• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      水稻與稻瘟病菌相互作用研究進(jìn)展

      2018-03-14 02:08:12韓藝娟魯國東
      生物技術(shù)通報(bào) 2018年2期
      關(guān)鍵詞:幾丁質(zhì)抗病稻瘟病

      韓藝娟 魯國東

      (福建農(nóng)林大學(xué) 生物農(nóng)藥與化學(xué)生物學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,福州 350002)

      作為一種主要糧食作物,水稻面臨著多種病害的危害,如病原真菌引起的稻瘟病和紋枯病、細(xì)菌引起的白葉枯病、病毒引起的水稻黑條矮縮病和水稻條紋葉枯病、線蟲引起的稻根結(jié)線蟲病等。這其中,稻瘟病菌Magnaporthe oryzae(syn.Pyricularia oryzae)引起的稻瘟病為世界性水稻主要病害。除此之外,稻瘟病菌還可侵害其他多種禾本科作物,每年都造成大量損失[1-2]。稻瘟病菌作為一種重要的植物病原物,除了因經(jīng)濟(jì)重要性受重視外,還因易于開展遺傳分析,近年來逐漸成為研究絲狀真菌生長發(fā)育的重要模式生物之一[3-6]。同時(shí),稻瘟病菌與水稻的互作也成為研究植物病原真菌-寄主互作較為理想的模式系統(tǒng)之一[4-7]。本文綜述了近年來水稻與稻瘟病菌相互作用的分子模式,以期為水稻抗稻瘟病育種研究提供借鑒。

      1 PMAPs介導(dǎo)的水稻PTI免疫反應(yīng)

      植物在自然界中可為其他病原微生物提供營養(yǎng)來源,并受到一定的脅迫。在與病原微生物互作的進(jìn)化過程中,植物不斷產(chǎn)生一些復(fù)雜的免疫應(yīng)答反應(yīng)來抵御病原微生物的侵害。植物體內(nèi)存在兩種層次防御反應(yīng),分別為病原菌相關(guān)模式(Pathogen associated molecular pattern,PAMP)誘發(fā)的免疫反應(yīng)(PAMP-triggered immunity,PTI)和效應(yīng)因子誘發(fā)的免疫反應(yīng)(Effector-triggered immunity,ETI),二者在抵御病害過程中起重要作用。PAMP是一類具保守特征的小分子物質(zhì)(如細(xì)菌的鞭毛蛋白短肽flg22、內(nèi)毒素脂多糖、真菌鞘脂及幾丁質(zhì)等),可為植物模式受體(Pattern recognition receptor,PRR)(如FLS2和EFR蛋白)識(shí)別,引發(fā)PTI反應(yīng)[8-9],如MAPK信號(hào)途徑的激活以及活性氧爆發(fā)、胼胝質(zhì)積累等防御現(xiàn)象[10]。除了PAMPs之外,病菌編碼的一些分泌蛋白也能誘發(fā)PTI反應(yīng),即激發(fā)子(Elicitor)。傳統(tǒng)定義上來講,“激發(fā)子”是指能誘導(dǎo)植物產(chǎn)生植保素的一些分子。隨著科技的發(fā)展,這個(gè)名詞所適用的范圍更廣,如今多指能刺激植物防御的所有物質(zhì),包括來源于病原菌(外源性激發(fā)子)以及在侵染過程中植物自身產(chǎn)生的物質(zhì)(內(nèi)源性激發(fā)子),最終提高植物抗病能力[11-13]。

      稻瘟病菌激發(fā)子類型多樣,有糖蛋白[14-15]和脂蛋白等[16]?,F(xiàn)已證實(shí)菌絲細(xì)胞壁、細(xì)胞膜、分生孢子及菌絲發(fā)酵液中均含有激發(fā)子[17-20]。細(xì)胞膜成分鞘脂類物質(zhì)可誘導(dǎo)水稻合成植保素、細(xì)胞死亡[21-23]。菌絲發(fā)酵液中的 MoHrip1[24]和 MoHrip2蛋白[25]引起煙草細(xì)胞程序性死亡,并且增強(qiáng)水稻免疫力。稻瘟病菌壞死-乙烯誘導(dǎo)蛋白1(Necrosis and ethylene-inducing peptide 1,Nep1)[26]和類 Nep1(Nep1-like proteins,NLPs)蛋白 MoNLP1、MoNLP2、MoNLP4[27]能引起煙草細(xì)胞發(fā)生細(xì)胞壞死。在對(duì)稻瘟病菌侵染階段的轉(zhuǎn)錄分析中,Chen等[28]篩選到4個(gè)可誘導(dǎo)水稻和煙草組織產(chǎn)生細(xì)胞壞死的稻瘟分泌蛋白(MoCDIP1、MoCDIP2、MoCDIP3和MoCDIP4)。此外,Wang等[29]利用質(zhì)外體流技術(shù),在發(fā)病水稻質(zhì)外體中分離出多個(gè)稻瘟病菌激發(fā)蛋白。其中,MSP1蛋白引發(fā)植物細(xì)胞壞死反應(yīng),并提高水稻抵抗稻瘟病能力。稻瘟病菌激發(fā)子基因在植物中的持續(xù)表達(dá)可增強(qiáng)廣譜抗病性,如MgSM1轉(zhuǎn)基因擬南芥、水稻對(duì)細(xì)菌和真菌病菌均有較好的抵抗能力[30-31]。

      細(xì)胞壁成分幾丁質(zhì)所介導(dǎo)的PTI信號(hào)途徑研究得較為全面。作為經(jīng)典的PAMP,幾丁質(zhì)可激發(fā)植物防御反應(yīng),如植保素的合成[32,33]、pH 變化[34]、細(xì)胞膜穩(wěn)定性[33-35]、防御基因誘導(dǎo)表達(dá)[36-37]等方面。然而,并不是所有類型的幾丁質(zhì)都能激發(fā)宿主PTI反應(yīng)。據(jù)報(bào)道,聚合度6-8的幾丁質(zhì)對(duì)水稻細(xì)胞才有活性,而聚合度小于5的幾丁質(zhì)短鏈不足以引起水稻防御反應(yīng),并且誘導(dǎo)效應(yīng)隨著聚合度的提高而增強(qiáng)[35,37]。植物細(xì)胞膜上分布著不同的受體蛋白,各司其職,以識(shí)別不同的信號(hào)。蛋白結(jié)合實(shí)驗(yàn)證明了水稻幾丁質(zhì)受體OsCEBiP蛋白可特異結(jié)合幾丁質(zhì)寡糖(GlcNAc)8[38-42]。OsCEBiP為水稻抗病反應(yīng)所需,持續(xù)表達(dá)OsCEBiP基因可提高水稻抗稻瘟病和白葉枯病能力[43]。相反,OsCEBiP基因沉默后,水稻細(xì)胞無法識(shí)別幾丁質(zhì)(GlcNAC)8,最終導(dǎo)致水稻PTI免疫反應(yīng)受抑制,喪失了抗病力[44]。OsCEBiP蛋白編碼兩個(gè)LysM結(jié)構(gòu)域和一個(gè)跨膜結(jié)構(gòu)域[44],但單靠這兩種結(jié)構(gòu)不足以將幾丁質(zhì)信號(hào)由胞外往胞內(nèi)轉(zhuǎn)化。受體激酶OsCERK1則可協(xié)助OsCEBiP完成信號(hào)的轉(zhuǎn)換[45]。在擬南芥中,AtCERK1識(shí)別并結(jié)合幾丁質(zhì),在抵抗真菌病原菌過程中起關(guān)鍵作用[46-48]。 作 為 AtCERK1的 同 源 蛋 白, 雖 然OsCERK1編碼LysM和磷酸激酶結(jié)構(gòu)域,但并不直接結(jié)合幾丁質(zhì)[49-50]。然而激酶結(jié)構(gòu)域的存在,使胞外幾丁質(zhì)信號(hào)得以向胞內(nèi)轉(zhuǎn)換。OsCERK1為幾丁質(zhì)信號(hào)通路所必需,水稻Oscerk1突變體中幾丁質(zhì)信號(hào)傳導(dǎo)受阻,抗病能力下降[51-53]。

