• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of a coupled supersonic inlet-fan Navier–Stokes simulation method

    2018-03-21 05:28:35QiushiLIYongzhaoLYUTianyuPANDaLIHananLUYifangGONG
    CHINESE JOURNAL OF AERONAUTICS 2018年2期

    Qiushi LI,Yongzhao LYU,Tianyu PAN,*,Da LI,Ha’nan LU,Yifang GONG

    aNational Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics,Beihang University,Beijing 100191,China

    bSchool of Energy and Power Engineering,Beihang University,Beijing 100083,China

    cCollaborative Innovation Center of Advanced Aero-Engine,Beihang University,Beijing 100083,China

    dGL-Turbo Compressor Company,Wuxi 214106,China

    1.Introduction

    Over the last decades,Computational Fluid Dynamics(CFD)has been well developed,which can accurately simulate the flow field of the turbomachinery and revolutionize the aerodynamic design process of propulsion system components.Full annulus multi-row unsteady calculations through the turbomachinery subject to non-axisymmetric flow can be calculated directly to resolve effects of separations close to the walls on the compressor characteristic,which in some cases is the center of concern.For instance,the Hybrid Wing-Body(HWB)aircraft is extremely concerned lately,which is an alternative concept for the conventional tube-and-wing aircraft.1In the design process,it involves coupled calculations of the inlet and full-annulus fan blades,and it is important to include the effect of fan blades on the inlet and nozzle design.A direct coupling of the inlet and full-annulus fan blades in the computational domain is more realistic and accurate for the inlet-fan interaction,but the demand for the computer resources is prohibitively large,including the memory and the CPU time,and more than tens of flow simulations are usually required.2To save the computer resources,some CFD studies were conducted using conventional uniform-back-pressure boundary condition at the fan face to simulate flow for propulsion-airframe integration problems.3–5However,for integration problems with highly distorted flows at the fan faces,the assumption of uniform static pressure may not be valid.By implementing an actuator disk with a Navier–Stokes code,it is possible to simulate the flow field through fan blades without the actual blade geometry.6However,based on the two-dimensional assumption,the actuator disk model does not include the effect of swirl and requires the total pressure and total temperature change across the fan as input terms.Recently,the passage averaged body force model has been an alternative to simulating the effect of blockage,swirl,and suction due to fan blades with reasonable computing costs.7–9This approach uses body force terms to model flow turning and loss due to rotor/stator blade rows.The body force terms,extracted from single-passage Navier-Stokes flow simulation results or experimental test data,were added as source terms in the flow equations for grid cells swept by blade rows.The body force approach allows relatively accurate flow simulations of inlet-fan interaction problems without actual full-annulus simulation of the rotor/stator geometry.Xu10developed a viscous body force model,which extracted viscous body forces as source terms form unsteady Reynolds Averaged Navier-Stokes(RANS)solutions and directly solved Euler equations through blade passages.Chima11introduced a three-dimensional unsteady CFD code called CSTALL to solve the Euler equations through the entire annulus and all blade rows.And two computational fluid dynamics codes have been merged to permit rapid calculations of subsonic inlet-fan interaction.7,12However,It needed a third code called SYNCEX to handle data communication,storage,and synchronization.So,this method made it relatively complicated for the data transfer between CFD codes.In addition,it was also inconvenient to generate complicated geometry and mesh for subsonic inletfan calculations.

    In the present study,a coupled supersonic inlet-fan Navier–Stokes simulation method was developed using COMSOL–CFD code.The COMSOL Multi-physics software environment is capable of facilitating all steps in the modeling and simulation processes from part defining,feature based meshing to visualization and solution analysis.The inlet and fan could been simulated simultaneously by different COMSOL modules,and the data transfer at each grid point of the inlet-fan interface was completed more easily by the form of boundary conditions than the SYNCEX code.7,12A three-dimensional body force model,in which viscous effects on the exchange of momentum between fluids and detailed viscous flow close to walls in blade passages can be calculated directly,was installed into the Navier–Stokes code of the COMSOL-CFD to simulate blade rows without specifying blade geometry.The governing equations for flow were written in nonconservative form in Cartesian coordinates with body forces as source terms on the right-hand side.Because the body force only changed the size of the mechanical energy with nothing on the size of the internal energy,the energy equation was written in the internal form.And coupled axisymmetric mixed compression supersonic inlet-fan simulations were conducted under Mach number 2.8 operating conditions,which were simulated by the High Mach Number Flow(HMNF)module of COMSOL Multi-physics.

    The remainder of this paper is organized as follows.Section 2 describes formulation of the present body force approach.Section 3 presents numerical approaches for simulating flow,including flow solvers,mesh generation method,and boundary conditions.Section 4 presents validation results of the HMNF module for supersonic flows and the present body force model and coupled supersonic inlet-fan simulations.Finally,Section 5 provides the summary and conclusions.

    2.Body force model

    2.1.Governing equations

    Based on the COMSOL-CFD code,the governing equations were written in non-conservative form in Cartesian coordinates with body forces as source terms on the right-hand side.And,viscous effects on the exchange of momentum between fluids and detailed viscous flow close to walls in blade passages were considered directly by viscous terms of governing equations as follows.

    wheretis time;x,y,zare the three directions of Cartesian coordinate;ρ is density;pis pressure;V is the velocity vector andVi(i=x,y,z)are the three components of velocity alongxaxis,yaxis andzaxis; τij(i,j=x,y,z)are the nine components of shear stress in Cartesian coordinate;kis the thermal conductivity;eis total energy;Tis temperature;bis the blockage factor;Φ is the total body force.

