張燕 夏更壽 賴志兵
(1. 麗水學(xué)院生態(tài)學(xué)院,麗水 323000;2. 華中農(nóng)業(yè)大學(xué)作物遺傳改良國(guó)家重點(diǎn)實(shí)驗(yàn)室,武漢 430070)
灰霉病菌(B. cinerea)是典型的死體營(yíng)養(yǎng)型真菌,殺死植物細(xì)胞后獲取養(yǎng)分,引起植物組織腐爛,又因發(fā)病植物組織表面后期形成灰色霉層,而被稱為灰霉病菌[1]。B. cinerea能在500多種植物中致病,其中作物超過(guò)200種,包括番茄、草莓、葡萄等眾多重要經(jīng)濟(jì)作物[2]。該菌喜溫濕,不僅危害植株上的莖、葉和果實(shí),同樣危害采后貯藏的果實(shí),嚴(yán)重影響產(chǎn)量和品質(zhì),全球每年因灰霉病造成的經(jīng)濟(jì)損失達(dá)100-1 000億美元,被列為十大植物真菌病害之一[3]?;颐共〉挠行Х乐沃饕蕾囉诨瘜W(xué)藥劑,但存在農(nóng)藥毒性、殘留、環(huán)境污染等問(wèn)題。此外,化學(xué)藥劑的長(zhǎng)期使用,導(dǎo)致田間抗藥性灰霉病菌的出現(xiàn)[4],而且,德國(guó)田間鑒定到一種新的引起草莓灰霉病的種——B. fragariae,對(duì)殺菌劑也表現(xiàn)出高頻抗藥性[5]。因此,一直以來(lái),關(guān)于植物自身對(duì)灰霉抗病性的研究相當(dāng)重視,以期找到替代化學(xué)藥劑的其它物質(zhì),或者利用植物自身基因提高對(duì)灰霉病的抗性。隨著研究的深入,對(duì)灰霉病菌隱秘不易察覺(jué)的毒性策略和植物復(fù)雜的細(xì)胞及分子抗病反應(yīng)機(jī)制都有一定程度的認(rèn)識(shí)。
植物對(duì)抗B. cinerea等寄主范圍廣的死體營(yíng)養(yǎng)型 真 菌(Broad host-range necrotrophs,BHNs), 通常采用多層面的抗病反應(yīng),應(yīng)對(duì)病原菌紛繁復(fù)雜的毒性策略,且在遺傳學(xué)組成上呈現(xiàn)出多基因控制的數(shù)量性狀的特征。迄今為止的研究表明P/DAMP(Pathogen/damage-associated molecular patterns,P/DAMP)激發(fā)的免疫反應(yīng)PTI(P/DAMP triggered immunity,PTI)是植物抗灰霉病菌機(jī)制的主要組成部分[6-7]。近幾年,在植物對(duì)B. cinerea的抗性反應(yīng)的研究不僅加深對(duì)PTI的認(rèn)識(shí),還找到一系列可供開(kāi)發(fā)利用的防治灰霉病菌的因素和方法,包括植物生長(zhǎng)環(huán)境條件、微生物自身或來(lái)自微生物的分子、頗有時(shí)代烙印的代謝物如青蒿素及白藜蘆醇、寄主誘導(dǎo)的基因沉默防治方法等。本文從識(shí)別PTI信號(hào)、信號(hào)傳導(dǎo)、轉(zhuǎn)錄相關(guān)因子和表觀遺傳事件、抗灰霉細(xì)胞學(xué)事件及次生代謝產(chǎn)物等方面的研究進(jìn)展作一綜述,特別指出可在防治實(shí)踐中利用的潛在因素和方法,以期解決單一使用化學(xué)農(nóng)藥導(dǎo)致的抗藥性、環(huán)境污染等問(wèn)題。
PTI是植物抗灰霉的主要機(jī)制,在識(shí)別信號(hào)分子PAMP/DAMP后激發(fā)的數(shù)量抗性反應(yīng),是包括 激 活 MAPKs(Mitogen-activated protein kinases,MAPKs)途徑、camalexin的合成及乙烯信號(hào)途徑等系列反應(yīng)的疊加。信號(hào)分子PAMP指的是來(lái)自病原微生物且進(jìn)化緩慢的特征性模式分子,而DAMP則是指由病原微生物降解寄主細(xì)胞成分的產(chǎn)物。真菌和植物細(xì)胞壁的降解產(chǎn)物,分別成為能激發(fā)PTI的PAMP和DAMP分子。
1.1.1 真菌細(xì)胞壁成分幾丁質(zhì) 幾丁質(zhì)是灰霉病菌等真菌細(xì)胞壁的成分,由多個(gè)N-乙酰-D-葡萄糖胺組成。植物幾丁質(zhì)酶作用于真菌細(xì)胞壁,生成不同長(zhǎng)度的幾丁質(zhì)分子,6個(gè)及以上的N-乙酰-D-葡萄糖胺組成的幾丁質(zhì)分子都能激發(fā)有效的PTI[8]。近期的研究發(fā)現(xiàn),過(guò)表達(dá)水稻幾丁質(zhì)酶基因RCH10能提高百合對(duì)灰霉的抗性,而不影響百合植株的開(kāi)花和發(fā)育[9]。芥菜幾丁質(zhì)酶BjCHI1也能提高植物抗灰霉的能力,BjCHI1基因的表達(dá)受轉(zhuǎn)錄因子BjMYB1的調(diào)控,且找到芥菜的類(lèi)受體激酶的部分編碼序列,含LysM基序,意味著芥菜中很可能存在幾丁質(zhì)受體蛋白[10-11]。此外,表達(dá)桑葚的幾丁質(zhì)結(jié)合蛋白MLX56的擬南芥顯示出更高的灰霉抗性[12]。灰霉病菌在入侵植物細(xì)胞時(shí),被植物幾丁質(zhì)酶降解自身細(xì)胞壁,同時(shí)也分泌CWDEs(Cell walldegrading enzymes,CWDEs),降解植物細(xì)胞壁,生成DAMPs。
1.1.2 植物細(xì)胞壁、表皮組分降解產(chǎn)物 果膠酶(Pectinase)是主要的CWDEs,B. cinerea基因組有一個(gè)內(nèi)源多聚半乳糖醛酸酶(PG)的基因家族,該家族的6個(gè)成員基因編碼基礎(chǔ)的或酸性的PG異構(gòu)酶[13],作用于植物細(xì)胞壁的果膠,生成DAMP分子寡聚半乳糖醛酸(OGs),誘導(dǎo)擬南芥的免疫反應(yīng),提高對(duì)灰霉病菌的抗性,OGs激發(fā)產(chǎn)生瞬時(shí)和長(zhǎng)期的一氧化氮(NO),NO調(diào)節(jié)OGs激發(fā)的活性氧的爆發(fā)和防衛(wèi)基因的表達(dá),并且參與對(duì)灰霉的基本防衛(wèi)反應(yīng)[14-15]。細(xì)胞壁成分的修飾則降低果膠甲基酯化和阿魏酸化,果膠甲基化通過(guò)影響多聚半乳糖醛酸的水解及水解后OGs的長(zhǎng)度,提高擬南芥對(duì)灰霉的敏感性[16-17]。