      OsRac編碼鳥苷酸三磷酶(GTPase),屬于Rho-GTPase家族,在水稻抵御病原菌過程中起重要作用。OsRacGTPase在信號(hào)轉(zhuǎn)導(dǎo)途徑中充當(dāng)分子開關(guān),調(diào)控多種細(xì)胞生命活動(dòng)。水稻基因組編碼7個(gè)OsRac蛋白,其中OsRac1為關(guān)鍵調(diào)控因子。OsRac1響應(yīng)PAMPs并參與PTI反應(yīng)。當(dāng)幾丁質(zhì)或真菌鞘脂后處理水稻原生質(zhì)體之后,OsRac1快速聚集到細(xì)胞膜上[54-55]。持續(xù)表達(dá)型激活態(tài)(Constitutive active,CA)-OsRac1基因,可誘發(fā)水稻細(xì)胞內(nèi)ROS的爆發(fā)、細(xì)胞凋亡、植保素合成以及相關(guān)防御基因表達(dá),最終提高了水稻對(duì)稻瘟病的抵抗能力。反之,在水稻中持續(xù)表達(dá)該基因的失活態(tài)(Dominant negative,DN),使OsRac1喪失活性,則抑制了上述的防御反應(yīng),抵消了水稻抗稻瘟病能力[54]。進(jìn)一步研究發(fā)現(xiàn),OsRac1通過兩種途徑來調(diào)控胞內(nèi)活性氧(Reactive oxygen species,ROS)的水平。一方面,CA-OsRac1正調(diào)控OsRbohB,與之發(fā)生相互作用后,細(xì)胞內(nèi)Ca2+水平迅速提高。累積的Ca2+激活了NADPH氧化酶,使后者不斷產(chǎn)生活性氧ROS[56]。另一方面,OsRac1負(fù)調(diào)控ROS清除相關(guān)基因(比如OsMT2b)的表達(dá)以保證ROS的積累[56-57],可見OsRac1在調(diào)節(jié)水稻細(xì)胞ROS爆發(fā)以及細(xì)胞死亡過程中起重要作用。此外,水稻與稻瘟病菌非親和互作中,OsRac1為水稻NB-LRR抗病蛋白Pit直接激活[58],這說明了OsRac1在水稻PTI和ETI反應(yīng)中均起到重要作用。

      與Rho家族成員一樣,OsRac1的失活型(GDP結(jié)合型)和激活態(tài)(GTP結(jié)合型)構(gòu)象之間的轉(zhuǎn)換由鳥苷酸交換因子(Guaninenucleotide Exchanging Factors,GEFs)催化。據(jù)報(bào)道,兩類鳥苷酸交換因子(OsSWAP70A和OsRacGEF1)參與OsRac1蛋白的激活[59-60]。水稻OsSWAP70A和OsRacGEF1分別編碼 Db1(diffuse B-cell lymphoma)-homology(DH)和PRONE(Plant-specific Rac/Rop)類型GEF。這兩個(gè)基因的過表達(dá)均加劇了OsRac1介導(dǎo)的活性氧爆發(fā),增強(qiáng)了幾丁質(zhì)介導(dǎo)的PTI反應(yīng)和水稻抗稻瘟病菌能力[59-60]。

      水稻進(jìn)化出多個(gè)蛋白復(fù)合體來識(shí)別并轉(zhuǎn)化PAMP信號(hào)[59-65],以實(shí)現(xiàn)幾丁質(zhì)信號(hào)自外向內(nèi)的轉(zhuǎn)導(dǎo)??偟膩碇v,這些復(fù)合體主要由以下蛋白組成:OsCEBiP-OsCERK1、OsRac1、OsRacGEF1、熱激蛋白Hsp90和Hsp70、分子伴侶Hop/Sti1、支架蛋白OsRACK1、級(jí)聯(lián)反應(yīng)相關(guān)OsMAPK3/OsMAPK6、轉(zhuǎn)錄因子RAI1/Rap2.6等[64-67]。OsRac1參與多個(gè)復(fù)合體的構(gòu)成,在熱激蛋白Hsp90、分子伴侶輔助因子Hop/Sti1和支架蛋白OsRACK1的協(xié)助下,OsRac1與OsRAR1、Hsp90、Hsp70組成復(fù)合體[64-67]。后續(xù)研究發(fā)現(xiàn),在幾丁質(zhì)介導(dǎo)的PTI反應(yīng)中,OsCERK1、Hop/Sti1a、Hsp90、Hsp70和OsRac1以復(fù)合體的形式在內(nèi)質(zhì)網(wǎng)和細(xì)胞膜上執(zhí)行功能。分子伴侶和支架蛋白的存在則有助于承接OsCERK1與OsRac1之間的信號(hào)傳導(dǎo)。

      OsRac1和OsCERK1復(fù)合體成員在水稻免疫反應(yīng)中起重要作用。在功能上,OsRAR1與OsRac1相互影響。植物RAR1(for required forMla12resistance)為多個(gè)R基因調(diào)控的抗病反應(yīng)所需,如Mla、RPM1、RPS2、RPS5[68-75]。OsRAR1參 與 水稻抗稻瘟病菌過程,在水稻基礎(chǔ)抗性中也起了重要作用。進(jìn)一步研究發(fā)現(xiàn),OsRAR1和Hsp90共同協(xié)助OsRac1調(diào)控稻瘟病菌鞘脂介導(dǎo)的PTI反應(yīng)。持續(xù)表達(dá)CA-OsRac1基因可轉(zhuǎn)錄上調(diào)OsRAR1和OsSGT1(for suppressor of the G2 allele of skp1),引起水稻細(xì)胞ROS爆發(fā),激活抗病反應(yīng);OsRac1基因的沉默則抑制了OsRAR1基因的表達(dá),這說明了OsRac1正向調(diào)控OsRAR1。OsRAR1也可影響OsRac1的功能發(fā)揮,OsRAR1基因的沉默削弱了CA-OsRac1轉(zhuǎn)基因水稻的抗病力??梢?,這兩個(gè)基因之間存在某種程度的相互調(diào)控作用[64]。另外,分子伴侶輔助因子Hop/Sti1a也參與了幾丁質(zhì)介導(dǎo)的水稻抗病反應(yīng)。過表達(dá)Hop/Sti1a基因明顯提高了水稻對(duì)稻瘟病菌的抵抗能力;該基因的沉默則降低了水稻的抗病能力[63]。作為復(fù)合體中的支架蛋白,OsRACK1同樣參與調(diào)控ROS爆發(fā)和PTI反應(yīng)。過表達(dá)OsRACK1基因明顯提高了水稻對(duì)稻瘟病菌的抗性[67,76]。

      絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)級(jí)聯(lián)反應(yīng)參與水稻生長發(fā)育與基礎(chǔ)抗病過程。作為MAPK的激酶,活性態(tài)OsMKK4(即OsMKK4-dd)可激活OsMAPK3/OsMAPK6,并且這3個(gè)蛋白均響應(yīng)幾丁質(zhì)處理[77-78]。據(jù)報(bào)道,OsRac1正向調(diào)控OsMAPK3、OsMAPK6與轉(zhuǎn)錄因子OsRAI1。OsRAI1(bHLH transcription factor Rac Immunity 1)參與水稻抵抗稻瘟?。?2]。OsRAI1和OsRac1均可與OsMAPK3、OsMAPK6發(fā)生直接互作,但尚未文章報(bào)道OsRAI1和OsRac1是否發(fā)生互作。在水稻原生質(zhì)體細(xì)胞持續(xù)表達(dá)OsMKK4-dd與OsMAPK3/6后,防御相關(guān)基因OsPAL1、OsWRKY19轉(zhuǎn)錄水平明顯提高[62]。因此OsRac1可能通過OsMAPK3、OsMAPK6來激活OsRAI1,而磷酸化的OsRAI1結(jié)合靶標(biāo)基因的啟動(dòng)子區(qū)域,以啟動(dòng)相關(guān)防御基因的表達(dá)[26,62]。

