陳亞東,吳東霞,彭婭,劉鵬
(湖南省人民醫(yī)院,長沙410000)
國內(nèi)外專家在消化系統(tǒng)腫瘤領(lǐng)域已開展了大量研究,在消化系統(tǒng)腫瘤的早期診斷、預(yù)防及治療方面取得較大進(jìn)步。然而目前的研究進(jìn)展仍不能滿足臨床需求,近年來我國消化系統(tǒng)腫瘤發(fā)病率、病死率仍呈逐年增高趨勢,在所有惡性腫瘤疾病中占比重最大,承擔(dān)的經(jīng)濟(jì)負(fù)擔(dān)最多。尋找有效的腫瘤分子標(biāo)志物及治療靶點(diǎn)仍為未來消化系統(tǒng)腫瘤的主要研究方向。目前已有報(bào)道S100A9可調(diào)節(jié)炎癥反應(yīng)參與慢性炎癥相關(guān)性疾病的進(jìn)程并能調(diào)節(jié)細(xì)胞周期及細(xì)胞分化,在腫瘤細(xì)胞增殖、侵襲、轉(zhuǎn)移等過程中起關(guān)鍵作用[1]。此外,亦有報(bào)道S100A9可作為消化系統(tǒng)腫瘤的分子標(biāo)志物協(xié)助臨床診斷、判斷預(yù)后,并可作為腫瘤靶向治療的特異性靶點(diǎn)[2]。本文參考了國內(nèi)外大量關(guān)于S100A9的文獻(xiàn),擬對S100A9在消化系統(tǒng)腫瘤中的研究進(jìn)展進(jìn)行系統(tǒng)綜述。
S100蛋白為脊椎動物中重要的蛋白家族,其特征為具有螺旋-環(huán)-螺旋(“EF手型”)構(gòu)象2個(gè)鈣結(jié)合位點(diǎn)。目前發(fā)現(xiàn)至少有24種不同的S100蛋白,其基因大多分布于染色體1q21的上皮分化復(fù)合物處,提示S100蛋白家族的功能與人上皮分化活動關(guān)系密切。S100A9為其中的重要成員,可與鈣離子、鋅離子結(jié)合通過構(gòu)象改變參與細(xì)胞活動,并能與S100A8形成二聚體(S100A8/A9)發(fā)揮其生物學(xué)功能。正常狀態(tài)下,S100A9多定位于骨髓來源細(xì)胞,細(xì)胞內(nèi)S100A9通過Ca2+依賴性的方式作用于特異性靶位點(diǎn),可調(diào)節(jié)骨髓細(xì)胞的分化、成熟及遷移,S100A9在其他組織細(xì)胞亦有少量表達(dá)[3]。腫瘤組織中的S100A9主要位于腫瘤細(xì)胞間的基質(zhì)細(xì)胞及炎性細(xì)胞中,S100A9可通過自分泌或旁分泌方式作用于細(xì)胞外膜受體,通過這種方試調(diào)控細(xì)胞內(nèi)信號通路促進(jìn)下游效應(yīng)分子的表達(dá)[3]。此外,細(xì)胞外分泌性的S100A9可作為趨化因子誘導(dǎo)髓源性抑制細(xì)胞(MDSC)等炎癥細(xì)胞遷移、聚集,調(diào)節(jié)局部炎癥反應(yīng)及免疫監(jiān)視功能,改變腫瘤微環(huán)境,促進(jìn)腫瘤發(fā)生、浸潤、轉(zhuǎn)移[4]。
目前已報(bào)道S100A9在食管腺癌、胃癌、肝癌、膽道系統(tǒng)腫瘤、胰腺癌、結(jié)直腸癌組織及血清中呈高表達(dá)[5]。在非鋅缺乏相關(guān)性食管鱗狀上皮細(xì)胞癌中表達(dá)降低[6]。此外,在消化系統(tǒng)腫瘤相應(yīng)的體液,如胃液、膽汁、胰液及糞便中S100A9的表達(dá)亦高于正常對照[7, 8]。S100A9還與炎癥相關(guān)性疾病關(guān)系密切,并參與消化系統(tǒng)腫瘤癌前病變及高危因素疾病的發(fā)展過程及病情活動。已有報(bào)道在巴雷特食管、幽門螺桿菌相關(guān)性胃炎、慢性肝炎、原發(fā)性硬化性膽管炎等S100A9較正常對照組表達(dá)增高[9, 10],且在BE-上皮異性增生-食管腺癌的分化階段及慢性肝炎-肝硬化-肝癌疾病進(jìn)展過程中S100A9呈漸進(jìn)性高表達(dá)[9, 11, 12],S100A9在原發(fā)性硬化性膽管炎活動期的表達(dá)較靜止期更高,這些結(jié)果提示S100A9參與由消化系統(tǒng)慢性炎癥到消化系統(tǒng)腫瘤的整個(gè)致病過程。目前的研究結(jié)果表明炎癥性腫瘤微環(huán)境與MDSC相關(guān)。局部組織中的S100A9可誘導(dǎo)MDSC遷移、聚集,并抑制MDSC分化為成熟骨髓細(xì)胞,通過抑制T細(xì)胞、NK細(xì)胞的免疫殺傷功能促進(jìn)腫瘤免疫逃逸。MDSC本身可合成、釋放S100A9,進(jìn)一步促進(jìn)MDSC的遷移、聚集,通過這種方式保證局部環(huán)境中MDSC的數(shù)量以維持其功能狀態(tài)[13]。