除了細(xì)胞壁,植物表皮也是DAMP的來(lái)源?;颐共【诔鼋琴|(zhì)酶,作用于植物表皮,生成另一種DAMP分子表皮素單體,誘導(dǎo)典型的PTI反應(yīng),包括堿性化、合成乙烯、ROS爆發(fā)和防衛(wèi)基因的上調(diào)表達(dá)[13,18-19]。與灰霉病菌角質(zhì)酶活性產(chǎn)物相類(lèi)似,植物表皮發(fā)育、脂質(zhì)的組成及表皮素多聚體等發(fā)生異常狀況,會(huì)被植物自身更快識(shí)別,而且防衛(wèi)信號(hào)更易擴(kuò)散或活性氧更快爆發(fā)而提高對(duì)灰霉病菌的抗性[20-22]。編碼 AP2/ERF 轉(zhuǎn)錄因子的 DEWAX(Decrease Wax Biosynthesis)基因,偏好在植物表皮表達(dá)且受黑暗誘導(dǎo),負(fù)向調(diào)控表皮蠟質(zhì)的合成;DEWAX基因過(guò)表達(dá)提高擬南芥表皮透性和ROS積累,且與PDF1.2基因的啟動(dòng)子區(qū)直接結(jié)合而促進(jìn)其表達(dá),增強(qiáng)擬南芥和亞麻對(duì)灰霉病菌的抗性[23-24]。
1.1.3 植物細(xì)胞內(nèi)蛋白類(lèi)DAMPs 植物受灰霉病菌侵染后,植物體內(nèi)一些蛋白前體經(jīng)過(guò)剪切產(chǎn)生能激活抗病反應(yīng)的小肽,這些小肽被稱之為蛋白類(lèi)DAMPs,如番茄產(chǎn)生的系統(tǒng)素(Systemin)和擬南芥產(chǎn)生的 PEPs(Peptides)。
系統(tǒng)素僅存在于茄科植物中,其前體蛋白prosystemin(PS)含有200個(gè)氨基酸,當(dāng)有病原菌入侵或者外界環(huán)境刺激條件下,PS蛋白被蛋白酶剪切形成18個(gè)氨基酸的系統(tǒng)素被分泌到細(xì)胞外,植物細(xì)胞受體蛋白識(shí)別PS蛋白并激活茉莉酸(JA)響應(yīng)基因和其他抗病基因的表達(dá),增強(qiáng)植物對(duì)灰霉病菌的抗病性[25]。雖然PS蛋白不能被系統(tǒng)運(yùn)輸,但該蛋白的mRNA是一個(gè)可移動(dòng)的信號(hào)分子,能在植物體內(nèi)長(zhǎng)距離運(yùn)輸,因此,遠(yuǎn)離入侵點(diǎn)的葉片對(duì)灰霉病菌的抗病性也增強(qiáng)[25]。至于PS蛋白剪切形成系統(tǒng)素、系統(tǒng)素被分泌到胞外及系統(tǒng)素的受體蛋白均有待于進(jìn)一步分析鑒定。
PEP1蛋白的前體ProPEP1含有92個(gè)氨基酸,受病原菌、MeJA和損傷等的誘導(dǎo)后表達(dá)。ProPEP1被剪切而形成23個(gè)氨基酸的PEP1蛋白,細(xì)胞膜上的受體蛋白激酶PEPR1和PEPR2識(shí)別泌出胞外的PEP1并被激活而磷酸化BIK1,從而激活下游乙烯(ET)信號(hào)途徑,增強(qiáng)植物對(duì)灰霉病菌和其他病菌的抗病性[26]。擬南芥中存在5個(gè)PEP1的同源蛋白PEP2-PEP6,PEP2被PEPR1和 PEPR2識(shí)別,PEP3-6被PEPR1識(shí)別,提高植物的灰霉抗性[27-29]。
不論是PAMP還是DAMP分子,都是特征性的模式分子(Pattern),長(zhǎng)期進(jìn)化過(guò)程中,植物擁有了一系列的模式識(shí)別受體(Pattern recognition receptors,PRRs),特異性地識(shí)別模式分子,拉響危險(xiǎn)警報(bào),導(dǎo)致免疫反應(yīng)的發(fā)生?;颐共【秩具^(guò)程中形成的PAMP/DAMP分子幾丁質(zhì)、OGs、表皮單體及PEP1,分別被CERK1(Chitin elicitor receptor kinase 1,CERK1)、WAK1(Wall- associated kinase 1,WAK1)、EIX1(ET-inducing xylanase 1,EIX1)和 PEPR1/PEPR2(PEP1 receptor 1/2,PEPR1/2)識(shí)別[6,30],這些PRRs都是定位在細(xì)胞膜的類(lèi)受體激酶RLKs(Receptor-like kinases)。值得一提的是,BAK1(Brassinosteroid insensitive 1-associated kinase 1,BAK1)也是一種RLK,在不同的PRR特異性識(shí)別相應(yīng)的Pattern過(guò)程中,起共同受體的作用,缺失BAK1導(dǎo)致對(duì)灰霉病菌的敏感性增強(qiáng)[31-32]。擬南芥PEP1和PEP2被PEPR1識(shí)別過(guò)程中,PEP1和PEP2誘導(dǎo)BAK1磷酸化,而PEPR1磷酸化激酶BIK1(Botrytis induced kinase 1,BIK1), 由 此 傳 導(dǎo) PTI信號(hào)[26,33]。