      總的來講,當(dāng)水稻細(xì)胞尚未感知幾丁質(zhì)時(shí)(即非激活狀態(tài)下),OsCEKR1由內(nèi)質(zhì)網(wǎng)經(jīng)囊泡運(yùn)輸至細(xì)胞膜,與伴侶蛋白、OsRacGEF1、Hop/Sti1和失活態(tài)的OsRac1組合成一個(gè)蛋白復(fù)合體。當(dāng)膜受體OsCEBiP識(shí)別幾丁質(zhì)之后,OsCERK1立即與之形成二聚體。隨后,OsRacGEF1-OsCERK1-分子伴侶形成的復(fù)合體從內(nèi)質(zhì)網(wǎng)轉(zhuǎn)運(yùn)到細(xì)胞膜。OsCERK1結(jié)合OsRacGEF1并對(duì)其進(jìn)行磷酸化,后者則進(jìn)一步識(shí)別并激活OsRac1。通過MAPK級(jí)聯(lián)放大反應(yīng),OsRac1將信號(hào)逐步傳到細(xì)胞核中,激活防御基因表達(dá),誘導(dǎo)免疫反應(yīng)(圖 1)[79]。

      為了維持胞內(nèi)穩(wěn)態(tài),植物進(jìn)化出一些負(fù)調(diào)控因子,來抑制細(xì)胞的過激反應(yīng)。水稻U-box E3連接酶OsSPL11(Spotted leaf11)負(fù)調(diào)控細(xì)胞程序性死亡和免疫反應(yīng)。spl11突變體水稻廣譜抗菌、體內(nèi)防御基因轉(zhuǎn)錄水平和ROS含量偏高[80-82]。后續(xù)實(shí)驗(yàn)發(fā)現(xiàn)OsSPL11與GTP酶激活蛋白(GTPaseactivating proteins,GAPs)RhoGAP SPIN6發(fā)生相互作用并將后者進(jìn)行泛素化降解。SPIN6催化小GTP酶OsRac1由GTP結(jié)合態(tài)向GDP結(jié)合態(tài)轉(zhuǎn)變,使其失活。SPIN6基因的沉默導(dǎo)致了活性態(tài)OsRac1的積累,激活了OsRac1復(fù)合體中其他基因(如OsSGT1和OsRAR1)轉(zhuǎn)錄表達(dá),使得胞內(nèi)活性氧水平劇增,引起細(xì)胞程序性死亡,對(duì)PAMPs(flg22和幾丁質(zhì))更加敏感,最終提高了水稻對(duì)稻瘟病菌和白葉枯病菌的抵抗力[83]。OsRac1 GEF1催化OsRac1由失活態(tài)向激活態(tài)轉(zhuǎn)化,正向調(diào)控OsRac1介導(dǎo)的水稻免疫反應(yīng)[60]。相比之下,SPIN6則控制活性O(shè)sRac1的積累,防止過度免疫事件的發(fā)生,維持細(xì)胞內(nèi)環(huán)境的穩(wěn)定(圖1)。SPIN6對(duì)水稻PTI的影響則助于完善OsRac1復(fù)合體的功能,如SPIN6是否與OsRac1、OsRac1 GEF1相互作用,SPIN6是否與OsCERK1存在功能上的關(guān)聯(lián)等。

      圖1 幾丁質(zhì)介導(dǎo)的水稻PTI信號(hào)傳導(dǎo)

      2 稻瘟病菌效應(yīng)蛋白的分泌

      在由幾丁質(zhì)介導(dǎo)的PTI反應(yīng)中,幾丁質(zhì)短鏈并未進(jìn)入水稻細(xì)胞中,而是通過細(xì)胞膜外受體識(shí)別,進(jìn)而將幾丁質(zhì)信號(hào)由胞外往胞內(nèi)轉(zhuǎn)換。在與宿主相互作用過程中,稻瘟病菌往往通過分泌一系列效應(yīng)蛋白來促進(jìn)在水稻體內(nèi)的增殖。稻瘟病菌的效應(yīng)因子編碼序列呈現(xiàn)多樣化,但是根據(jù)其分泌途徑的差異,效應(yīng)因子可分為兩類[84]:可進(jìn)入植物細(xì)胞的胞質(zhì)型效應(yīng)蛋白(Cytoplasmic effector)[85-87]、不進(jìn)入植物細(xì)胞的質(zhì)外體效應(yīng)蛋白(Apoplastic effectors)[86]。胞質(zhì)型效應(yīng)蛋白主要通過Biotropic Interfacial Complex(BIC)[88]進(jìn)入水稻細(xì)胞中。BIC是一種源自植物細(xì)胞膜的多層膜結(jié)構(gòu),與初級(jí)侵染菌絲毗鄰。隨著侵染菌絲的擴(kuò)展,BIC結(jié)構(gòu)又轉(zhuǎn)移到接近侵染菌絲頂端的位置。胞質(zhì)型效應(yīng)效應(yīng)蛋白在BIC積累到一定程度后,轉(zhuǎn)運(yùn)到Extrainvasive Hyphal Membrane(EIHM)[88]后再進(jìn)入植物細(xì)胞。這個(gè)過程則需要植物細(xì)胞囊泡運(yùn)輸系統(tǒng)(如Sso1 t-SNARE 和 exocyst 復(fù)合體中的 Exo70、Sec5[84,89])協(xié)助完成。胞質(zhì)型效應(yīng)蛋白一般在侵染菌絲破壞植物細(xì)胞膜之前就分泌到植物細(xì)胞中,為后續(xù)侵染做準(zhǔn)備,如抑制宿主免疫反應(yīng)。效應(yīng)因子PWL2[88]和AvrPiz-t[90]為典型的胞質(zhì)型分泌蛋白,均可經(jīng)過BIC結(jié)構(gòu)分泌到水稻細(xì)胞中。

      與胞質(zhì)型效應(yīng)蛋白相比,質(zhì)外體效應(yīng)蛋白不進(jìn)入宿主細(xì)胞,而是停留或是分散在EIHM膜中,并包圍整個(gè)侵染菌絲。EIHM也是一種源于植物細(xì)胞膜的膜結(jié)構(gòu)[86,88-89]。在侵染早期,這種膜結(jié)構(gòu)可將整個(gè)腫脹侵染菌絲包圍住。這期間質(zhì)外體效應(yīng)蛋白經(jīng)過內(nèi)質(zhì)網(wǎng)-高爾基體這一傳統(tǒng)分泌途徑進(jìn)入胞外間隔層中[91,88-89]。效應(yīng)因子 BAS4[86,92]和 Slp1[92]為質(zhì)外體型分泌蛋白,并未進(jìn)入水稻細(xì)胞中。

      3 稻瘟病菌致病因子介導(dǎo)的水稻抗性反應(yīng)

      3.1 效應(yīng)因子介導(dǎo)的水稻ETI、ETS反應(yīng)

      幾乎所有的病原菌都帶有PAMPs,然而植物仍然遭受侵染,這說明某些病原菌可以克服植物的PTI。病原菌通過分泌一些效應(yīng)蛋白,繞過宿主的抵御防線,抑制PTI的產(chǎn)生,這個(gè)過程稱為效應(yīng)因子引發(fā)的感病反應(yīng)(Effector Triggered Susceptible reaction,ETS)[93-95]。與此同時(shí),植物也進(jìn)化出基于R蛋白的第二道防線,直接和間接識(shí)別并結(jié)合病原菌的無毒蛋白(Avr),即效應(yīng)因子激發(fā)的免疫反應(yīng)(Effector-triggered immunity,ETI),主要表現(xiàn)出植物組織強(qiáng)烈的過敏性反應(yīng)[93-95]。ETI反應(yīng)模式符合基因-基因假說[95],當(dāng)與含相應(yīng)R蛋白的宿主發(fā)生反應(yīng),由無毒基因編碼或是加工的效應(yīng)蛋白才顯示出無毒的表型,即非親和反應(yīng)。近20年,水稻抗稻瘟病基因和稻瘟病菌無毒基因的克隆工作并駕齊驅(qū)。已克隆的水稻抗病基因普遍含有NBS-LRR結(jié)構(gòu) 域[96], 如Pib、Pita、Pi-kh(Pi54)、Pid2、Pi9、Piz-t、Pi2、Pi36、Pi37、Pi-km、Pi5、Pi21、Pit、Pid3、Pish、Pik、Pik-p、Pia、Pi25、Pil[97]以及 Pi-CO39[98]、Pi41[99]、Pi55(t)[100]、Pi50(t)[101]等。目前超過10個(gè)稻瘟病菌無毒基因得到克隆與鑒定,如PWL2、AvrPita、Avr-CO39、AvrPiz-t、AVR-Pii、Avr-Pia、AVR-Pik/km/kp[97]和ACE1[102]、AVR-Pikm[103]、AvrPi9[104]、AvrPib[105]。 在 水 稻 與 稻 瘟 病菌的互作過程中,抗病基因與無毒基因之間可產(chǎn)生直接、間接物理相互作用,以啟動(dòng)高級(jí)防御反應(yīng)。據(jù)報(bào)道,Pita/AvrPita、Pik/AvrPik、Pi-CO39/Avr1-CO-39、Pia/AvrPia[93,106-107]等基因組合可發(fā)生直接互作。以Pita/AvrPita為例,稻瘟病菌無毒基因Avr-Pita編碼的依賴于鋅的金屬蛋白酶,該蛋白的C端亮氨酸富集區(qū)可結(jié)合水稻Pi-ta,并參與稻瘟病菌整個(gè)致病過程。Pi-ta蛋白催化區(qū)域的突變會(huì)減弱二者之間的相互作用,說明Pi-ta很可能是Avr-Pita蛋白的一個(gè)底物[108-109]。相比之下,無毒基因AVR-Pii與水稻抗性基因Pii[91,110]、AvrPiz-t與Piz-t[90,111-113]不直接發(fā)生互作,而是需借助其他蛋白來完成互作。