3.1 MAPK信號通路 MAPK信號傳導(dǎo)通路在腫瘤細(xì)胞增殖、凋亡、侵襲、轉(zhuǎn)移及血管形成過程中發(fā)揮重要作用。已報(bào)道S100A9在食管癌、胃癌、肝癌及結(jié)腸癌相關(guān)研究中通過作用于細(xì)胞表面的RAGE,活化MAPK通路的ERK1/2、p38信號,進(jìn)一步活化NF-κB促進(jìn)MMP、CXCL等效應(yīng)因子的表達(dá),調(diào)控腫瘤細(xì)胞的增殖、浸潤、轉(zhuǎn)移[14~16]。但這一過程并不完全依賴于RAGE,當(dāng)RAGE被特異性物質(zhì)阻斷時(shí),S100A9亦可與TLR4相互作用激活MAPK信號通路及其下游效應(yīng)因子[1, 14]。
3.2 TGF-β/Smads信號通路 TGF-β在體內(nèi)參與調(diào)節(jié)細(xì)胞生長及細(xì)胞分化。已有研究報(bào)道胰腺導(dǎo)管癌及結(jié)腸癌的發(fā)病機(jī)制與Smad4功能缺失有關(guān),僅Samd4功能存在時(shí)S100A8/A9抑制AKT、NF-κB信號通路的激活。TGF-β可調(diào)節(jié)Smad4的功能,TGF-β信號異??蓪?dǎo)致Smad4功能缺失削弱S100A9的抑制作用,從而促使AKT、NF-κB信號通路的活化導(dǎo)致腫瘤增殖、血管生成并促進(jìn)上皮間質(zhì)轉(zhuǎn)化,S100A9水平升高可拮抗TGF-β阻斷上述過程[17]。
3.3 Wnt/β-連環(huán)蛋白信號通路 Wnt/β-連環(huán)蛋白信號通路被認(rèn)為是結(jié)腸癌發(fā)生的中心環(huán)節(jié),幾乎在所有結(jié)腸癌中均存在該通路激活,在結(jié)腸癌中S100A9與β-連環(huán)蛋白及其靶基因c-myc和MMP7水平同時(shí)升高,表明S100A9與Wnt/β-連環(huán)蛋白信號通路在結(jié)腸癌腫瘤中關(guān)系密切[5],此前曾有報(bào)道S100A4為Wnt /β-連環(huán)蛋白/ TCF介導(dǎo)信號通路的直接轉(zhuǎn)錄靶點(diǎn),β-連環(huán)蛋白的表達(dá)直接調(diào)控S100A4水平,且已證實(shí)S100A4為結(jié)腸腫瘤上皮-間充質(zhì)轉(zhuǎn)化過程中重要的參與因子[18],S100A4很可能受Wnt/β-連環(huán)蛋白信號通路調(diào)控參與結(jié)腸腫瘤的發(fā)生。S100A4與S100A9為同一家族蛋白,基因位點(diǎn)相鄰、結(jié)構(gòu)相似,其功能亦可能相近,然而S100A9與Wnt/β-連環(huán)蛋白信號通路的機(jī)制學(xué)研究較少,其參與結(jié)腸癌進(jìn)程的具體機(jī)制有待更多研究闡明[19]。
3.4 p53信號通路 p53為細(xì)胞內(nèi)的抑癌基因,p53信號通路激活促使細(xì)胞凋亡。研究發(fā)現(xiàn)S100A9基因中包含p53結(jié)合位點(diǎn),為p53的直接轉(zhuǎn)錄靶標(biāo)。p53信號通路激活后可促進(jìn)S100A9高表達(dá),并以部分p53依賴的方式誘導(dǎo)細(xì)胞凋亡。食管鱗狀上皮細(xì)胞癌中存在野生型的p53突變,這可能為食管鱗狀上皮細(xì)胞癌中S100A9表達(dá)降低的原因,食管鱗狀上皮細(xì)胞癌中下調(diào)S100A9后細(xì)胞凋亡受抑,促使腫瘤發(fā)生。