    Some of the variables in Eq.(1)are obtained by following formulas:

    where μ is the dynamic coefficient of viscosity;Cvis the volumetric specific heat capacity;γ is the specific heat ratio;θsand θpare the angles of suction side and pressure side;Nis the number of blades.

    The blockage factorbis modeled to account for blade thickness.In ducts and intra-blade-row gaps,the total body force Φ and blockage factorbare equal to 0 and 1 respectively.And in the blade row region,the total body force Φ is composed of two parts,which can be expressed as

    where Φ′is the body force term,and Φ′is a source term that includes circumferential derivatives and derivatives of theb,which is an extra term from equations8in cylindrical coordinates to Eq.(1)in Cartesian coordinates.They can be written as

    wherefi(i=x,y,z)are the three components of body force alongxaxis,yaxis andzaxis; Ω is rotor speed;r,θ,zare the three directions of cylindrical coordinate;Viand ˙qi(i=r,θ,z)are the three components of velocity and heat source in cylindrical coordinate; τij(i,j=r,θ,z)are the nine components of shear stress in cylindrical coordinate.

    In Eq.(1),the energy equation of the fluid contains the internal energyEand the mechanical energy.So,the differential form of the energy equation can be written as

    And the differential form of the momentum equation can be written as

    Then,by misusingVi×Eq.(6),the energy equation becomes

    From Eq.(7),it can be seen that the body force can only change the size of the mechanical energy with nothing on the internal energy.So,Eq.(1)can be written as

    in which the variables with digital subscript represent the components of the corresponding vectors.

    2.2.Body forces

    The body force model used in Eq.(8)for this study was based on the model developed by Gong8which makes the assumption of an infinite number of blades and axisymmetric flow in each infinitesimal blade passage.The cascade blade forces in the relative frame of reference are modeled as normal and tangential forces to the local flow as shown in Fig.1,which are similar to the lift and drag forces of an airfoil.In this figure,FnandVnare the force and velocity normal to the channel direction;FpandVpare the force and velocity parallel to the channel direction;his the blade-to-blade gap-staggered spacing;α the camber angle;Vrel=Vzcosθ-Vysinθ-rΩ is the relative tangential velocity component.

    Fig.1 Illustration of body force components at blade-to-blade section.

    2.2.1.Normal force model

    In the present study,a modified formulation12was used to model the normal force:

    whereKnis the normal force coefficient,cis the blade chord length and Δα is the camber angle difference between the trailing edge and leading edge.

    Defoe13suggested an empirical model for determining the normal force coefficientKnfor a particular fan rotor:

    whererhandrtare the hub and tip radius of the fan blade,respectively.The first expression in parentheses in Eq.(11),an empirically obtained term suggested in Ref.,8is multiplied by the bracketed expression to adjust the magnitude ofKnalong the spanwise direction.Kim and Liou12adopted a formulation forKnthat is very similar to Eq.(11):

    wheref(r)is a set of line segments connecting control points with a spanwise distribution.Andg(˙mlocal)is an adjusting function,which depends on the local Mass Flow Rate(MFR)parameter.It can be expressed as

    whereA(x)is the flow area at axial position ofx.

    In this paper,the control points off(r)andg(˙mlocal)were adjusted to match available CFD or experimental data.The three components of the normal force are calculated by

    The relationship between cylindrical coordinates and Cartesian coordinates is shown in Fig.2.

    Fig.2 Relationship between cylindrical coordinates and Cartesian coordinates.

    2.2.2.Parallel force model

    The component of the body forceFpfor the flow loss is obtained by Gong’s model.

    whereKpis the parallel force coefficient and equals 0.04.The three components ofFpare calculated as follows:

    3.Methodologies for flow simulation

    3.1.Single-passage turbomachinery flow simulation

    For single-passage Navier-Stokes flow simulations of the NASA Rotor 37,a commercial solver NUMECA Fine-Turbo EURANUS was used through a finite volume method.The NUMECA Fine-Turbo EURANUS is a threedimensional,multi-block,structured-grid Navier-Stokes analysis code for turbomachinery blade rows.The temporal discretization scheme is an explicit four-order Runge-Kutta scheme and the spatial discretization uses the second order accurate central-differenced scheme.The Spalart-Allmaras model is applied to close the turbulence terms.The choice is based on the earlier studies of turbomachines.14,15The computational domain only considers a single-blade passage with periodic boundary conditions imposed along the pitchwise direction.At the inlet,the total pressure and temperature are specified along with the flow angle.At the exit,which is placed at two chords downstream the trailing edge,the average static pressure is specified.The working fluid is considered to be a perfect gas.In addition,the no-slip and no-flux conditions are adopted on solid surfaces.The identical boundary conditions are used in all the calculations.

    3.2.Coupled supersonic inlet-fan flow simulation

    HMNF,a CFD module in COMSOL Multi-physics,was used for all the flow simulations in this study except turbomachinery single-passage simulations.The compressible Reynolds-averaged Navier-Stokes equations were discretized by the finite element method.And the solution domain was discretized into a series of small connected units,in which discrete linear algebraic equations were solved.The flux was computed using segregated solvers,which used a Newton’s method in each substep,and two-equation(k-e)model was used to incorporate turbulence effects.Parallel processing was accomplished by Cluster Computing,which could utilize shared-memory multicore processing on each code in combination with the Message Passing Interface(MPI)based distributed memory model.