      在AVR-Pii與Pii的互作模式中,二者的成功識(shí)別需要其他水稻基因的參與,如囊泡運(yùn)輸相關(guān)蛋白、氧化還原相關(guān)的酶。AVR-Pii與水稻胞吐相關(guān)蛋白OsExo70-F2、OsExo70-F3發(fā)生直接的物理互作[91,110]。在Pii背景水稻下,對(duì)OsExo70-F3基因進(jìn)行沉默,轉(zhuǎn)基因水稻則喪失了對(duì)AVR-Pii菌株的抵抗能力,但仍對(duì)親和菌株的表現(xiàn)出感病性,這說明了OsExo70-F3特異參與Pii介導(dǎo)的抗病反應(yīng)[91]。此外,蘋果酸酶(NADP-ME 2-3)與AVR-Pii蛋白發(fā)生特異相互作用[110]。NADP-MEs催化氧化脫羧反應(yīng),將蘋果酸可逆轉(zhuǎn)變成丙酮酸,并伴隨著NADP向NADPH的轉(zhuǎn)化。NADPH是NADPH氧化還原酶的的電子供體,為細(xì)胞防御性氧爆發(fā)的一個(gè)重要源泉[114-115]。在非Pii水稻中,AVR Pii蛋白專一性地抑制OsNADP-ME 2-3的酶活力,阻止水稻細(xì)胞氧爆發(fā),進(jìn)而抑制水稻免疫防御反應(yīng)[110]。在Pii水稻中,OsNADP-ME 2-3基因的沉默則導(dǎo)致了Pii水稻喪失了對(duì)AVR-Pii稻瘟病菌的抵抗力[110]。綜上,OsExo70-F3和OsNADP-ME 2-3均參與AVR-Pii與Pii介導(dǎo)的稻瘟病菌-水稻的相互作用過程。然而OsExo70-F3和OsNADP-ME 2-3是否與Pii蛋白發(fā)生互作或是形成復(fù)合體則有待于進(jìn)一步研究。

      無毒基因AvrPiz-t與抗病基因Piz-t的作用模式需要E3連接酶、轉(zhuǎn)錄因子以及核孔蛋白的參與[90,111-113]。當(dāng)侵染非Piz-t水稻的時(shí)候,稻瘟病菌無毒基因AvrPiz-t執(zhí)行有毒效應(yīng)因子的功能,抑制宿主免疫反應(yīng)。AvrPiz-t轉(zhuǎn)基因水稻中的PTI反應(yīng)受到不同程度的抑制,最終削弱了水稻的抗病性。AvrPiz-t蛋白不與Piz-t直接互作,而是與水稻蛋白APIP6、APIP10、APIP5和 APIP12相互作用(互作模式如圖 2 所示)[90,111-113]。在非Piz-t水稻中,AvrPiz-t通過誘導(dǎo)E3連接酶APIP6、APIP10泛素化降解來阻斷信號(hào)傳導(dǎo),以抑制水稻PTI免疫反應(yīng),達(dá)到感病的目的[90,111]。反之,APIP6/10亦可泛素化降解AvrPiz-t。在Piz-t水稻中,APIP10負(fù)調(diào)控Piz-t基因的表達(dá),使其蛋白產(chǎn)物維持在較低的水平。當(dāng)含有AvrPiz-t的稻瘟病菌侵染水稻后,AvrPiz-t蛋白進(jìn)入水稻細(xì)胞,結(jié)合APIP10蛋白,解除了APIP10對(duì)Piz-t的抑制。隨后,Piz-t蛋白迅速積累,導(dǎo)致HR爆發(fā),引發(fā)下游抗病反應(yīng)。APIP10基因的沉默導(dǎo)致水稻出現(xiàn)細(xì)胞程序性死亡,同時(shí)誘導(dǎo)Piz-t大量積累,可見AvrPiz-t蛋白通過抑制APIP10來穩(wěn)定Piz-t表達(dá)[111]。

      圖2 稻瘟病菌AvrPiz-t與水稻Piz-t介導(dǎo)的ETI信號(hào)轉(zhuǎn)導(dǎo)

      APIP5編碼一個(gè)bZIP轉(zhuǎn)錄因子,與AvrPiz-t、Piz-t發(fā)生直接相互作用[112]。APIP5以二聚體的形式進(jìn)入細(xì)胞核中,負(fù)調(diào)控細(xì)胞壞死相關(guān)基因表達(dá),抑制細(xì)胞程序性死亡。APIP5基因沉默導(dǎo)致了水稻自發(fā)細(xì)胞壞死癥狀,而AvrPiz-t的存在則加劇了壞死癥狀的發(fā)生。在非Piz-t水稻中,AvrPiz-t蛋白可在細(xì)胞質(zhì)中結(jié)合并降解APIP5,進(jìn)而解除了APIP5對(duì)細(xì)胞壞死的抑制,最終誘導(dǎo)稻瘟病菌侵染病斑的形成。在Piz-t水稻中,Piz-t蛋白的存在有利于維持APIP5蛋白的穩(wěn)定性,抑制稻瘟病菌侵染后期壞死斑的形成。反過來,APIP5蛋白亦促進(jìn)Piz-t蛋白的積累,最終激活ETI抗病反應(yīng)[112]。

      AvrPiz-t與APIP12的作用模式不同于上述3個(gè)水稻蛋白[113]。APIP12編碼一個(gè)核孔蛋白,與Nup98同源。APIP12蛋白與AvrPiz-t、APIP6發(fā)生直接相互作用。在非Piz-t水稻背景下,APIP12基因的沉默或敲除均抑制了防御相關(guān)基因的表達(dá),進(jìn)而降低了水稻對(duì)稻瘟病菌的抵抗力。然而,在Piz-t水稻中對(duì)APIP12進(jìn)行過表達(dá)或沉默,由Piz-t介導(dǎo)的ETI反應(yīng)卻不受影響,可見APIP12主要參與水稻基礎(chǔ)免疫反應(yīng),該蛋白與AvrPiz-t的互作獨(dú)立于ETI反應(yīng)[113]。