4.1 S100A9有助于消化系統(tǒng)腫瘤的診斷S100A9在多數(shù)腫瘤組織、血清及相應(yīng)體液中呈高表達(dá),可作為腫瘤分子標(biāo)志物應(yīng)用于消化系統(tǒng)腫瘤的診斷中。目前已報(bào)道S100A9在胃癌、肝癌、膽管癌、結(jié)直腸癌的診斷中受試者工作特征曲線下面積(AUC)可達(dá)75.0%~89.4%[9, 20, 21],聯(lián)合其他分子標(biāo)志物可提高診斷效果。已報(bào)道S100A9聯(lián)合大便隱血試驗(yàn)可將結(jié)腸癌預(yù)測模型AUC由87.78%提高到90.65%,S100A9聯(lián)合AAT 可將早期胃癌預(yù)測模型AUC值由75.0%提高到81%,聯(lián)合GIF后胃癌進(jìn)展預(yù)測模型AUC值提高到92%[21]。隨著更多消化系統(tǒng)腫瘤分子標(biāo)志物的開發(fā)、組合,S100A9在消化系統(tǒng)腫瘤中的診斷意義將進(jìn)一步提升。
4.2S100A9有助于評估消化系統(tǒng)腫瘤的預(yù)后 S100A9與腫瘤的浸潤及轉(zhuǎn)移能力有一定關(guān)系,并能作為預(yù)后觀察指標(biāo)。研究表明外源性S100A9抑制胃癌細(xì)胞的侵襲及遷移,沉默S100A9表達(dá)后胃癌細(xì)胞的侵襲及遷移能力增加,胃癌中基質(zhì)S100A9的表達(dá)與腫瘤大小、浸潤深度、淋巴結(jié)轉(zhuǎn)移呈負(fù)相關(guān),同時(shí)高表達(dá)S100A9者具有更好的預(yù)后[7, 22]。研究者還觀察到結(jié)腸癌細(xì)胞可內(nèi)化微環(huán)境中的S100A9,而其他類型的癌細(xì)胞并無此現(xiàn)象,內(nèi)化S100A9后可抑制腫瘤細(xì)胞增殖并促進(jìn)細(xì)胞凋亡[23],這提示S100A9表達(dá)升高可能為機(jī)體的自我保護(hù)機(jī)制。然而,其他的研究更傾向于S100A9的表達(dá)促進(jìn)腫瘤的浸潤、轉(zhuǎn)移,外源性S100A9促進(jìn)結(jié)腸癌及胰腺癌細(xì)胞的增殖、轉(zhuǎn)移,結(jié)直腸癌組織內(nèi)S100A8/A9陽性細(xì)胞計(jì)數(shù)及血清S100A9水平升高提示更大的腫瘤體積、腫瘤高分化程度及存在轉(zhuǎn)移灶[24]。提示S100A9能協(xié)助判斷消化系統(tǒng)腫瘤預(yù)后,可為患者治療方案選擇提供參考依據(jù)。
4.3 S100A9有助于消化系統(tǒng)腫瘤的靶向治療S100A9對消化系統(tǒng)腫瘤增殖、浸潤及遷移的影響不盡一致,上調(diào)或阻斷S100A9表達(dá)及相關(guān)信號通路的活化可抑制腫瘤活動,這是S100A9作為靶向治療靶點(diǎn)的支持依據(jù)。Tasquinimod為S100A9特異性阻斷劑,可阻斷S100A9與其配體(RAGE/TLR4)的結(jié)合,可調(diào)節(jié)性骨髓細(xì)胞亞群的聚集和活化影響IL-12、PD-L1等細(xì)胞因子的釋放,具有調(diào)節(jié)腫瘤微環(huán)境、調(diào)節(jié)免疫、抗血管生成和轉(zhuǎn)移功能[25]。已報(bào)道Tasquinimod的Ⅱ期雙盲隨機(jī)研究中,在前列腺癌的治療中Tasquinimod組6個(gè)月無進(jìn)展生存期較安慰劑組顯著提升(69%vs 37%),有較好的臨床療效,目前已進(jìn)入Ⅲ期藥物臨床實(shí)驗(yàn)中[26]。Tasquinimod在消化系統(tǒng)腫瘤中的研究尚處于基礎(chǔ)階段,隨著消化系統(tǒng)靶向治療的發(fā)展,其價(jià)值亦將不斷發(fā)掘。
CHAPS被認(rèn)為是阻斷受體與配體結(jié)合的潛在抑制劑。Chang等[27]的研究發(fā)現(xiàn)CHAPS可影響S100A9和RAGEV結(jié)構(gòu)域之間的結(jié)合并抑制結(jié)腸癌SW480細(xì)胞增殖活性。進(jìn)一步改進(jìn)特異性后,CHAPS有望作為S100A9與RAGE結(jié)合的拮抗劑運(yùn)用于臨床靶向治療。