    In COMSOL Multi-physics,a number of different mesh types and meshing strategies for flow modeling were used,including unstructured meshes,structured meshes,swept meshes,and boundary layer meshes.For coupled axisymmetric supersonic inlet-fan calculations,swept meshes were typically ideal,which were a particular form of structured meshes for channels and pipes.These are generated in 3D structure by creating a mesh at a source face and then sweeping it along the domain to a destination face.Then,boundary layer meshes were used by inserting structured layers of elements near viscous walls.

    4.Simulation results

    4.1.Validation

    4.1.1.Supersonic flow simulation

    A 2D mixed compression inlet model16with a subsequent isolator section was used to validate the HMNF module for supersonic flows in COMSOL Multi-physics.The outline of the inlet contour and the definition of the main dimensions are given in Fig.3 and Table 1.

    For Navier-Stokes flow simulations of the supersonic inlet,the HMNF module described earlier was used.At the inlet,the supersonic inflow was defined by specifying flow conditions.In case of predominant supersonic outflow,the variables were completely extrapolated from the interior onto the outflow boundary.At solid walls,the no-slip condition was enforced by setting the velocity components to zero.Fig.4 shows computational domain and grid detail for the supersonic inlet.

    The normalized pressure distribution along with the surface is plotted in Fig.5,where the ordinate represents the static pressurepnormalized by the inlet total pressurepin,tot.It can be seen that HMNF results well agree with the experiment data.In Fig.5(a),because the computed separation appears smaller than that experimentally observed,the computed pressure is smaller than the measured result.But the error is tolerable for the supersonic inlet simulation.So,supersonic flow simulations performed withk-eturbulence model in the HMNF module of COMSOL Multi-physics could well simulate flow characteristics for the supersonic inlet.

    Fig.3 Main dimensions of inlet model.

    Table 1 Main dimensions of inlet model.

    Fig.4 Computational domain and grid detail for supersonic inlet.

    Fig.5 Surface pressure distribution along axial locations.

    Table 2 Geometric and design parameters of NASA Rotor 37.

    Fig.7 Rotor pressure ratio versus mass flow rate.

    4.1.2.Viscous body force model

    NASA Rotor 37,which was designed by NASA Glenn Research Center,was selected as the baseline compressor to validate the present viscous body force model.Table 2 summarizes the main geometric and design parameters of the rotor.For single-passage Navier-Stokes flow simulations of the Rotor 37,NUMECA Fine-Turbo EURANUS described earlier was used.And the HMNF module was run in compressible Reynolds-averaged Navier-Stokes equations with the body force source terms added.At the inlet,the total pressure and temperature were specified along with the flow angle.At the exit,which is placed at two chords downstream the trailing edge,the average static pressure was specified.The working fluid was considered to be a perfect gas.In addition,the noslip and no- flux conditions were adopted on solid surfaces.Fig.6 shows computational meshes for the Rotor 37,TE:trailing edge,LE:leading edge.

    Fig.7 compares the rotor pressure ratio versus the mass flow rate at the design rotor speed.The experimental data,extracted from the Advisory Group for Aeronautical Research and Development(AGARD)Advisory Report 355 entitled ‘CFD Validation for Propulsion System Components”,agree very well with the results of the NUMECA Fine-Turbo EURANUS and the RANS simulation with the body force model.Fig.8 shows the total pressure contours normalized by the free-stream total pressure.The total pressure increases along the streamwise direction with an almost uniform slope.

    In Fig.9,the spanwise distributions of pitch-averaged total pressure ratio,total temperature ratio and swirl angle at the rotor outlet for 98.7%choked mass flow are compared for NUMECA Fine-Turbo EURANUS and RANS+body force model.And the two results along the span are in good agreement.

    Fig.8 Normalized total pressure contours at a meridional plane.

    Fig.6 Computational mesh for Rotor 37.

    4.2.Flow simulation of coupled supersonic inlet-fan

    Flow simulations of a coupled supersonic inlet-fan configuration were conducted for a cruise flight condition:Mach number 2.8,an altitude of 98000 ft(1 ft=0.3048 m),and an angle of attack of 0°.A Fortran code was written,which uses shape and performance parameters to build the axisymmetric mixed compression supersonic inlet.And the connected fan, which has a 15 inch (1 inch=2.54 cm)diameter and 43 wide-chord blades,is the first stage rotor of a three-stage transonic axial-flow compressor shown in Fig.10.The performance specifications of the first stage rotor were that MFR is 4.49 kg/s,pressure ratio is 1.77,and rotor speed is 25,000 r/min.Some parameters for the coupled system are shown in Fig.11,and the explanations of these parameters are given in Table 3.A computational structured mesh was generated by COMSOL Multi-physics on the coupled configuration,as shown in Fig.12.And the local mesh refine approach near bleed slots was used to capture the flow field in detail.In Fig.13,numerical results for the fan(the first stage rotor)from the NUMECA Fine-Turbo EURANUS and the current Navier-Stokes simulation with the body force model were well matched by the body force model buildup.

    Fig.10 Schematic diagram of transonic axial-flow compressor.

    Fig.11 Side section view of schematic representation of coupled system parameterization.

    Table 3 Explanation of parameters in Fig.11.