擬南芥接種灰霉病菌早期BIK1被誘導(dǎo),編碼一個(gè)類(lèi)受體胞內(nèi)激酶(Receptor-like cytoplasmic kinase,RLCK),在抗灰霉病菌反應(yīng)中是必需的[34]。BIK1的磷酸化受到來(lái)自病原菌的乙烯分子的調(diào)控,且乙烯信號(hào)途徑重要的調(diào)節(jié)因子EIN3也直接調(diào)控BIK1,而B(niǎo)IK1是表達(dá)乙烯反應(yīng)基因所必需的[34-35]。此外,BIK1壓制水楊酸(SA)和油菜素內(nèi)酯(BR)信號(hào)途徑,但是BIK1如何調(diào)控SA信號(hào)途徑以及如何在ET信號(hào)途徑中起作用仍不清楚。BIK1和BAK1一樣,與多個(gè)PRRs互作,調(diào)節(jié)植物對(duì)灰霉病菌的抗性,因此,BIK1獨(dú)立于MAPKs途徑,把多個(gè)PRRs和下游的免疫反應(yīng)聯(lián)系起來(lái)[26,36-37]。
MAPKs途徑通過(guò)MPKKK-MPKK-MPK鏈?zhǔn)椒磻?yīng)放大植物接收到的PTI及其它灰霉病菌的識(shí)別信號(hào),并將信號(hào)傳遞給轉(zhuǎn)錄因子,誘導(dǎo)抗病相關(guān)基因表達(dá)[38]。其中,MPK3和MPK6是MAPKs途徑中調(diào)控?cái)M南芥對(duì)灰霉病菌抗性的主要成分,MPK3或MPK6基因突變顯著抑制OGs誘導(dǎo)的抗病性,但突變體mpk3抗灰霉能力減弱,而mpk6接種灰霉后表型與野生型相差不大,故對(duì)灰霉菌的基礎(chǔ)抗性主要由MPK3介導(dǎo),而對(duì)DAMPs誘導(dǎo)產(chǎn)生的PTI途徑則需要MPK3和MPK6共同參與[38-39]。編碼核孔復(fù)合體的Nup88/MOS7基因突變減少M(fèi)PK3在核內(nèi)的積累,顯著降低植物對(duì)灰霉病菌的抗病性[39]。ERF6和WRKY33是抗灰霉病菌PTI反應(yīng)的重要轉(zhuǎn)錄因子,MPK3/MPK6直接磷酸化ERF6和WRKY33,增強(qiáng)兩個(gè)轉(zhuǎn)錄因子的穩(wěn)定性,傳遞PTI信號(hào)的同時(shí),使得下游抗病基因表達(dá)更持久[40]。
不同PAMP/DAMP信號(hào)及其它灰霉病菌的識(shí)別信號(hào),傳遞給轉(zhuǎn)錄因子后,植物通過(guò)轉(zhuǎn)錄再編程調(diào)控抗病相關(guān)基因表達(dá),發(fā)生下游的免疫反應(yīng)。轉(zhuǎn)錄再編程主要通過(guò)轉(zhuǎn)錄因子、轉(zhuǎn)錄媒介體和表觀修飾3個(gè)方面進(jìn)行調(diào)控。
在植物抗灰霉病菌的過(guò)程中WRKY類(lèi)轉(zhuǎn)錄因子發(fā)揮重要的調(diào)控作用。WRKY57直接靶向JAZ1和JAZ5的啟動(dòng)子促進(jìn)轉(zhuǎn)錄,WRKY70和WRKY54負(fù)向調(diào)控細(xì)胞壁相關(guān)的防衛(wèi)反應(yīng),從而抑制JA信號(hào)途徑,增強(qiáng)擬南芥對(duì)灰霉的感病性[41]。與上述3個(gè)WRKY因子的作用相反,擬南芥的WRKY3、WRKY4和WRKY33正向調(diào)控灰霉抗性[42-43]。
WRKY33在植物抗灰霉病PTI反應(yīng)中起關(guān)鍵作用,擬南芥wrky33突變體對(duì)灰霉病菌表現(xiàn)極感表型,過(guò)量表達(dá)WRKY33明顯提高植物的抗病性;WRKY33的在PTI反應(yīng)中的作用主要是促進(jìn)ET合成(靶標(biāo)基因ACS2和ACS6)和調(diào)控ET信號(hào)途徑(起作用的蛋白GDSL lipase1,GLIP1)、調(diào)控JA信號(hào)途徑(靶標(biāo)基因ORA59、JAZ1、JAZ5)、以及抑制SA、脫落酸(ABA)的合成和SA信號(hào)途徑;接種灰霉病菌后,WRKY33結(jié)合到NCED3和NCED5基因(ABA合成的關(guān)鍵基因)的啟動(dòng)子區(qū)域抑制它們的轉(zhuǎn)錄,wrky33突變體中SA合成酶基因ICS1表達(dá)量和SA水平顯著高于野生型植株,SA信號(hào)途徑的相關(guān)基因NPR1、EDS1、PAD4、PR1和PR2的表達(dá)量也明顯高于野生型植株[42,44-45]。此外,WRKY33促進(jìn)植保素camalexin的合成,camalexin合成關(guān)鍵因子PAD3是WRKY33的直接靶基因,受WRKY33蛋白正向調(diào)控[42]。擬南芥HOOKLESS(組蛋白乙酰化酶,HLS1)乙?;疻RKY33組蛋白H3,并且招募MED18,加強(qiáng)WRKY33的表達(dá),提高灰霉抗性[46]。不僅僅擬南芥的WRKY33,番茄和煙草中的WRKY33同樣在抗灰霉病菌PTI中起關(guān)鍵性的作用。番 茄 中 的 SlDRW1(Solanum lycopersicum defenserelated WRKY1,SlDRW1) 與 擬 南 芥 WRKY33序列同源性達(dá)到50.5%,VIGS沉默SlDRW1基因明顯減弱植物對(duì)灰霉的抗性[47]。此外,煙草的MAPKWRKY途徑也增強(qiáng)對(duì)灰霉病菌的抗性[48]。植物抗灰霉病菌PTI反應(yīng)是MAPKs途徑激活、camalexin的合成和乙烯的交疊,AP2/ERF類(lèi)和MYB轉(zhuǎn)錄因子也是與乙烯或camalexin合成等密切相關(guān)的抗灰霉PTI重要的轉(zhuǎn)錄因子。
AP2/ERF類(lèi)轉(zhuǎn)錄因子受乙烯調(diào)控,含有57-66個(gè)氨基酸組成的DNA結(jié)合域,結(jié)合啟動(dòng)子的順式作用元件GCC-box(AGCCGCC),調(diào)控基因表達(dá)。擬南芥5個(gè)ERF基因 ERF1、RAP1.2、ORA59、ERF5和ERF6都受灰霉菌的誘導(dǎo)表達(dá),同時(shí)也受ET和JA誘導(dǎo)表達(dá),通過(guò)ET/JA信號(hào)途徑增強(qiáng)植物對(duì)灰霉的抗性[40,49-50]。擬南芥 AtERF014負(fù)向調(diào)節(jié)灰霉抗性[51];番茄的 SlERF.A1、SlERF.B4、SlERF.C3和SlERF.A3、青蒿的AaERF1和AaORA均正向調(diào)控植物對(duì)灰霉病菌的抗性[52-53]。
