪啪无遮挡网站| 日本免费一区二区三区高清不卡| 中文在线观看免费www的网站 | 国产激情久久老熟女| 极品教师在线免费播放| 亚洲成人久久性| 黄色丝袜av网址大全| 亚洲欧美一区二区三区黑人| 伊人久久大香线蕉亚洲五| 亚洲人成网站高清观看|