      除了無毒基因?qū)λ拗髅庖呦嚓P(guān)基因進(jìn)行修飾之外,病原菌還存在一類非無毒基因的效應(yīng)因子,通過干擾PTI反應(yīng)來抑制宿主抗病能力。植物病原菌編碼的一些核心效應(yīng)因子含LysM結(jié)構(gòu)域效應(yīng)蛋白,在致病過程中起重要作用。幾丁質(zhì)結(jié)合蛋白番茄葉霉病菌(Cladosporiu fluvum)ECP6[116-117]、稻瘟病菌 Slp1[92]、油菜炭疽病菌(Colletotrichum higginsianum)ChELP1 和 ChELP2[118]蛋白結(jié)構(gòu)保守,功能相似,均可抑制宿主PTI反應(yīng)。稻瘟病菌Slp1與水稻細(xì)胞膜幾丁質(zhì)受體CEBiP蛋白競爭結(jié)合幾丁質(zhì),以切斷幾丁質(zhì)信號(hào)轉(zhuǎn)導(dǎo),最終抑制宿主防御反應(yīng)(圖1)[92]。深入研究發(fā)現(xiàn),Slp1受多個(gè)稻瘟病菌蛋白調(diào)控。首先內(nèi)質(zhì)網(wǎng)膜轉(zhuǎn)運(yùn)蛋白MoSec62決定了 Slp1的正常分泌[119]。其次,α-1,3-甘露糖轉(zhuǎn)移酶ALG3催化Slp1的糖基化修飾過程,糖基化的Slp1才能抑制宿主PTI反應(yīng)[120]。MoSec62或ALG3基因缺失突變體菌體均可快速激活水稻防御相關(guān)基因的轉(zhuǎn)錄、活性氧爆發(fā),導(dǎo)致無法順利侵染水稻細(xì)胞,喪失致病能力[119-120]。與Slp1類似,稻瘟病菌分泌蛋白MC69基因的缺失則限制了侵染菌絲的擴(kuò)展,導(dǎo)致稻瘟病菌對(duì)感病水稻和大麥的致病力下降[121]。同樣,西瓜炭疽病菌(Colletotrichum orbiculare)中該同源基因CoMC69的敲除,則削弱了該菌對(duì)黃瓜和本氏煙草的致病力[121],這說明MC69基因可能在單、雙子葉病原菌中都起著致病的功能。

      3.2 非效應(yīng)因子型蛋白介導(dǎo)的水稻感病反應(yīng)

      為保證順利侵染水稻,稻瘟病菌通過加固侵染菌絲細(xì)胞壁來避開宿主細(xì)胞的識(shí)別。據(jù)研究,稻瘟病菌細(xì)胞壁成分α-1,3-葡聚糖可干擾水稻防御反應(yīng),并為病程所需[122]。當(dāng)α-1,3-葡聚糖合成基因MgAGS1發(fā)生缺失或α-1,3-葡聚糖的合成受到抑制,稻瘟病菌絲對(duì)植物幾丁質(zhì)酶的敏感性則明顯提高。MgAGS1的缺失激活了水稻防御相關(guān)基因表達(dá),導(dǎo)致稻瘟病菌致病力下降。α-1,3-葡聚糖酶可水解α-1,3-葡聚糖,然而水稻基因組尚無該酶的編碼基因。異源表達(dá)細(xì)菌α-1,3-葡聚糖酶編碼基因可激活水稻防御相關(guān)基因表達(dá),增強(qiáng)水稻廣譜抗病能力。由此可見,α-1,3-葡聚糖可保護(hù)稻瘟病菌細(xì)胞壁,防止被水稻相關(guān)水解酶所降解,以阻止PAMP物質(zhì)的釋放,進(jìn)而抑制宿主PTI的發(fā)生[122]。

      PTI和ETI介導(dǎo)的宿主免疫防御反應(yīng)常常伴隨著活性氧的爆發(fā),稻瘟病菌還可通過調(diào)節(jié)宿主細(xì)胞氧化還原環(huán)境來加速侵染過程。稻瘟病菌DES1編碼一個(gè)富含絲氨酸的蛋白,該基因的缺失提高了稻瘟病菌對(duì)過氧化物脅迫的敏感性,并抑制了過氧化物酶和漆酶編碼基因的正常轉(zhuǎn)錄活動(dòng)。在侵染感病水稻初期,DES1缺失突變體可引起水稻細(xì)胞ROS爆發(fā),同時(shí)也激活了PR防御基因的表達(dá),使得侵染菌絲擴(kuò)展受限,最終降低了稻瘟病菌的致病性。進(jìn)一步研究發(fā)現(xiàn),NADPH氧化還原酶抑制劑DPI可回補(bǔ)des1突變體的致病性[123]。與之類似,谷胱甘肽過氧化物酶編碼基因MoHYR1參與清除體內(nèi)活性氧,維持穩(wěn)定的氧化還原環(huán)境,促進(jìn)稻瘟病菌成功侵染水稻[124]。

      除此之外,稻瘟病菌還面臨另外一種脅迫,即一氧化氮(NO)介導(dǎo)的植物氧化反應(yīng)。NO是植物免疫反應(yīng)中的一個(gè)組成部分,與ROS一類化合物相互作用,并衍生出具有高度氧化活性的硝基類化合物,即活性氮(Reactive nitrogen species,RNS)[125]?;钚匝鹾突钚缘勺柚共≡倪M(jìn)一步侵染。然而,稻瘟病菌的一些酶可清除活性氮積累,如氮酸酯單加氧酶NMO。在稻瘟病菌營養(yǎng)生長過程中,NMO2催化硝基烷的脫硝基化反應(yīng),緩解硝基氧化脅迫給菌體細(xì)胞帶來的脂質(zhì)硝化。NMO2基因的缺失抑制了侵染菌絲的擴(kuò)展,并且引起水稻細(xì)胞氧爆發(fā)。NMO2基因?qū)λ狙趸€原環(huán)境的調(diào)節(jié)也影響了稻瘟病菌效應(yīng)蛋白的分泌,這種情況下效應(yīng)蛋白無法抑制宿主PTI反應(yīng)[126]。然而,提前用DPI處理水稻組織,使水稻細(xì)胞處于還原狀態(tài),阻止氧爆發(fā),mno2突變體則可正常地侵染水稻組織。這從側(cè)面反映了,當(dāng)水稻失去活性氧這一抵御防線后,其自身產(chǎn)生的活性氮或是由NO介導(dǎo)的信號(hào)傳導(dǎo)不足以抵抗稻瘟病菌的侵染。在對(duì)抗稻瘟病菌的侵染,水稻細(xì)胞內(nèi)氧化環(huán)境的變化影響到抗病進(jìn)程。以活性氧引起的ROS爆發(fā)起主導(dǎo)作用,而以活性氮引起的RNS起輔助作用,但二者均在水稻抗病過程中起重要作用,缺一不可。稻瘟病菌則通過釋放一系列效應(yīng)蛋白,調(diào)控水稻相關(guān)基因的表達(dá),阻止抗病信號(hào)的傳導(dǎo),抑制ROS或是RNS的爆發(fā),保證菌絲的成功增殖。

      4 展望

      水稻與稻瘟病菌之間的相互作用是一項(xiàng)持久的“軍事裝備戰(zhàn)”。為抵抗稻瘟病菌的侵害,在自然或是人工選育的條件下,水稻基因組進(jìn)化出一些抗性相關(guān)基因,然而隨著種植年限的延長或其他的氣候因素,稻瘟病菌小種不斷發(fā)生突變以攻克水稻防御體系。這些如此往復(fù)的相互進(jìn)化事件推動(dòng)了水稻-稻瘟病菌相互作用的發(fā)展。近20年來,水稻抗病基因、稻瘟病菌無毒基因的克隆為二者相互作用機(jī)理的解析提供了大量的實(shí)驗(yàn)基礎(chǔ)。但從水稻PTI基礎(chǔ)免疫反應(yīng)到ETI高級(jí)防御體系,這中間包含極其復(fù)雜的互作網(wǎng)絡(luò),目前的研究只是掀開了該互作網(wǎng)絡(luò)的一角。為了進(jìn)一步揭示水稻與稻瘟病菌互作的機(jī)理,今后可以從以下幾個(gè)方面開展研究:(1)新型水稻PRR受體的鑒定以及與PAMP的識(shí)別機(jī)制;(2)新型PAMP的發(fā)現(xiàn),明確它們激發(fā)水稻免疫反應(yīng)的途徑;(3)新的效應(yīng)蛋白和無毒蛋白基因的克隆,解析它們介導(dǎo)水稻感病和抗病反應(yīng)的作用機(jī)理;(4)通過各種組學(xué)技術(shù),進(jìn)一步尋找水稻與稻瘟病菌互作網(wǎng)絡(luò)中的關(guān)鍵節(jié)點(diǎn)蛋白,明確它們的功能。

      [1]Fisher MC, Henk DA, Briggs CJ, et al. Emerging fungal threats to animal, plant and ecosystem health[J]. Nature, 2012, 484(7393):186-194.