S100A9在多數(shù)消化道腫瘤組織及消化液中呈高表達(dá),為新興的腫瘤標(biāo)志物,結(jié)合其他腫瘤特異性分子標(biāo)志物可對消化道腫瘤作出較為準(zhǔn)確的診斷。此外,S100A9的表達(dá)還可對消化系統(tǒng)各腫瘤的良惡性、分化程度、浸潤轉(zhuǎn)移及術(shù)后復(fù)發(fā)、總體預(yù)后進(jìn)行預(yù)判,可有效協(xié)助臨床醫(yī)生對患者病情的把握,可用于指導(dǎo)手術(shù)切緣及術(shù)式的選擇及術(shù)后是否需進(jìn)行其他治療方式。隨著腫瘤的靶向藥物不斷開發(fā),更多的靶向藥物用于腫瘤晚期治療中,靶向藥物耐藥為不可避免的一個(gè)問題[28]。S100A9特異性阻斷劑及其拮抗劑已問世,S100A9及其相關(guān)通路為可供選擇的腫瘤靶向治療靶點(diǎn)。當(dāng)然,S100A9在診斷中的效能和S100A9及其相關(guān)信號通路在腫瘤活動中的地位仍有待進(jìn)一步探究。
參考文獻(xiàn):
[1] Laouedj M, Tardif MR, Gil L, et al. S100A9 induces differentiation of acute myeloid leukemia cells through TLR4[J]. Blood, 2017,129(14):1980-1990.
[2] Leanderson T, Liberg D, Ivars F. S100A9 as a pharmacological target molecule in inflammation and cancer[J]. Endocr Metab Immune Disord Drug Targets, 2015,15(2):97.
[3] Markowitz J, Carson WE. Review of S100A9 Biology and its Role in Cancer[J]. Biochim Biophys Acta, 2013,1835(1):100-109.
[4] Condamine T, Ramachandran IR, Gabrilovich DI. S100A9, Inflammation, and Regulation of Immune Suppression in Cancer[M]. England:Cambridge University Press, 2014:4088-4092.
[5] Duan L, Wu R, Ye L, et al. S100A8 and S100A9 are associated with colorectal carcinoma progression and contribute to colorectal carcinoma cell survival and migration via Wnt/beta-catenin pathway[J]. PLoS One, 2013,8(4):e62092.
[6] Pawar H, Srikanth SM, Kashyap MK, et al. Downregulation of S100 Calcium Binding Protein A9 in Esophageal Squamous Cell Carcinoma[J]. The Scientific World Journal, 2015(3):1-10.
[7] Choi JH, Shin NR, Moon HJ, et al. Identification of S100A8 and S100A9 as negative regulators for lymph node metastasis of gastric adenocarcinoma[J]. Histology & Histopathology, 2012,27(11):1439-1448.
[8] Chen KT, Kim PD, Jones KA, et al. Potential prognostic biomarkers of pancreatic cancer[J]. Pancreas, 2014,43(1):22-27.
[9] Sun W, Xing B, Guo L, et al. Quantitative Proteomics Analysis of Tissue Interstitial Fluid for Identification of Novel Serum Candidate Diagnostic Marker for Hepatocellular Carcinoma[J]. Scientific Reports, 2016,6:26499.