MYB類(lèi)轉(zhuǎn)錄因子也通過(guò)調(diào)節(jié)DAMP信號(hào)或乙烯相關(guān)轉(zhuǎn)錄因子等途徑參與調(diào)控植物對(duì)灰霉病菌的PTI免疫反應(yīng)。Atmyb46突變體植株導(dǎo)致植物次生細(xì)胞壁缺陷,芥菜轉(zhuǎn)錄因子BjMYB1激活幾丁質(zhì)酶BjCHI1的表達(dá),無(wú)疑MYB轉(zhuǎn)錄因子AtMYB46和BjMYB1都參與調(diào)控DAMP-PTI;而MTF1(又名:MYBC)突變,則乙烯調(diào)控的轉(zhuǎn)錄因子基因ORA59表達(dá)量顯著高于野生型,且突變植株高抗灰霉病菌[54-55]。MYB51則通過(guò)轉(zhuǎn)錄激活吲哚葡糖異硫氰酸鹽的合成而影響抗灰霉病菌PTI組成camalexin的合成[56]。
除WRKY、ERF和MYB三大類(lèi)重要的轉(zhuǎn)錄因子外,還有其他轉(zhuǎn)錄因子在植物與灰霉互作中起作用。如擬南芥的GBF1(G-BOX BINDING FACTOR1)負(fù)向調(diào)節(jié)病原菌誘導(dǎo)的CATALASE 2(CAT2)基因表達(dá),正向調(diào)控PHYTOALEXIN DEFICIENT 4(PAD4)的表達(dá),從而增加擬南芥對(duì)灰霉的感病性[57]。
媒介體是真核生物進(jìn)化上保守的多個(gè)蛋白亞基組成的復(fù)合體,也是基因轉(zhuǎn)錄調(diào)控復(fù)合體的重要組成部分[58]。媒介體亞基通過(guò)與轉(zhuǎn)錄因子互作、改變RNA聚合酶II與DNA的結(jié)合能力或調(diào)節(jié)表觀修飾而調(diào)控抗灰霉病菌的免疫反應(yīng)。受MED25調(diào)控的轉(zhuǎn)錄因子包括ABI5、ERF1、ERF15、RAP2.2、ERF98、ORA59、EIN3/EIL1和 MYC2,因此,MED25作為抗灰霉病菌相關(guān)的ET和JA信號(hào)平衡點(diǎn)起作用[59-63]。不同于 MED25,MED18除了激活抗病基因PTR3的表達(dá)外,還與抗病轉(zhuǎn)錄因子YY1互作直接抑制感病基因TRX-h5、GRXS13和GRX480的轉(zhuǎn)錄從而增強(qiáng)植物抗病性;另一方面,MED18增強(qiáng)RNA聚合酶II與靶基因的啟動(dòng)子、編碼區(qū)和終止子區(qū)的結(jié)合,介導(dǎo)組蛋白H3K36me3修飾水平,達(dá)到增強(qiáng)抗病基因表達(dá)的目的[64]。CDK8是媒介體磷酸激酶區(qū)的蛋白亞基,與MED25互作正向調(diào)控依賴于ERF1的ET信號(hào)途徑或者依賴于ORA59的JA信號(hào)途徑,CDK8增強(qiáng)AACT(Agmatine coumaroyltransferase,AACT)基因的表達(dá),促進(jìn)抗性次生代謝產(chǎn)物HCAA(Hydroxycinnamic acid amides,HCAA)合成積累,在擬南芥抗灰霉病菌過(guò)程中起作用[65]。此外,MED33也正向調(diào)控?cái)M南芥對(duì)灰霉病菌的抗性[66]。
轉(zhuǎn)錄過(guò)程中的延伸復(fù)合體(Elongator)是與RNA聚合酶II互作的復(fù)合物,也參與擬南芥抗灰霉病菌的過(guò)程。延伸復(fù)合物亞基 2(Elongator Protein 2,ELP2)是誘導(dǎo)表達(dá)WRKY33、ORA59及PDF1.2所必需的,正向調(diào)控?cái)M南芥對(duì)灰霉的抗性;DRL1(Deformed root and leaves 1,DRL1)與延伸復(fù)合物互作,同樣是誘導(dǎo)表達(dá)ORA59和PDF1.2基因所必需的,增強(qiáng)擬南芥對(duì)灰霉病菌的抗性[67-68]。
表觀修飾包括DNA甲基化、組蛋白乙?;?、組蛋白賴氨酸甲基化和組蛋白泛素化等。甲基轉(zhuǎn)移酶SDG(SET domain group,SDG)甲基化組蛋白H3K4和H3K36,已經(jīng)闡明SDG8提高M(jìn)KK5的組蛋白H3K36me3修飾水平,促進(jìn)JA信號(hào)途徑,且SDG8和SDG25共同調(diào)控抗病基因CER2(ECERIFERUM 2)和CER3(ECERIFERUM 3)的組蛋白H3K4和H3K36的甲基化水平,從而增強(qiáng)植物對(duì)灰霉病菌的抗性[69-70]。甲基化修飾調(diào)節(jié)植物對(duì)灰霉病菌抗性的另一個(gè)途徑是,RNA介導(dǎo)的DNA甲基化途徑(RNA-dependent DNA methylation,RdDM),該途徑由小的干擾RNA(small interfering RNAs,siRNAs)驅(qū)動(dòng),直接介導(dǎo)DNA甲基化修飾,同時(shí)影響目標(biāo)區(qū)段的組蛋白修飾水平,正向調(diào)控植物對(duì)灰霉病菌的抗性。RdDM途徑中關(guān)鍵基因的突變體nrpd1、nrpd2、nrpe1、ago4、drd1和rdr2均感灰霉,且nrpd2突變體中受灰霉病菌誘導(dǎo)的PDF1.2基因表達(dá)水平受抑制,而PR1基因表達(dá)提高,由此推測(cè),RdDM途徑可能正向調(diào)控JA途徑或負(fù)向調(diào)控SA途徑,增強(qiáng)植物對(duì)灰霉病菌的抗性[71]。盡管RdDM途徑對(duì)組蛋白的修飾機(jī)制影響植物對(duì)灰霉病菌抗性尚不明確,已有研究證實(shí)了組蛋白的乙?;头核鼗瘜?duì)植物灰霉抗病性的影響。