    Fig.14 shows sectional side views of normalized total pressure contours and local Mach number for coupled supersonic inlet-fan simulations.The region that was swept by the fan blade and had the body force model applied could be easily recognized as the steep axial gradient of the total pressure contours.And from the Mach number contours,it can be seen that the terminal shock positioned itself within the stability bleed slot of the supersonic inlet17–19because of the high backpressure of the fan.Fig.15 compares the fan pressure ratio and efficiency versus mass flow rate for uniform inflow and coupled inlet-fan conditions.It is obvious that the fan pressure ratio for coupled inlet-fan simulations was lower than that for the uniform inflow condition.The interaction between oblique shock wave and boundary layers and the existence of bleed slots could cause the non-uniform distribution of the flow at the inlet-fan interface location.20In Fig.16,non-uniform aerodynamic parameters at the inlet-fan interface location(the vertical line in Fig.11)caused the difference between the uniform and non-uniform case,that the fan pressure ratio and stability margin were worse for the non-uniform case,as shown in Fig.15(a).However,because the total temperature at the compressor outlet was underestimated by the body force model,the efficiency was bigger for uniform inflow and coupled inlet-fan conditions.And in the case of uniform inflow,the efficiency was overestimated for two methods.

    Fig.12 Computational mesh for coupled supersonic inlet-fan.

    Fig.13 Generation of body force model for fan.

    Fig.14 Center section contours.

    Fig.15 Comparison for uniform and inlet-fan inflow conditions at design rotor speed.

    Fig.16 Comparison of aerodynamic parameter distribution for uniform and inlet-fan inflow conditions.

    5.Conclusions

    In this paper,a coupled supersonic inlet-fan Navier–Stokes simulation method was developed using COMSOL-CFD code.The flow turning,pressure rise and loss effects across blade rows of the fan and the inlet-fan interactions were controlled by a body force model as source terms of the governing equations without a blade geometry.The following conclusions can be drawn:

    (1)Based on the COMSOL-CFD code,the governing equations including viscous terms were written in nonconservative form in Cartesian coordinates with body forces as source terms on the right-hand side.Detailed viscous flow close to walls in blade passages was calculated directly.Computational results of the Rotor 37 indicate that this model could simulate flow field performance well.

    (2)The COMSOL Multi-physics software environment was capable of facilitating all steps in the modeling and simulation processes from part defining,feature based meshing to visualization and solution analysis.Flow simulation results of the coupled supersonic inlet-fan demonstrate the validity of the present method.

    (3)The inlet and fan were simulated simultaneously by different COMSOL modules,and the data transfer at each grid point of the inlet-fan interface was completed easily by the form of boundary conditions.In fact,aerodynamic parameters at the inlet-fan interface were nonuniform,which had a bad effect on the fan performance.

    Acknowledgements

    The authors acknowledge the support of National Natural Science Foundation of China(Nos.51706008 and 51636001),China Postdoctoral Science Foundation(No.2017M610742)and Aeronautics Power Foundation of China (No.6141B090315).

    1.Kim H,Liou MS.Optimal shape design of mail-slot nacelle on N3-X hybrid wing-body con figuration.31st AIAA applied aerodynamics conference;2013 Jun 24–27;San Diego,USA.Reston:AIAA;2013.

    2.Webster RS,Sreenivas K,Hyams DG,Hilbert B,Briley WR,Whit field DL.Demonstration of sub-system level simulations:A coupled inlet and turbofan stage.48th AIAA/ASME/SAE/ASEE joint propulsion conference&exhibit;2012 Jul 30-Aug 01;Atlanta,USA.Reston:AIAA;2012.

    3.Rodriguez DL.Multidisciplinary optimization method for designing boundary-layer-ingesting inlets.J Aircraft2009;46(3):883–94.

    4.Kim H,Kumano T,Liou MS,Povinelli LA,Conners TR.Flow simulation of supersonic inlet with bypass annular duct.J Propul Power2011;27(1):29–39.

    5.O’Brien DM,Calvert ME,Butler SL.An examination of engine effects on helicopter aeromechanics.AHS specialist’s conference on aeromechanics.San Francisco,CA;2008 Jan 23–25.

    6.Bush R.Engine face and screen loss model for CFD application.Reston:AIAA;1997.Report No.:AIAA-1997-2076.

    7.Chima RV.Rapid calculations of three-dimensional inlet/fan interaction.NASA fundamental aeronautics 2007 annual meeting;2007 Oct 30-Nov 01;New Orleans,USA.Washington,D.C.:NASA;2007.

    8.Gong Y.A computational model for rotating stall inception and inlet distortion in multistage compressors[dissertation].Cambridge:Massachusetts Institute of Technology;1999.

    9.Hsiao E,Naimi M,Lewis JP,Dalbey K,Gong Y,Tan C.Actuator duct model of turbomachinery components for powered-nacelle Navier-Stokes calculations.J Propul Power2001;17(4):919–27.

    10.Xu L.Assessing viscous body forces for unsteady calculations.J Turbomach2003;125(3):425–32.

    11.ChimaRV.A three-dimensional unsteady CFD model of compressor stability.ASME turbo expo 2006:Power for land,sea,and air,volume 6:Turbomachinery,parts A and B;2006 May 08–11;Barcelona,Spain.New York:ASME;2006.p.1157–68.

    12.Kim H,Liou MS.Flow simulation of N3-X hybrid wing-body con figuration.51th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition;2013 Jan 07-10;Grapevine,USA.Reston:AIAA;2013.

    13.Defoe J.Inlet swirl distortion effects on the generation and propagation of fan rotor shock noise[dissertation].Cambridge:Massachusetts Institute of Technology;2011.

    14.Lange M,Vogeler K,Mailach R,Gomez SE.An experimental verification of a new design for cantilevered stators with large hub clearances.J Turbomach2013;135(4):041022.

    15.Wang YG,Chen WX,Wu CH,Ren SY.Effects of tip clearance size on the performance and tip leakage vortex in dual-rows counter-rotating compressor.Proc I MechE,Part G:J Aerospace Eng2014;229(11):1953–65.