[10] Reinhard L, Rupp C, Riedel HD, et al. S100A9 is a biliary protein marker of disease activity in primary sclerosing cholangitis[J]. PLoS One, 2012,7(1):e29821.
[11] Zaidi AH, Gopalakrishnan V, Kasi PM, et al. Evaluation of a 4-protein serum biomarker panel-biglycan, annexin-A6, myeloperoxidase, and protein S100-A9 (B-AMP)-for the detection of esophageal adenocarcinoma[J]. Cancer, 2014,120(24):3902-3913.
[12] Serhal R, Hilal G, Boutros G, et al. Nonalcoholic Steatohepatitis: Involvement of the Telomerase and Proinflammatory Mediators[J]. Biomed Research International, 2015(11):850246.
[13] Ruoting Z, Shiyi C, Shenren C. Correlation between myeloid-derived suppressor cells and S100A8/A9 in tumor and autoimmune diseases[J]. International Immunol Pharmacology, 2015,29(2):919.
[14] Mark R, Bermejo JL, Bierhaus A, et al. The receptor for advanced glycation end products is dispensable in a mouse model of oral and esophageal carcinogenesis[J]. Histology & Histopathology, 2013,28(12):1585-1594.
[15] Kwon CH, Moon HJ, Park HJ, et al. S100A8 and S100A9 Promotes Invasion and Migration through p38 Mitogen-Activated Protein Kinase-Dependent NF-κB Activation in Gastric Cancer Cells[J]. Molecules & Cells, 2013,35(3):226-234.
[16] Wu R, Duan L, Cui F, et al. S100A9 promotes human hepatocellular carcinoma cell growth and invasion through RAGE-mediated ERK1/2 and p38 MAPK pathways[J]. Experimental Cell Research, 2015,334(2):228-238.
[17] Basso D, Bozzato D, Padoan A, et al. Inflammation and pancreatic cancer: molecular and functional interactions between S100A8, S100A9, NT-S100A8 and TGF-β1[J]. Cell Communication & Signaling Ccs, 2014,12(1):20.
[18] He Z, Yu L, Luo S, et al. miR-296 inhibits the metastasis and epithelial-mesenchymal transition of colorectal cancer by targeting S100A4[J]. BMC Cancer, 2017,17(1):140.
[19] Mathias D, Dennis K, Wolfgang W, et al. S100A4 in Cancer Metastasis: Wnt Signaling-Driven Interventions for Metastasis Restriction[J]. Cancers, 2016,8(6):59.
[20] Kim BC, Joo J, Chang HJ, et al. A predictive model combining fecal calgranulin B and fecal occult blood tests can improve the diagnosis of colorectal cancer[J]. PLoS One, 2014,9(9):e106182.
[21] Wu W, Juan WC, Liang CR, et al. S100A9, GIF and AAT as potential combinatorial biomarkers in gastric cancer diagnosis and prognosis[J]. Proteomics Clin Appl, 2012,6(3-4):152-162.
[22] Fan B, Zhang LH, Jia YN, et al. Presence of S100A9-positive inflammatory cells in cancer tissues correlates with an early stage cancer and a better prognosis in patients with gastric cancer[J]. BMC Cancer, 2012,12(1):316.
[23] Kim K, Kim KH, Roh K, et al. Antitumor effects of calgranulin B internalized in human colon cancer cells [J]. Oncotarget, 2016,7(15):20368-20380.
[24] Shu P, Zhao L, Wagn J, et al. Association between serum levels of S100A8/S100A9 and clinical features of colorectal cancer patients[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2016,41(6):553-559.
[25] Anders O, Jessica N, Anette S, et al. Tasquinimod triggers an early change in the polarization of tumor associated macrophages in the tumor microenvironment[J]. J Immunother Cancer, 2015,3(1):53.
[26] Mehta AR, Armstrong AJ. Tasquinimod in the treatment of castrate-resistant prostate cancer -current status and future prospects[J]. Ther Adv Urol, 2016,8(1):9-18.
[27] Chang CC, Khan I, Tsai KL, et al. Blocking the interaction between S100A9 and RAGE V domain using CHAPS molecule: A novel route to drug development against cell proliferation[J]. Biochim Biophys Acta, 2016,1864(11):1558-1569.
[28] Galun D, Srdicrajic T, Bogdanovic A, et al. Targeted therapy and personalized medicine in hepatocellular carcinoma: drug resistance, mechanisms, and treatment strategies[J]. J Hepatocell Carcinoma, 2017,4:93-103.