HLS1(Hookless1,HLS1)直接介導(dǎo)擬南芥基因組組蛋白乙?;?,HLS1直接靶向抗病基因WRKY33的轉(zhuǎn)錄起始和編碼區(qū),增強(qiáng)組蛋白H3乙?;?;同時(shí)HLS1招募MED18亞基,共同促進(jìn)WRKY33基因轉(zhuǎn)錄;hls1突變體受灰霉病菌誘導(dǎo)后,PDF1.2基因轉(zhuǎn)錄水平遠(yuǎn)遠(yuǎn)高于野生型植株,但hls1突變體高感灰霉病菌[46]。與HLS1類(lèi)似,轉(zhuǎn)錄延伸復(fù)合體也能介導(dǎo)抗病基因WRKY33、ORA59和PDF1.2基因的組蛋白H3K9乙酰化水平促進(jìn)基因表達(dá),提高植物灰霉抗性[67]。組蛋白的泛素化與甲基化和乙?;Ч?lèi)似,同樣影響植物對(duì)灰霉病菌的抗性。介導(dǎo)組蛋白H2B單泛素化酶基因HUB1(Histone monoubiquitination1,HUB1)或HUB2突變,顯著降低擬南芥對(duì)灰霉病菌的抗性[72]。同樣,番茄的組蛋白單泛素化酶SLHUB1和SLHUB2通過(guò)調(diào)節(jié)SA和JA/ET信號(hào)通路的平衡增強(qiáng)番茄對(duì)灰霉病菌的抗性[73]。
植物激素是完整的植物免疫不可或缺的成分,灰霉病菌的侵染提高了植物體內(nèi)SA、ABA、ET、JA的水平,激素的內(nèi)在平衡和信號(hào)途徑的反應(yīng)是正常的植物免疫的關(guān)鍵。SA對(duì)植物灰霉抗性的影響和植物品種有關(guān),SA信號(hào)途徑中的成分PR1在抗灰霉病菌的系統(tǒng)獲得抗性(SAR)和誘導(dǎo)系統(tǒng)抗性(ISR)中起重要作用,是SAR的分子標(biāo)記,SAR對(duì)擬南芥抗灰霉沒(méi)有作用,但能提高番茄和煙草對(duì)灰霉病菌的抗性。SA途徑被灰霉利用而增強(qiáng)致病性,如灰霉泌出胞外的多糖(EP)激活SA途徑,與JA信號(hào)途徑對(duì)抗,增強(qiáng)感病性[74]。ABA對(duì)植物抗灰霉病菌的影響和灰霉病菌侵染的階段、受侵染的組織有關(guān),缺少ABA的sitinen番茄突變體和ABA響應(yīng)因子ABI5的突變體植株均高抗灰霉病菌[75];而番茄ABA誘導(dǎo)的轉(zhuǎn)錄因子AIM1控制對(duì)灰霉病菌的基本防衛(wèi),正向調(diào)節(jié)早期對(duì)灰霉的防衛(wèi)反應(yīng)[76]。由此可見(jiàn),SA和ABA在植物對(duì)灰霉病菌的抗性中作用復(fù)雜。
與SA和ABA不一致,JA和ET則能提高植物抗灰霉能力。ET通過(guò)調(diào)控PAMP受體復(fù)合物成分、不同的轉(zhuǎn)錄因子、防衛(wèi)基因的表達(dá)、MAPKs和BIK1調(diào)節(jié)灰霉病生長(zhǎng)和病癥。最近的研究結(jié)果表明,VIGS沉默番茄乙烯響應(yīng)因子B3亞組成員基因SlERF.A1、SlERF.A3、SlERF.B4和SlERF.C3均顯著降低植物對(duì)灰霉病菌的抗性[77]。JA調(diào)控下游抗病基因表達(dá)的分子機(jī)理也取得最新的進(jìn)展,灰霉病菌入侵誘導(dǎo)植物體內(nèi)JA的大量積累,光敏色素phyB也通過(guò)激活JA途徑增強(qiáng)對(duì)灰霉病菌的抗性。活性態(tài)的JA-Ile與受體蛋白COI1結(jié)合,促進(jìn)JA信號(hào)抑制子JAZ(Jasmonate ZIM-domain)的降解而激活轉(zhuǎn)錄因子基因ORA59、MYC2等的表達(dá)[78]。過(guò)量表達(dá)茉莉酸誘導(dǎo)的氧化酶基因JOXs(Jasmonate-induced oxygenases,JOXs)或者茉莉酸氧化酶基因JAO2(Jasmonic acid oxidase 2,JAO2),導(dǎo)致植物體內(nèi)活性態(tài)的JA-Ile轉(zhuǎn)化為非活性態(tài)的12OH-JA,顯著抑制植物對(duì)灰霉病菌的抗性[79-80]。擬南芥JA信號(hào)途徑中的轉(zhuǎn)錄因子ORA59調(diào)控抗病相關(guān)基因,而MYC2則調(diào)控?fù)p傷響應(yīng)基因,損傷響應(yīng)基因通常促進(jìn)植物對(duì)灰霉病的感病性,因此,擬南芥中JA與ET信號(hào)途徑互作,抑制MYC2促進(jìn)ORA59基因表達(dá),從而增強(qiáng)抗灰霉病基因表達(dá);番茄中MYC2與JA2-like(MYC2-targeted TFs,MTFs)組成轉(zhuǎn)錄復(fù)合體調(diào)控?fù)p傷響應(yīng)基因的表達(dá),與MTF ERF.C3(ethylene response factor.C3,ERF.C3)互作調(diào)控抗灰霉病相關(guān)基因的表達(dá)[81]。
植物抗病過(guò)程中最具代表性的細(xì)胞死亡是過(guò)敏性反應(yīng)(HR),目的在于限制病原菌的生長(zhǎng),但恰恰有利于死體營(yíng)養(yǎng)型真菌灰霉的侵染。細(xì)胞自噬是降解和再循環(huán)胞質(zhì)內(nèi)成分的細(xì)胞過(guò)程,也是植物抗灰霉病菌必不可少的一個(gè)環(huán)節(jié),自噬途徑將失去功能的蛋白消解,維持植物正常的生理生化過(guò)程,增強(qiáng)植物對(duì)灰霉病菌的抗性,自噬途徑的關(guān)鍵基因ATG5、ATG7、ATG18a等突變都導(dǎo)致植物高感灰霉病菌,WRKY33 與 ATG18a互作,增強(qiáng)灰霉抗病性[82]。過(guò)量表達(dá)BAG6(Bcl-2 associated athanogene6,BAG6)基因激活自噬體的形成,能有效增強(qiáng)植物對(duì)灰霉病菌的抗性[83-84]。