      [2]Wilson RA, Talbot NJ. Under pressure:investigating the biology of plant infection by Magnaporthe oryzae[J]. Nature Reviews Microbiology, 2009, 7(3):185-195.

      [3]Wang GL, Valent B. Advances in genetics, genomics and control of rice blast disease[M]. New York:Springer Science and Business Media, 2009.

      [4]Ebbole DJ. Magnaporthe as a model for understanding host-pathogen interactions[J]. Annu Rev Phytopathol, 2007, 45 :437-456.

      [5]Valent B, Chumley FG. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea[J]. Annu Rev Phytopathol, 1991,29:443-467.

      [6]Talbot NJ. On the trail of a cereal killer:Exploring the biology of Magnaporthe grisea[J]. Annual Review of Microbiology, 2003,57:177-202.

      [7]Dean RA, Talbot NJ, Ebbole DJ, et al. The genome sequence of the rice blast fungus Magnaporthe grisea[J]. Nature, 2005, 434(7036):980-986.

      [8]Chinchilla D, Bauer Z, Regenass M, et al. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception[J]. Plant Cell, 2006, 18(2):465-476.

      [9]Zipfel C, Kunze G, Chinchilla D, et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation[J]. Cell, 2006, 125(4):749-760.

      [10]Nürnberger T, Brunner F, Kemmerling B, et al. Innate immunity in plants and animals:striking similarities and obvious differences[J]. Immunological Reviews, 2004, 198 :249-266.

      [11]Ebel J, Cosio EG. Elicitors of plant defense responses[J].International Review of Cytology, 1994, 148:1-36.

      [12]Ebel J. Oligoglucoside elicitor-mediated activation of plant defense[J]. BioEssays, 1998, 20(7):569-576.

      [13]Boller T. Chemoperception of microbial signals in Plant Cells[J].Annual Review of Plant Biology, 1995, 46:189-214.

      [14]Schaffrath U, Scheinpflug H, Rersendr HJ. An elicitor from Pyricularia oryzae induces resistance responses in rice:isolation,characterization and phsiological properties[J]. Physiological and Mol Plant Pathol, 1995, 46:293-309.

      [15]Kanoh H, Hega M, Sekizawa Y. Transmemberane signaling operated at rice blade cells stimulated by blast fungus elicitors I:Operation of the phospholipase C system[J]. Pesticides Science,1993, 18:299-308.

      [16]Koga J, Yamauchi T, Shimura M, et al. Cerebosides A and C sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants[J]. Journal of Biological Chemistry,1998, 273(48):31985-31991.

      [17]Sekizawa Y, Hega M, Hirabayashi E, et al. Dynamic behavior of superoxide generation in rice leaf tissue infected with blast fungus and its regulation by some substance[J]. Agricultural and Biological Chemistry, 1995, 51(3):763-770.

      [18]畢詠梅, 歐陽光察. 稻瘟病菌誘導(dǎo)物對(duì)水稻苯丙烷類途徑酶系和綠原酸的誘導(dǎo)作用[J]. 植物生理學(xué)通訊, 1990, (3):18-20.

      [19]肖拴鎖, 王鈞. 水稻中超氧誘導(dǎo)與稻瘟菌抗性及苯丙氨酸解氨酶、幾丁酶、β-1, 3-葡聚糖酶活性誘導(dǎo)的關(guān)系[J]. 中國水稻科學(xué), 1997, 11(2):93-102.

      [20]李云峰, 王振中, 賈顯祿. 稻瘟菌細(xì)胞壁激發(fā)子活性物質(zhì)的提取與性質(zhì)[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 2004, 23(3):285-289.

      [21]Umemura K, Ogawa N, Yamauchi T, et al. Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants[J]. Plant and Cell Physiology, 2000, 41(6):676-683.

      [22]Suharsono U, Fujisawa Y, Kawasaki T, et al. The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice[J]. Proc Natl Acad Sci USA, 2002, 99(20):13307-13312.

      [23]Lieberherr D, Thao NP, Nakashima A, et al. A sphingolipid elicitorinducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice 1[J]. Plant Physiology, 2005, 138(3):1644-1652.

      [24]Chen M, Zeng H, Qiu D, et al. Purification and characterization of a novel hypersensitive response-inducing elicitor from Magnaporthe oryzae that triggers defense response in rice[J]. PLoS One, 2012,7(5):e37654.

      [25]Chen M, Zhang C, Zi Q, et al. A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice[J]. Plant Cell Reports, 2014, 33(11):1865-1879.

      [26]Zhang H, Li D, Wang M, et al. The Nicotiana benthamiana mitogenactivated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)- triggered plant responses[J]. Molecular Plant-Microbe Interactions, 2012, 25(12):1639-1653.

      [27]Mogga V, Delventhal R, Weidenbach D, et al. Magnaporthe oryzae effectors MoHEG13 and MoHEG16 interfere with host infection and MoHEG13 counteracts cell death caused by Magnaporthe-NLPs in tobacco[J]. Plant Cell Reports, 2016, 35(5):1169-1185.

      [28]Chen S, Songkumarn P, Venu RC, et al. Identification and characterization of in planta-expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice[J].Molecular Plant-Microbe Interactions, 2013, 26(2):191-202.

      [29]Wang Y, Wu J, Kim SG, et al. Magnaporthe oryzae-secreted protein MSP1 induces dell death and elicits defense responses in rice[J]. Molecular Plant-Microbe Interactions, 2016, 29(4):299-312.

      [30]Yang Y, Zhang H, Li G, et al. Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis[J]. Plant Biotechnology Journal, 2009, 7(8):763-777.

      [31]Hong Y, Yang Y, Zhang H, et al. Overexpression of MoSM1,encoding for an immunity-inducing protein from Magnaporthe oryzae, in rice confers broad- spectrum resistance against fungal and bacterial diseases[J]. Sci Rep, 2017, 7:41037.

      [32]Yamada A, Shibuya N, Kodama O, et al. Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosa ccharides[J]. Bioscience Biotechnology, and Biochemistry, 1993,57(3):405-409.

      [33] Kuchitsu K, Kikuyama M, Shibuya N. N-Acetylchitooligosaccharides, biotic elicitor for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells[J].Protoplasma, 1993, 174:79-81.

      [34]Kuchitsu K, Yazaki Y, Sakano K, et al. Transient cytoplasmic pH change and ion fluxes through the plasma membrane in suspensioncultured rice cells triggered by N-Acetylchitooligosaccharide elicitor[J]. Plant and Cell Physiology, 1997, 38(9):1012-1018.

      [35]Kikuyama M, Kuchitsu K, Shibuya N. Membrane depolarization induced by N-Acetylchitooligosaccharide elicitor in suspensioncultured rice cells[J]. Plant and Cell Physiology, 1997, 38(8):902-909.

      [36]Minami E, Kuchitsu K, He DY, et al. Two novel genes rapidly and transiently activated in suspension-cultured rice cells by treatment with N-acetylchitoheptaose, a biotic elicitor for phytoalexin production[J]. Plant Cell Physiol, 1996, 37(4):563-567.

      [37]Tanabe S, Okada M, Jikumaru Y, et al. Induction of resistance against rice blast fungus in rice plants treated with a potent elicitor,N-Acetylchitiooligosaccharide[J]. Bioscience, Biotechnology,and Biochemistry, 2006, 70(7):1599-1605.

      [38]Shibuya N, Kaku H, Kuchitsu K, et al. Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells[J].FEBS Letters, 1993, 329(1-2):75-78.

      [39]Shibuya N, Ebisu N, Kamada Y, et al. Localization and binding characteristics of a high-affinity binding site for N-acetylchitooligosaccharide elicitor in the plasma from suspension-cultured rice cells suggest a role as a receptor for the elicitor signal at the cell surface[J]. Plant and Cell Physiology,1996, 37(6):894-898.

      [40]Ito Y, Kaku H, Shibuya N. Identification of a high-affinity binding protein for N-Acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling[J]. The Plant Journal, 1997, 12(2):347-356.