    16.Reinartz BU,Herrmann CD,Ballmann J,Koschel WW.Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment.J Propul Power2003;19(5):868–75.

    17.Domel N,Baruzzini D,Miller D.A perspective on mixed compression inlets and the use of CFD and flow control in the design process.50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition;2012 Jan 09–12;Nashville,USA.Reston:AIAA;2012.

    18.Li QS,Lv YZ,Li SB.A quasi one-dimensional bleed flow rate model for terminal normal shock stability in mixed compression supersonic inlet.Proc IMechE,Part C:J Mech Eng Sci2014;228(14):2569–83.

    19.Lv YZ,Li QS,Li SB.Modeling the effect of stability bleed on back-pressure in mixed-compression supersonic inlets.ASME J Fluids Eng2015;137(12):121101.

    20.Voytovych DM,Merkle CL.Simulation of coupled supersonic inlet and a fan.46th AIAA/ASME/SAE/ASEE joint propulsion conference&exhibit;2010 Jul 25–28;Nashville,USA.Reston:AIAA;2010.

    国产精品久久久久久精品电影小说 | 国产永久视频网站| 亚洲精品日韩av片在线观看| 久久久精品94久久精品| av女优亚洲男人天堂| 国产日韩欧美亚洲二区| 网址你懂的国产日韩在线| 深夜a级毛片| 亚洲av福利一区| 偷拍熟女少妇极品色| 中文乱码字字幕精品一区二区三区| 亚洲成人一二三区av| 赤兔流量卡办理| 精品熟女少妇av免费看| 一级片'在线观看视频| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线播| 国产伦理片在线播放av一区| 亚洲精品日韩av片在线观看| 日日摸夜夜添夜夜爱| 亚洲精品中文字幕在线视频 | 亚洲精品国产av成人精品| 欧美极品一区二区三区四区| 色综合色国产| 少妇被粗大猛烈的视频| a级毛片免费高清观看在线播放| 热99国产精品久久久久久7| 国产日韩欧美亚洲二区| 欧美日韩综合久久久久久| 亚洲天堂av无毛| 激情 狠狠 欧美| 国产 精品1| 亚洲av成人精品一区久久| 插逼视频在线观看| 亚洲精品乱码久久久久久按摩| 亚洲精品乱码久久久久久按摩| 日本色播在线视频| 男女啪啪激烈高潮av片| 久久99蜜桃精品久久| 少妇丰满av| 亚州av有码| 久久精品综合一区二区三区| 久久综合国产亚洲精品| 女人十人毛片免费观看3o分钟| 最后的刺客免费高清国语| 能在线免费看毛片的网站| 2021少妇久久久久久久久久久| 日韩 亚洲 欧美在线| 高清在线视频一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 狂野欧美激情性xxxx在线观看| 久久久久网色| 夜夜爽夜夜爽视频| 22中文网久久字幕| 五月玫瑰六月丁香| 国产片特级美女逼逼视频| 精品99又大又爽又粗少妇毛片| 国产 一区 欧美 日韩| 中文字幕久久专区| 老女人水多毛片| 精品一区二区三卡| 午夜视频国产福利| www.av在线官网国产| 色综合色国产| 在线看a的网站| 天天躁夜夜躁狠狠久久av| 男女边摸边吃奶| 亚洲一区二区三区欧美精品 | 欧美3d第一页| 免费看不卡的av| 中文天堂在线官网| 午夜激情久久久久久久| 2021少妇久久久久久久久久久| 极品少妇高潮喷水抽搐| 大话2 男鬼变身卡| 亚洲内射少妇av| 乱系列少妇在线播放| 亚洲丝袜综合中文字幕| 日本与韩国留学比较| 久久影院123| 一级黄片播放器| 18+在线观看网站| 一区二区三区精品91| av在线天堂中文字幕| 性色av一级| 日日摸夜夜添夜夜添av毛片| av免费观看日本| 天美传媒精品一区二区| 99热这里只有精品一区| 免费观看在线日韩| 男女国产视频网站| 成人鲁丝片一二三区免费| 91狼人影院| 自拍偷自拍亚洲精品老妇| 国产亚洲最大av| 免费黄色在线免费观看| 免费看光身美女| 久久国产乱子免费精品| 