ROS在植物免疫中作為信號(hào)分子誘導(dǎo)抗性、加速細(xì)胞死亡或者直接抗菌??够蚋谢颐怪仓杲臃N后均大量積累ROS,因此,ROS在抗灰霉病過(guò)程中作用復(fù)雜。ROS發(fā)生的時(shí)間不同、積累的水平高低都影響著植物對(duì)灰霉的敏感性和灰霉入侵信號(hào)的感知等方面[7]。近期的研究發(fā)現(xiàn),不同細(xì)胞器產(chǎn)生的ROS對(duì)抵抗灰霉病菌的入侵作用差異很大,NADPH氧化酶Rbohs是植物中產(chǎn)生ROS的關(guān)鍵酶,位于番茄細(xì)胞膜上的SlRbohB正向調(diào)控植物對(duì)灰霉病菌的抗性;煙草中過(guò)量表達(dá)SlRbohB基因顯著增強(qiáng)灰霉抗性[85]。擬南芥過(guò)氧化物酶產(chǎn)生的非原生質(zhì)體ROS損害了表皮完整性,導(dǎo)致DAMP激發(fā)的防衛(wèi)反應(yīng)[86]。而在線粒體和葉綠體產(chǎn)生的ROS能促進(jìn)灰霉病斑拓展和植物感病性,突變編碼神經(jīng)酰胺激酶的ACD5(ACCELLARATED CELL DEATH 5)基因?qū)е戮€粒體產(chǎn)生大量的ROS,并增強(qiáng)植物對(duì)灰霉的感病性[87];煙草葉綠體中定點(diǎn)表達(dá)藍(lán)細(xì)菌黃素氧化還原蛋白(cyanobacterial flavodoxin)抑制葉綠體產(chǎn)生的ROS,能顯著限制灰霉病病斑的拓展和病菌生物量的累積[88]。
植物與灰霉病菌互作進(jìn)化過(guò)程中,為對(duì)抗灰霉
病菌名目繁多的侵入方式,除了上述多種防衛(wèi)反應(yīng)之外,還會(huì)泌出毒性次生代謝產(chǎn)物抑制灰霉病菌的生長(zhǎng),另一些細(xì)胞內(nèi)的次生代謝產(chǎn)物則參與不同的抗病途徑,增強(qiáng)或減弱植物對(duì)灰霉的抗性。
5.2.1 抑制灰霉生長(zhǎng)的次生代謝產(chǎn)物 眾所周知,camalexin(3-thiazol-2-yl-indole)在植物抗灰霉病菌中發(fā)揮非常重要的作用,camalexin合成途徑中關(guān)鍵 酶CYP79B2、CYP79B3、CYP71A13、CYP71B15基因突變都顯著減弱植物對(duì)灰霉病菌的抗性。Camalexin合成受灰霉病菌誘導(dǎo)激活,合成途徑中多個(gè)關(guān)鍵酶的基因轉(zhuǎn)錄水平受WRKY33、MPK3和MPK6的調(diào)控[89]。合成產(chǎn)生的camalexin由位于植物表皮細(xì)胞膜上的轉(zhuǎn)運(yùn)蛋白AtABCG34運(yùn)到胞外抑制灰霉病菌的生長(zhǎng)[90]。
葡糖異硫氰酸鹽(Glucosinolates,GSs)是植物體內(nèi)重要的次生代謝產(chǎn)物,包括吲哚葡糖異硫氰酸鹽(Indole glucosinolates,IGSs)和脂肪酸葡糖異硫氰 酸 鹽(Aliphatic glucosinolates,AGSs)[91]。IGSs合成關(guān)鍵酶包括CYP79B2、CYP79B3、CYP83B1、SUR2、UGT74B1、ST5a、CYP81F2、CYP81F3、IGMT1、TGMT2,芥子苷酶水解GSs生成異硫氰酸鹽等生物活性物質(zhì),對(duì)微生物、線蟲(chóng)和昆蟲(chóng)有毒性[92]。近期的研究發(fā)現(xiàn)IGSs類(lèi)化合物能有效拮抗灰霉病菌,油菜中過(guò)量表達(dá)IGSs合成途徑基因BnUGT74B1,有效提高葉片中IGSs含量,增強(qiáng)對(duì)灰霉的抗性[93]。整個(gè)IGS生物合成途徑都受MPK3、MPK6和ERF6的調(diào)控,CYP81F2、IGMT1和IGMT2基因受MPK3/MPK6磷酸化激活的ERF6正向調(diào)控;另一方面,ERF6通過(guò)其他未知轉(zhuǎn)錄因子間接調(diào)控MYB51和MYB122基因表達(dá),而轉(zhuǎn)錄因子MYB51和MYB122再調(diào)節(jié)CYP83B1、CYP79B2和CYP79B3基因的表達(dá);產(chǎn)生的IGSs被PEN2(Penetration2)等芥子苷酶(myrosinases)水解釋放出活性態(tài)的不穩(wěn)定化合物,由轉(zhuǎn)運(yùn)蛋白PEN3(Penetration3)分泌到胞外抑制灰霉病菌的生長(zhǎng)[94]。
5.2.2 其它參與灰霉抗病反應(yīng)的次生代謝產(chǎn)物 與上述直接抑菌的次生代謝產(chǎn)物不同,近期的研究揭示一些次生代謝產(chǎn)物通過(guò)參與不同的抗病反應(yīng)途徑而影響植物抗灰霉。擬南芥脯氨酸脫氫酶ProDH1和ProDH2受SA或JA的正向調(diào)控,提高植物對(duì)灰霉的抗性,維生素B6和蔗糖運(yùn)輸?shù)鞍祝⊿TP13)有助于對(duì)灰霉和其它菌的抗性[95-97];擬南芥的基質(zhì)金屬蛋白酶At2-MMP參與PAMP激發(fā)的免疫提高灰霉抗性,相應(yīng)地,番茄的基質(zhì)金屬蛋白酶Sl3-MMP提高ROS水平和防衛(wèi)基因的表達(dá),增強(qiáng)對(duì)灰霉抗性[98-99];番茄全代謝組分析鑒定到1-甲基色氨酸涉及植物對(duì)灰霉抗病性,海藻糖-6-磷酸合成酶在對(duì)灰霉抗性中起重要作用[100-101];煙草葉片表達(dá)甜菜紅堿顯著提高對(duì)灰霉的抗性[102];葡萄的奇異果甜蛋白TLP29可能涉及SA或JA/ET途徑負(fù)向調(diào)控?cái)M南芥對(duì)灰霉抗性[103];此外,擬南芥中表達(dá)葡萄白藜蘆醇關(guān)鍵合成酶VaSTS19提高對(duì)灰霉抗性,但表達(dá)VaSTS21提高擬南芥對(duì)灰霉感病性[104-105]。由此可見(jiàn),植物在感受到灰霉病菌侵染時(shí),會(huì)通過(guò)代謝過(guò)程協(xié)調(diào)生長(zhǎng)與抗病免疫之間的關(guān)系,并且多種次生代謝產(chǎn)物參與抗灰霉病菌的過(guò)程。