      [41]Shinya T, Osada T, Desaki Y, et al. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands[J].Plant and Cell Physiology, 2010, 51(2):262-270.

      [42]Kouzai Y, Nakajima K, Hayafune M, et al. CEBiP is the major chitin oligomer- binding protein in rice and plays a main role in the perception of chitin oligomers[J]. Plant Mol Biol, 2014, 84(4-5):519-528.

      [43]Kouzai Y, Kaku H, Shibuya N, et al. Expression of the chimeric receptor between the chitin elicitor receptor CEBiP and the receptor-like protein kinase Pi-d2 leads to enhanced responses to the chitin elicitor and disease resistance against Magnaporthe oryzae in rice[J]. Plant Mol Biol, 2013, 81(3):287-295.

      [44]Kishimoto K, Kouzai Y, Kaku H, et al. Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice[J]. The Plant Journal, 2010, 64(2):343-354.

      [45]Shimizu T, Nakano T, Takamizawa D, et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice[J]. The Plant Journal, 2010, 64(2):204-214.

      [46]Miya A, Albert P, Shinya T, et al. CERK1, a LysM receptor kinase,is essential for chitin elicitor signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 2007, 104(49):19613-19618.

      [47]Wan J, Zhang XC, Neece D, et al. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis[J]. Plant Cell, 2008, 20(2):471-481.

      [48]Petutschnig EK, Jones AM, Serazetdinova L, et al. The lysin motif receptor-like kinase(LysM-RLK)CERK1 is a major chitinbinding protein in Arabidopsis thaliana and subject to chitininduced phosphorylation[J]. Journal of Biological Chemistry,2010, 285(37):28902-28911.

      [49]Kaku H, Nishizawa Y, Ishii-Minami N, et al. Plant Cells recognize chitin fragments for defense signaling through a plasma membrane receptor[J]. Proc Natl Acad Sci USA, 2006, 103(29):11086-11091.

      [50]Shimizu T, Nakano T, Takamizawa D, et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice[J]. The Plant Journal, 2010, 64(2):204-214.

      [51]Kouzai Y, Mochizuki S, Nakajima K, et al. Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice[J]. Molecular Plant-Microbe Interactions, 2014, 27(9):975-982.

      [52]Ao Y, Li Z, Feng D, et al. OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity[J]. The Plant Journal, 2014, 80(6):1072-1084.

      [53]Miyata K, Kozaki T, Kouzai Y, et al. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice[J]. Plant and Cell Physiology, 2014, 55(11):1864-1872.

      [54]Ono E, Wong HL, Kawasaki T, et al. Essential role of the small GTPase Rac in disease resistance of rice[J]. Proc Natl Acad Sci USA, 2001, 98(2):759-64.

      [55]Suharsono U, Fujisawa Y, Kawasaki T, et al. The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice[J]. Proceedings of Academy of Sciences of the United States of America, 2002, 99(20):13307-13312.

      [56]Kawasaki T, Henmi K, Ono E, et al. The small GTP-binding protein Rac is a regulator of cell death in plants[J]. Proceedings of Academy of Sciences of the United States of America, 1999, 96(19):10922-10926.

      [57]Wong HL, Sakamoto T, Kawasaki T, et al. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice[J]. Plant Physiology, 2004, 135(3):1447-1456.

      [58]Kawano Y, Akamatsu A, Hayashi K, et al. Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity[J]. Cell Host & Microbe,2010, 7(5):362-375.

      [59]Yamaguchi K, Imai K, Akamatsu A, et al. SWAP70 functions as a Rac/Rop guanine nucleotide-exchange factor in rice[J]. The Plant Journal, 2012, 70(3):389-397.

      [60]Akamatsu A, Wong HL, Fujiwara M, et al. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity[J]. Cell Host & Microbe, 2013, 13(4):465-476.

      [61]Lieberherr D, Thao NP, Nakashima A, et al. A sphingolipid elicitorinducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice[J]. Plant Physiology, 2005, 138(3):1644-1652.

      [62]Kim SH, Oikawa T, Kyozuka J, et al. The bHLH Rac Immunity1(RAI1)Is activated by OsRac1 via OsMAPK3 and OsMAPK6 in rice immunity[J]. Plant and Cell Physiology, 2012, 53(4):740-754.

      [63]Chen L, Hamada S, Fujiwara M, et al. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity[J]. Cell Host &Microbe, 2010, 7(3):185-196.

      [64]Thao NP, Chen L, Nakashima A, et al. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice[J]. Plant Cell, 2007, 19(12):4035-4045.

      [65]Akamatsu A, Uno K, Kato M, et al. New insights into the dimerization of small GTPase Rac/ROP guanine nucleotide exchange factors in rice[J]. Plant Signaling & Behavior, 2015,10(7):e 1044702.

      [66]Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery[J].Exp Biol Med (Maywood), 2003, 228(2):111-133.

      [67]Nakashima A, Chen L, Thao NP, et al. RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex[J]. Plant Cell, 2008, 20(8):2265-2279.

      [68]Shirasu K, Lahaye T, Tan MW, et al. A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans[J]. Cell, 1999, 99(4):355-366.

      [69]Shen QH, Zhou F, Bieri S, et al. Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus[J]. Plant Cell, 2003, 15(3):732-744.

      [70]Tornero P, Merritt P, Sadanandom A, et al. RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis,and their relative contributions are dependent on the R gene assayed[J]. Plant Cell, 2002, 14(5):1005-1015.

      [71]Muskett PR, Kahn K, Austin MJ, et al. Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens[J]. Plant Cell, 2002, 14(5):979-992.

      [72]Austin MJ, Muskett P, Kahn K, et al. Regulatory role of SGT1 in early R gene-mediated plant defenses[J]. Science, 2002, 295(5562):2077-2080.

      [73]Azevedo C, Sadanandom A, Kitagawa K, et al. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance[J]. Science, 2002, 295(5562):2073-2076.

      [74]Liu Y, Schiff M, Marathe R, et al. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus[J]. The Plant Journal, 2002, 30(4):415-429.

      [75]Holt BF 3rd, Belkhadir Y, Dangl JL. Antagonistic control of disease resistance protein stability in the plant immune system[J].Science, 2005, 309(5736):929-932.

      [76]Liu H, Dong S, Sun D, et al. CONSTANS-Like 9(OsCOL9)interacts with receptor for activated C-Kinase 1(OsRACK1)to regulate blast resistance through aalicylic acid and ethylene signaling pathways[J]. PLoS One, 2016, 11(11):e0166249.

      [77]Liu S, Hua L, Dong S, et al. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production[J].The Plant Journal, 2015, 84(4):672-681.

      [78]Kishi-Kaboshi M, Takahashi A, Hirochika H. MAMP-responsive MAPK cascades regulate phytoalexin biosynthesis[J]. Plant Signaling & Behavior, 2010, 5(12):1653-1656.

      [79]Akamatsu A, Wong HL, Fujiwara M, et al. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity[J]. Cell Host & Microbe, 2013, 13(4):465-476.

      [80]Zeng LR, Qu S, Bordeos A, et al. Spotted leaf11, a negative regulator of Plant Cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity[J].Plant Cell, 2004, 16(10):2795-2808.

      [81]Yin Z, Chen J, Zeng L, et al. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight[J]. Molecular Plant-Microbe Interactions, 2000, 13(8):869-876.

      [82]Kojo K, Yaeno T, Kusumi K, et al. Regulatory mechanisms of ROI generation are affected by rice spl mutations[J]Plant and Cell Physiology, 2006, 47(8):1035-1044.

      [83]Liu J, Park CH, He F, et al. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice[J]. PLoS Pathogens, 2015, 11(2):e1004629.

      [84]Giraldo MC, Dagdas YF, Gupta YK, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae[J]. Nat Commun, 2013, 4 :1996.

      [85]Valent B, Khang CH. Recent advances in rice blast effector research[J]. Curr Opin Plant Biol, 2010, 13:434-441.

      [86]Mosquera G, Giraldo MC, Khang CH, et al. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease[J].Plant Cell, 2009, 21:1273-1290.