性插视频无遮挡在线免费观看| 亚洲av不卡在线观看| 日韩国内少妇激情av| 亚洲精品成人久久久久久| 嫩草影院新地址| 狠狠精品人妻久久久久久综合| 免费看光身美女| 亚洲熟女精品中文字幕| videossex国产| 亚洲精品一区蜜桃| 永久免费av网站大全| 亚洲内射少妇av| 国产精品99久久99久久久不卡 | 欧美性感艳星| 嘟嘟电影网在线观看| 国产探花极品一区二区| 久久久久久久久大av| 最近手机中文字幕大全| 日韩欧美一区视频在线观看 | 99视频精品全部免费 在线| 99热网站在线观看| 久久久色成人| 国产午夜精品一二区理论片| 成人黄色视频免费在线看| 日本av手机在线免费观看| 超碰97精品在线观看| 国产一区二区三区综合在线观看 | 一区二区三区四区激情视频| 免费黄频网站在线观看国产| 国产永久视频网站| 日日摸夜夜添夜夜爱| 国产亚洲av片在线观看秒播厂| 国产免费福利视频在线观看| 亚洲av一区综合| 内地一区二区视频在线| 国产免费福利视频在线观看| 美女xxoo啪啪120秒动态图| 一级av片app| 五月开心婷婷网| 成人国产av品久久久| 成年女人在线观看亚洲视频 | 亚洲,一卡二卡三卡| 午夜爱爱视频在线播放| 直男gayav资源| 国产精品不卡视频一区二区| 美女脱内裤让男人舔精品视频| 边亲边吃奶的免费视频| 久久久久久伊人网av| 视频中文字幕在线观看| 国产精品熟女久久久久浪| 国产亚洲av片在线观看秒播厂| 国产女主播在线喷水免费视频网站| 欧美少妇被猛烈插入视频| 超碰97精品在线观看| 亚洲成色77777| 中文精品一卡2卡3卡4更新| 黄色视频在线播放观看不卡| 岛国毛片在线播放| 2018国产大陆天天弄谢| 美女视频免费永久观看网站| 亚洲精品aⅴ在线观看| 搡老乐熟女国产| 欧美极品一区二区三区四区| 日韩人妻高清精品专区| 天美传媒精品一区二区| 天堂网av新在线| 亚洲精品乱码久久久久久按摩| 精品少妇久久久久久888优播| 亚洲精品乱码久久久v下载方式| 精品熟女少妇av免费看| 嫩草影院精品99| 国产精品久久久久久久久免| 免费观看在线日韩| 在线观看美女被高潮喷水网站| 久久久久久久大尺度免费视频| 欧美日韩综合久久久久久| 国产成人精品婷婷| 女的被弄到高潮叫床怎么办| 午夜福利网站1000一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲不卡免费看| 九九在线视频观看精品| 国产精品爽爽va在线观看网站| 在线亚洲精品国产二区图片欧美 | 老司机影院成人| 国产色婷婷99| 伊人久久精品亚洲午夜| 日韩人妻高清精品专区| 国产成人免费观看mmmm| 亚洲,一卡二卡三卡| 成年免费大片在线观看| 精品久久久久久久人妻蜜臀av| 男女边摸边吃奶| 国产精品国产三级国产av玫瑰| 男男h啪啪无遮挡| 99热这里只有是精品在线观看| 国产淫语在线视频| 一级毛片黄色毛片免费观看视频| 国产午夜精品久久久久久一区二区三区| 久久久久久国产a免费观看| 国产老妇伦熟女老妇高清| 免费黄频网站在线观看国产| 亚洲激情五月婷婷啪啪| 春色校园在线视频观看| 十八禁网站网址无遮挡 | 亚洲成人中文字幕在线播放| av女优亚洲男人天堂| 亚洲,欧美,日韩| 久久久久久久久大av| 国产美女午夜福利| 夜夜看夜夜爽夜夜摸| 国产亚洲最大av| 亚洲人成网站在线播| 国产精品久久久久久精品电影小说 | 国产又色又爽无遮挡免| 少妇人妻久久综合中文| 成年免费大片在线观看| 人妻夜夜爽99麻豆av| 视频中文字幕在线观看| 亚洲丝袜综合中文字幕| 黄片wwwwww| 最近手机中文字幕大全| 五月开心婷婷网| 国产精品三级大全| 久久精品国产鲁丝片午夜精品| 亚洲精品自拍成人| 春色校园在线视频观看| 国产白丝娇喘喷水9色精品| 国产成人福利小说| 久久久久久久大尺度免费视频| 欧美xxⅹ黑人| 亚洲国产精品成人综合色| 男女无遮挡免费网站观看| 国产午夜精品久久久久久一区二区三区| 亚洲欧美清纯卡通| www.av在线官网国产| 国产男女内射视频| 一级av片app| 我的老师免费观看完整版| 日本爱情动作片www.在线观看| 精品一区二区三卡| 精品国产乱码久久久久久小说| 美女cb高潮喷水在线观看| 日韩在线高清观看一区二区三区| 99热网站在线观看| 美女视频免费永久观看网站| 精品人妻偷拍中文字幕| 丰满少妇做爰视频| 日韩,欧美,国产一区二区三区| 国产男人的电影天堂91| 99热这里只有精品一区| 亚洲国产精品成人久久小说| 久久这里有精品视频免费| 日韩不卡一区二区三区视频在线| 超碰97精品在线观看| 我的老师免费观看完整版| 国产成人a∨麻豆精品| 亚洲欧美成人精品一区二区| 国产精品秋霞免费鲁丝片| 王馨瑶露胸无遮挡在线观看| av线在线观看网站| 永久网站在线| 国产精品人妻久久久影院| 亚洲av免费高清在线观看| 亚洲av在线观看美女高潮| 欧美激情久久久久久爽电影| 高清av免费在线| 亚洲成人久久爱视频| 亚洲无线观看免费| 91aial.com中文字幕在线观看| 久久综合国产亚洲精品| 香蕉精品网在线| 国产探花极品一区二区| 中国三级夫妇交换| 少妇熟女欧美另类| 久久久久国产网址| 美女国产视频在线观看| 久久久久网色| 国产伦在线观看视频一区| 九九久久精品国产亚洲av麻豆| 性色avwww在线观看| 国产又色又爽无遮挡免| 少妇被粗大猛烈的视频| 免费观看的影片在线观看| 国产大屁股一区二区在线视频| a级一级毛片免费在线观看| 午夜福利在线在线| 日韩强制内射视频| 亚洲精品456在线播放app| 在线a可以看的网站| 又粗又硬又长又爽又黄的视频| 性色av一级| .