鑒于目前對(duì)灰霉病的防治仍主要依賴于化學(xué)藥劑的使用,又因環(huán)境、抗藥性等問(wèn)題,促使人們尋找更多的提高植物抗灰霉病反應(yīng)的因素,除上述PAMP/DAMP信號(hào)外,外界生長(zhǎng)條件、其它微生物及其產(chǎn)物、外界物理刺激、大分子化合物等,誘導(dǎo)系統(tǒng)抗性(ISR)、系統(tǒng)獲得抗性(SAR)等不同的抗灰霉病菌的反應(yīng),可以為開(kāi)發(fā)生物農(nóng)藥或其它防治方法奠定理論基礎(chǔ)。
光是植物免疫重要的調(diào)節(jié)因子,當(dāng)細(xì)胞色素B(phyB)因紅光/遠(yuǎn)紅光(R∶FR)的比值低而失活時(shí),擬南芥對(duì)灰霉病菌的抗性下降,這是由于phyB失活,植株對(duì)JA敏感性降低,從而抑制了對(duì)灰霉病菌的抗性,且該抑制作用是與SA無(wú)關(guān),依賴于Coronatine Insensitive1(COI1)和JAZ10(壓制JA信號(hào)的家族);R∶FR低比值減少了擬南芥吲哚芥子油苷和植保素camalexin的合成[106-107]。而mono-heme細(xì)胞色素b,位于擬南芥細(xì)胞質(zhì)膜上,敲除該蛋白的基因AIR12,提高對(duì)灰霉的抗性[108]。有趣的是,天竺葵Geranium robertianum比G. pyrenaicum更感灰霉,R∶FR低比值抑制G. pyrenaicum對(duì)灰霉的抗性,相反,增強(qiáng)G. robertianum對(duì)灰霉抗性[109]。由此可見(jiàn),光(R∶FR低比值)對(duì)植物抗灰霉病菌的影響與植物自身的遺傳背景密切相關(guān),很可能在協(xié)調(diào)植物生長(zhǎng)與植物抗病二者之間的關(guān)系中起作用。
工業(yè)發(fā)展造成對(duì)流層CO2濃度的提高,生長(zhǎng)在高CO2濃度環(huán)境中的擬南芥則更抗灰霉,與擬南芥體內(nèi)抗灰霉相關(guān)基因PAD3轉(zhuǎn)錄水平的提高有關(guān);JA的合成和JA信號(hào)通路中的LOX3、OPR3、JAZ10、PDF1.2轉(zhuǎn)錄水平都明顯高于非高CO2環(huán)境中的擬南芥植株;此外,高CO2激活SA途徑,體內(nèi)SA水平及PR1、PR2、PR5、ICS1轉(zhuǎn)錄水平均高于非高二氧化碳環(huán)境中的植株,因此,高CO2不僅提高擬南芥抗灰霉,也提高對(duì)細(xì)菌的抗病性[110]。
除了光和二氧化碳兩種因素以外,輕柔的觸碰誘導(dǎo)ROS的發(fā)生、胼胝質(zhì)的沉積、觸碰誘導(dǎo)基因(TCH)的表達(dá)和防衛(wèi)相關(guān)基因FaPR1、FaCHI2-2、FaCAT、FaACS1和FaOGBG-5的表達(dá),提高草莓對(duì)灰霉的抗性[111]。辣椒上的傷口誘導(dǎo)局部灰霉抗性,但卻誘導(dǎo)系統(tǒng)感病性[112]。傷口激發(fā)ATP的釋放,胞外ATP施用能誘導(dǎo)JA表達(dá)和乙烯的生物合成,并且誘導(dǎo)JA信號(hào)通路中防衛(wèi)基因的表達(dá),提高擬南芥對(duì)灰霉的抗性[113]。此外,曾有混合肥料提高擬南芥抗灰霉的研究,結(jié)果表明橄欖渣和橄欖樹(shù)葉的堆肥與珍珠巖不同,能誘導(dǎo)擬南芥對(duì)灰霉抗病性。GO分析顯示,生長(zhǎng)在堆肥中的擬南芥相對(duì)于生長(zhǎng)在珍珠巖的植株,接種灰霉后,在生物脅迫、SA和ABA刺激、氧化脅迫、細(xì)菌、真菌等刺激相關(guān)反應(yīng)基因顯著富集;而且,堆肥和接種灰霉病菌均能誘導(dǎo)PR1的轉(zhuǎn)錄,生長(zhǎng)在堆肥中的擬南芥接種后更促進(jìn)PR1的表達(dá)[114]??梢?jiàn),堆肥的確能提高擬南芥對(duì)灰霉的抗病能力。
微生物或來(lái)自微生物的代謝產(chǎn)物能通過(guò)激發(fā)誘導(dǎo)系統(tǒng)抗性(ISR)、系統(tǒng)獲得抗性(SAR)等抗病反應(yīng)提高植物對(duì)灰霉病菌的抗病性。
6.2.1 激發(fā)ISR等抗病反應(yīng)的微生物 植物誘導(dǎo)系統(tǒng)抗性ISR指的是植物在恰當(dāng)?shù)拇碳は露邆涞姆佬l(wèi)能力增強(qiáng)的狀態(tài),對(duì)真菌、細(xì)菌、病毒及昆蟲(chóng)的植物抗性都有效。ISR需要JA和乙烯(ET)信號(hào)途徑并且和編碼植物防衛(wèi)素基因PDF1.2的表達(dá)相關(guān),也有研究發(fā)現(xiàn)ISR依賴SA、JA/ET途徑及NPR1[115]。一些根圍微生物能誘導(dǎo)ISR,豆科根瘤中分離的革蘭氏陽(yáng)性細(xì)菌Micromonospora菌株能誘導(dǎo)不同番茄栽培品種的持久的灰霉抗性,通過(guò)誘導(dǎo)JA調(diào)控的防衛(wèi)作用,包括防衛(wèi)基因LOXA、PinII的誘導(dǎo)表達(dá)而抗灰霉病菌[116]。Micromonospora菌株不僅讓番茄具備增強(qiáng)防衛(wèi)能力的狀態(tài),而且具有直接抗真菌能力,因此,是生物防治最值得考慮的微生物材料。另一根圍細(xì)菌Bacillus cereus AR156通過(guò)及時(shí)增強(qiáng)PR1蛋白的表達(dá)、過(guò)氧化氫積累和胼胝質(zhì)的沉積,快速激活MAPKs信號(hào)和FRK1/WRKY53基因表達(dá),達(dá)到提高擬南芥抗灰霉的目的;這些反應(yīng)依賴于JA/ET途徑和NPR1,而與SA自身水平高低無(wú)關(guān)[115]。