      [87]Sweigard JA, Carroll AM, Kang S, et al. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus[J]. Plant Cell, 1995, 7(8):1221-1233.

      [88]Khang CH, Berruyer R, Giraldo MC, et al. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement[J]. Plant Cell, 2010, 22(4):1388-1403.

      [89]Read ND. Exocytosis and growth do not occur only at hyphal tips[J]. Mol Microbiol, 2011, 81(1):4-7.

      [90]Park CH, Chen S, Shirsekar G, et al. 2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice[J]. Plant Cell, 2012, 24(11):4748-4762.

      [91] Fujisaki K, Abe Y, Ito A, et al. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity[J]. The Plant Journal, 2015, 83(5):875-887.

      [92]Mentlak TA, Kombrink A, Shinya T, et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease[J]. Plant Cell, 2012, 24(1):322-335.

      [93]Dangl JL, Jones JD. Plant pathogens and integrated defense responses to infection[J]. Nature, 2001, 411:826-833.

      [94]Jones JD, Dangl JL. The plant immune system[J]. Nature, 2006,444:323-329.

      [95]Macros M. Pathogen derived elicitors:searching for receptors in plants[J]. Mol Plant Pathol, 2003, 4(1):73-79.

      [96]Leung H, Raghavan C, Zhou B, et al. Allele mining and enhanced genetic recombination for rice breeding[J]. Rice(N Y), 2015,8:34.

      [97]Azizi P, Rafii MY, Abdullah SN, et al. Toward understanding of rice innate immunity against Magnaporthe oryzae[J]. Critical Reviews in Biotechnology, 2016, 36(1):165-174.

      [98]Chauhan RS, Farman ML, Zhang HB, et al. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea[J]. Molecular Genetics and Genomics, 2002, 267(5):603-612.

      [99]Yang Q, Lin F, Wang L, et al. Identification and mapping of Pi41,a major gene conferring resistance to rice blast in the Oryza sativa subsp. indica reference cultivar, 93-11[J]. Theoretical and Applied Genetics, 2009, 118(6):1027-1034.

      [100] He X, Liu X, Wang L, et al. Identification of the novel recessive gene Pi55(t)conferring resistance to Magnaporthe oryzae[J]. Science China Life Sciences, 2012, 55(2):141-149.

      [101] Zhu X, Chen S, Yang J, et al. The identification of, a new member Pi50(t)of the rice blast resistance Pi2/Pi9 multigene family[J]. Theor Appl Genet, 2012, 24(7):1295-1304.

      [102] B?hnert HU, Fudal I, Dioh W, et al. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice[J]. Plant Cell, 2004, 16(9):2499-2513.

      [103] Ashikawa I, Wu J, Matsumoto T, et al. Haplotype diversity and molecular evolution of the rice Pikm locus for blast resistance[J]. Journal of General Plant Pathology, 2010, 76:37-42.

      [104] Wu J, Kou Y, Bao J, et al. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice[J]. New Phytologist, 2015,206:1463-1475.

      [105] Zhang S, Wang L, Wu W, et al. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib[J]. Sci Rep, 2015, 5:11642.

      [106] Cesari S, Thilliez G, Ribot C, et al. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding[J]. Plant Cell,2013, 25:1463-1481.

      [107] Kanzaki H, Yoshida K, Saitoh H, et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions[J]. Plant J, 2012, 72 :894-907.

      [108] Jia Y, McAdams SA, Bryan GT, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. The EMBO Journal, 2000, 19:4004-4014.

      [109] Li J, Lu L, Jia Y, et al. Effectiveness and durability of the rice Pi-ta gene in Yunnan province of China[J]. Phytopathology,2014, 9:PHYTO11130016.

      [110] Singh R, Dangol S, Chen Y, et al. Magnaporthe oryzae effector AVR-Pii helps to establish compatibility by inhibition of the rice NADP-malic enzyme resulting indisruption of oxidative burst and host innate immunity[J]. Mol Cells, 2016, 39(5):426-438.

      [111] Park CH, Shirsekar G, Bellizzi M, et al. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice[J]. PLoS Pathogens, 2016, 12(3):e1005529.

      [112] Wang R, Ning Y, Shi X, et al. Immunity to rice blast disease by suppression of effector-triggered necrosis[J]. Curr Biol, 2016,26(18):2399-2411.

      [113] Tang M, Ning Y, Shu X, et al. The Nup98 homolog APIP12 targeted by the effector AvrPiz-t is involved in rice basal resistance against Magnaporthe oryzae[J]. Rice(N Y),2017, 10(1):5.

      [114] Edwards GE, Andreo CS. NADP-malic enzyme from plants[J].Phytochemistry, 1992, 31(6):1845-1857.

      [115] Parker D, Beckmann M, Zubair H, et al. Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea[J].The Plant Journal, 2009, 59(5):723-737.

      [116] Bolton MD, van Esse HP, Vossen JH, et al. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species[J]. Mol Microbiol, 2008, 69(1):119-136.

      [117] de Jonge R, van Esse HP, Kombrink A, et al. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants[J]. Science, 2010, 329(5994):953-955.

      [118] Takahara H, Hacquard S, Kombrink A, et al. Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity[J]. New Phytologist, 2016, 211(4):1323-1337.

      [119] Zhou Z, Pang Z, Li G, et al. Endoplasmic reticulum membranebound MoSec62 is involved in the suppression of rice immunity and is essential for the pathogenicity of Magnaporthe oryzae[J]. Mol Plant Pathol, 2016, 17(8):1211-1222.

      [120] Chen XL, Shi T, Yang J, et al. N-glycosylation of effector proteins by an α-1, 3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity[J]. Plant Cell, 2014, 26(3):1360-1376.

      [121] Saitoh H, Fujisawa S, Mitsuoka C, et al. Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens[J]. PLoS Pathogens, 2012, 8(5):e1002711.

      [122] Fujikawa T, Sakaguchi A, Nishizawa Y, et al. Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants[J]. PLoS Pathogens, 2012, 8(8):e1002882.

      [123] Chi MH, Park SY, Kim S, et al. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host[J]. PLoS Pathogens, 2009, 5(4):e1000401.

      [124] Huang K, Czymmek KJ, Caplan JL, et al. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus[J]. PLoS Pathogens, 2011, 7(4):e1001335.

      [125] Bellin D, Asai S, Delledonne M, et al. Nitric oxide as a mediator for defense responses[J]. Molecular Plant-Microbe Interactions, 2013, 26(3):271-277.

      [126] Marroquin-Guzman M, Hartline D, Wright JD, et al. The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease[J]. Nature Microbiology,2017, 2:17054.

      猜你喜歡
      幾丁質(zhì)抗病稻瘟病
      我國小麥基因組編輯抗病育種取得突破
      基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候選基因
      產(chǎn)幾丁質(zhì)酶的無色桿菌ZWW8的發(fā)酵產(chǎn)酶及酶學(xué)性質(zhì)研究
      微生物幾丁質(zhì)酶的研究進(jìn)展及應(yīng)用現(xiàn)狀
      中國釀造(2017年8期)2017-09-03 06:20:01
      bZIP轉(zhuǎn)錄因子在植物激素介導(dǎo)的抗病抗逆途徑中的作用
      不同藥劑防治苗稻瘟病、葉稻瘟病效果試驗(yàn)研究
      葡萄新品種 優(yōu)質(zhì)又抗病
      生物綠肥在稻瘟病防治中的應(yīng)用與示范
      幾種藥劑防治水稻稻瘟病穗瘟效果試驗(yàn)
      番茄果實(shí)感染灰霉病過程中H2O2的抗病作用
      大足县| 海口市| 翁牛特旗| 社会| 陆良县| 贡山| 库伦旗| 济阳县| 巫溪县| 永靖县| 洪雅县| 和田市| 遂平县| 云南省| 大厂| 冕宁县| 花莲市| 靖宇县| 靖远县| 抚州市| 全南县| 南丹县| 华池县| 武乡县| 额济纳旗| 沈阳市| 板桥市| 德钦县| 碌曲县| 库车县| 绥棱县| 富平县| 乌拉特中旗| 中超| 景宁| 贵港市| 资源县| 丹巴县| 河西区| 罗平县| 峨眉山市|