国产精品久久| 一级毛片 在线播放| 国产 精品1| 成年版毛片免费区| 精品午夜福利在线看| 99热6这里只有精品| .国产精品久久| a级毛片免费高清观看在线播放| 亚洲国产成人一精品久久久| 伦理电影大哥的女人| 看非洲黑人一级黄片| 最近手机中文字幕大全| 午夜免费男女啪啪视频观看| 午夜福利在线在线| av在线播放精品| 内地一区二区视频在线| 身体一侧抽搐| 久久人人爽人人爽人人片va| 亚洲精品成人av观看孕妇| 亚洲成色77777| 国产av不卡久久| 91精品国产九色| 欧美xxⅹ黑人| 91在线精品国自产拍蜜月| 在线观看人妻少妇| 亚洲自拍偷在线| 国产在视频线精品| 久久久欧美国产精品| 国内揄拍国产精品人妻在线| 国产亚洲av嫩草精品影院| 人人妻人人看人人澡| av免费观看日本| 最后的刺客免费高清国语| 国产 一区 欧美 日韩| 亚洲精品自拍成人| 青青草视频在线视频观看| 成人亚洲精品av一区二区| 人体艺术视频欧美日本| 大码成人一级视频| 最近的中文字幕免费完整| 日韩,欧美,国产一区二区三区| 免费电影在线观看免费观看| 51国产日韩欧美| 久久久久国产网址| 亚洲国产欧美在线一区| 国产视频内射| 色网站视频免费| 久久久精品94久久精品| 内地一区二区视频在线| 国产女主播在线喷水免费视频网站| 国产黄片视频在线免费观看| 特级一级黄色大片| 日本爱情动作片www.在线观看| 国产精品不卡视频一区二区| 丰满乱子伦码专区| 人人妻人人看人人澡| 97在线视频观看| 午夜精品一区二区三区免费看| 美女国产视频在线观看| 国产亚洲av片在线观看秒播厂| 菩萨蛮人人尽说江南好唐韦庄| 日本三级黄在线观看| 久久精品久久久久久噜噜老黄| 欧美成人精品欧美一级黄| 国产精品成人在线| 亚洲精品456在线播放app| 国产精品无大码| 国产69精品久久久久777片| 久久久午夜欧美精品| 狂野欧美白嫩少妇大欣赏| 国内精品美女久久久久久| 少妇猛男粗大的猛烈进出视频 | 日本-黄色视频高清免费观看| 国产一区二区亚洲精品在线观看| 国产精品久久久久久久久免| 成年女人看的毛片在线观看| a级毛片免费高清观看在线播放| 嘟嘟电影网在线观看| 国产有黄有色有爽视频| 亚洲av电影在线观看一区二区三区 | av黄色大香蕉| 欧美日韩视频精品一区| 美女cb高潮喷水在线观看| 伊人久久精品亚洲午夜| 亚洲精品日韩av片在线观看| 亚洲四区av| 成人高潮视频无遮挡免费网站| 亚洲国产欧美在线一区| 亚洲精品乱码久久久v下载方式| 国产黄色免费在线视频| 美女cb高潮喷水在线观看| 在线亚洲精品国产二区图片欧美 | 最近最新中文字幕大全电影3| 男女边摸边吃奶| 亚洲精品影视一区二区三区av| 免费av观看视频| 亚洲精品色激情综合| 欧美丝袜亚洲另类| 国产精品一区二区三区四区免费观看| 最新中文字幕久久久久| 久久久久九九精品影院| 久久久欧美国产精品| 亚洲av成人精品一二三区| 好男人在线观看高清免费视频| 人体艺术视频欧美日本| 最近手机中文字幕大全| 寂寞人妻少妇视频99o| 亚洲av免费高清在线观看| 你懂的网址亚洲精品在线观看| 亚洲精品影视一区二区三区av| 伦理电影大哥的女人| 男男h啪啪无遮挡| 国产精品.久久久| av国产精品久久久久影院| 国产一区二区三区综合在线观看 | 99热6这里只有精品| 亚洲精品自拍成人| 国产视频内射| 精品久久久久久久久亚洲| 晚上一个人看的免费电影| 久久国产乱子免费精品| 中文字幕制服av| 婷婷色综合大香蕉| 国产91av在线免费观看| 亚洲综合色惰| 国产日韩欧美在线精品| 久久久国产一区二区| 成年av动漫网址| 亚洲精品日韩在线中文字幕| 国产成人a∨麻豆精品| 成人一区二区视频在线观看| 国产精品福利在线免费观看| 插阴视频在线观看视频| 国产精品人妻久久久久久| 日本wwww免费看| 99热6这里只有精品| 插逼视频在线观看| 18禁在线播放成人免费| 乱码一卡2卡4卡精品| 欧美日韩在线观看h| 色婷婷久久久亚洲欧美| 亚洲欧美日韩东京热| 国产黄a三级三级三级人| 亚洲国产精品国产精品| 街头女战士在线观看网站| 在线免费十八禁| 肉色欧美久久久久久久蜜桃 | 人妻制服诱惑在线中文字幕| 国产免费视频播放在线视频| 精品国产露脸久久av麻豆| 最近手机中文字幕大全| 亚洲精品自拍成人| 如何舔出高潮| 亚洲综合色惰| 成年女人在线观看亚洲视频 | 久久久久久久久久久免费av| 禁无遮挡网站| 91午夜精品亚洲一区二区三区| 韩国高清视频一区二区三区| 男女下面进入的视频免费午夜| 久久精品国产鲁丝片午夜精品| 免费不卡的大黄色大毛片视频在线观看| 免费高清在线观看视频在线观看| 少妇熟女欧美另类| 久久精品久久久久久噜噜老黄| 亚洲国产成人一精品久久久| 最近最新中文字幕免费大全7| 国产成人a区在线观看| 欧美国产精品一级二级三级 | 日韩视频在线欧美| 听说在线观看完整版免费高清| 久久久久国产网址| 高清欧美精品videossex| 欧美精品人与动牲交sv欧美| 亚洲精品中文字幕在线视频 | 欧美最新免费一区二区三区| 国语对白做爰xxxⅹ性视频网站| 麻豆久久精品国产亚洲av| 国产 精品1| 国产黄色免费在线视频| 蜜桃亚洲精品一区二区三区| 久久久成人免费电影| 国产一区有黄有色的免费视频| 亚洲av福利一区| 欧美变态另类bdsm刘玥| 综合色丁香网| 网址你懂的国产日韩在线| 一本久久精品| 日韩人妻高清精品专区| 国产精品伦人一区二区| 日韩大片免费观看网站| 人妻 亚洲 视频| 精品少妇久久久久久888优播| 夫妻性生交免费视频一级片| 国产老妇伦熟女老妇高清| 欧美精品人与动牲交sv欧美| 干丝袜人妻中文字幕| 亚洲国产av新网站| 国产淫语在线视频| 精品少妇久久久久久888优播| 国产老妇女一区| 国产成人aa在线观看| 街头女战士在线观看网站| 中文字幕免费在线视频6| 少妇人妻久久综合中文| 亚洲丝袜综合中文字幕| 青青草视频在线视频观看| 三级经典国产精品| 老司机影院成人| 日产精品乱码卡一卡2卡三| 蜜桃亚洲精品一区二区三区| 亚洲av.av天堂| 80岁老熟妇乱子伦牲交| 69人妻影院| 色网站视频免费| 亚洲国产精品成人久久小说| 91aial.com中文字幕在线观看| 亚洲久久久久久中文字幕| 亚洲av免费在线观看| 看黄色毛片网站| 久久久久久久精品精品| 在线a可以看的网站| 一本一本综合久久| 国产一区二区三区av在线| 久久精品国产鲁丝片午夜精品| 日韩三级伦理在线观看| 18+在线观看网站| 日日摸夜夜添夜夜爱| 精品熟女少妇av免费看| 国产69精品久久久久777片| 日本wwww免费看| 日韩一区二区视频免费看| 在线观看美女被高潮喷水网站| av福利片在线观看| 国产精品一区www在线观看| 亚洲成人精品中文字幕电影| 尤物成人国产欧美一区二区三区| 一级片'在线观看视频| 日韩成人伦理影院| 欧美xxxx黑人xx丫x性爽| 亚洲精品aⅴ在线观看| 日本黄色片子视频| 99久久中文字幕三级久久日本| 精品久久久久久久人妻蜜臀av| 免费观看性生交大片5| 插逼视频在线观看| 亚洲精品成人av观看孕妇| 又大又黄又爽视频免费| 青春草视频在线免费观看| 一级二级三级毛片免费看| 三级经典国产精品| 人妻少妇偷人精品九色| 视频区图区小说| 国产欧美日韩精品一区二区| 亚洲国产精品成人综合色| 欧美精品人与动牲交sv欧美| 亚洲人成网站在线播| 国产亚洲午夜精品一区二区久久 | 亚洲最大成人手机在线| 一区二区三区精品91| 别揉我奶头 嗯啊视频| 亚洲精品国产成人久久av| 波野结衣二区三区在线| 麻豆乱淫一区二区| 亚洲精品乱久久久久久| 亚洲在久久综合| 成年人午夜在线观看视频| 五月伊人婷婷丁香| a级一级毛片免费在线观看| 亚洲婷婷狠狠爱综合网| 久久99精品国语久久久| 亚洲av成人精品一区久久| 国产黄片视频在线免费观看| 91久久精品电影网| 99久久人妻综合| 嫩草影院精品99| av.在线天堂| 免费看av在线观看网站| 久久人人爽人人爽人人片va| 国产白丝娇喘喷水9色精品| 在线免费观看不下载黄p国产| 亚洲国产av新网站| av在线亚洲专区| 好男人在线观看高清免费视频| 男女下面进入的视频免费午夜| 另类亚洲欧美激情| 日韩欧美精品免费久久| 深夜a级毛片| 成人一区二区视频在线观看| 亚洲精品影视一区二区三区av| 国产极品天堂在线| 又黄又爽又刺激的免费视频.| 综合色丁香网| 中文天堂在线官网| 精品亚洲乱码少妇综合久久| 青青草视频在线视频观看| 1000部很黄的大片| 九九爱精品视频在线观看| 激情五月婷婷亚洲| 高清午夜精品一区二区三区| 欧美成人精品欧美一级黄| 久久精品综合一区二区三区| av天堂中文字幕网| 热re99久久精品国产66热6| 高清av免费在线| 夫妻性生交免费视频一级片| 啦啦啦啦在线视频资源| 九色成人免费人妻av| 久久久久久久久久人人人人人人| 亚洲成人一二三区av| 精品久久久久久久久av| 久久女婷五月综合色啪小说 | 午夜福利高清视频| 涩涩av久久男人的天堂| 免费观看性生交大片5| 91午夜精品亚洲一区二区三区| 在线观看人妻少妇| 欧美激情在线99| 午夜福利在线在线| 黄色欧美视频在线观看| 精品久久久久久久末码| 街头女战士在线观看网站| 秋霞伦理黄片| 亚洲欧美清纯卡通| 又大又黄又爽视频免费|