灌木根圍真菌Rhizophagus irregularis定殖在番茄根部,大量的代謝發(fā)生改變,番茄內(nèi)聚集更高水平的維生素葉酸、核黃素、吲哚衍生物和酚類(lèi)化合物;當(dāng)B. cinerea侵染R. irregularis定殖后的番茄時(shí),LOX途徑起到關(guān)鍵抗病作用[117]。Burkholderia phytofirmansPsJN是高效誘導(dǎo)抗病性的植物內(nèi)生細(xì)菌,PsJN能移動(dòng)到葡萄的葉片,在B. cinerea周?chē)纬缮锬?,限制灰霉生長(zhǎng)。除了直接的抗灰霉菌的作用外,PsJN能誘導(dǎo)胼胝質(zhì)沉積、過(guò)氧化氫的產(chǎn)生,且當(dāng)灰霉侵染有PsJN存在的葡萄部位時(shí),啟動(dòng)表達(dá) PR1、PR2、PR5和 JAZ蛋白[118]。Bacillus subtilisGB03的揮發(fā)性化合物VOCs激發(fā)擬南芥的PR1和PDF1.2的表達(dá),提高灰霉抗性[119]。由上可見(jiàn),有益的根圍細(xì)菌和真菌或植物內(nèi)生細(xì)菌,誘導(dǎo)ISR、激發(fā)植物自身與JA、ET或SA有關(guān)的抗病反應(yīng),部分有益微生物還具有直接抗灰霉的作用。
6.2.2 激發(fā)SAR的灰霉病菌(糖)蛋白等物質(zhì) 灰霉病菌泌出的一些代謝產(chǎn)物和蛋白能產(chǎn)生過(guò)敏性反應(yīng)癥狀,如草酸、葡雙醛霉素、類(lèi)壞死和乙烯誘導(dǎo)的肽蛋白(NLPs)和木聚糖酶 Xyn11A[7,120]。擬南芥接種灰霉病菌不能誘導(dǎo)SAR,而近期研究表明灰霉病菌B. cinerea的另一些(糖)蛋白分子能激發(fā)植物的SAR或其它抗性反應(yīng),提高番茄或煙草對(duì)灰霉病菌的抗性。B. cinerea的BcSpl1基因編碼的cerato-platanin家族的泌出蛋白,處理煙草后,能激發(fā)兩個(gè)受NPR1(SAR主要的調(diào)控子)控制的基因PR1-a和PR-5的表達(dá)[121]。B. cinerea的另一個(gè)泌出蛋白BclEB1,同樣能夠激發(fā)被處理的煙草中的PR1-a和PR-5的表達(dá)[121]。BcGs1,B. cinerea的泌出糖蛋白,誘導(dǎo)眾所周知的SAR標(biāo)記基因PR1-a的表達(dá),也誘導(dǎo)乙烯介導(dǎo)且不依賴于JA的死體營(yíng)養(yǎng)型真菌抗性信號(hào)途徑中TPK1b的表達(dá),此外,還誘導(dǎo)JA信號(hào)途徑的激發(fā)子系統(tǒng)素原(系統(tǒng)素的前體)的表達(dá),說(shuō)明BcGs1同時(shí)誘導(dǎo)植物的SAR、ET介導(dǎo)的抗灰霉信號(hào)通路成分以及JA信號(hào)通路成分的表達(dá)[93]。B. cinerea泌出的木糖葡聚酶激發(fā)大豆的防衛(wèi)基因Pvd1、PvPR1和PvPR2的表達(dá),激發(fā)PTI和SAR[122]。
除了上述灰霉病菌B. cinerea的泌出蛋白及其它代謝物以外,疫霉菌Pythium oligandrum的類(lèi)似elicitin的蛋白Oli-D1和Oli-D2激發(fā)煙草的HR,誘導(dǎo)番茄JA/ET介導(dǎo)的信號(hào)途徑中SlLapA1、SlPin2、SlLOX-E和SlERF2基因的表達(dá)而抗灰霉[123]。
寄主范圍極其廣泛的死體營(yíng)養(yǎng)型灰霉病菌,采用多種策略侵染寄主植物,形成對(duì)作物營(yíng)養(yǎng)體和果實(shí)破壞性很強(qiáng)的灰霉病。生產(chǎn)實(shí)踐中對(duì)灰霉病的防控仍以使用化學(xué)藥劑為主要防治方式,一方面造成環(huán)境污染和食用隱患;另一方面,田間B. cinerea抗藥性菌株不斷出現(xiàn),導(dǎo)致化學(xué)防治效果差。因此,全面深入理解植物抗灰霉的分子機(jī)制,掌握抗灰霉遺傳組分,開(kāi)發(fā)利用植物自身基因進(jìn)行種質(zhì)抗病遺傳改良是有利于保持綠色生態(tài)環(huán)境的有效措施,但這個(gè)過(guò)程需要很長(zhǎng)時(shí)間。而近幾年的研究找到具有實(shí)踐應(yīng)用潛力的灰霉抗性因素和成分(圖1-A和B),可作為開(kāi)發(fā)替代化學(xué)藥劑的不錯(cuò)選擇。此外,隨著分子生物學(xué)手段的拓展和提高,也找到可以應(yīng)用來(lái)防治灰霉的新的方法。
圖1 植物細(xì)胞外激發(fā)抗B. cinerea反應(yīng)的信號(hào)
寄主誘導(dǎo)的基因沉默技術(shù)HIGS(Host-induced gene silencing,HIGS)已經(jīng)被開(kāi)發(fā)和利用來(lái)保護(hù)作物免受真菌的侵染?;颐共【c植物互作過(guò)程中,輸出sRNA到寄主植物破壞免疫反應(yīng)[124],而擬南芥表達(dá)雙鏈RNA(dsRNA),互補(bǔ)真菌DCL(Dicer-like,DCL)家族基因,顯著提高對(duì)灰霉病菌的抗性[125]。因此,HIGs可用來(lái)培育抗灰霉病菌的作物品種的有效方法之一??梢?jiàn),隨著植物抗灰霉病分子機(jī)制研究的不斷深入,更多的有效基因能用于抗灰霉病菌種質(zhì)遺傳改良,結(jié)合上述提高植物抗灰霉病菌的因素和方法,逐步取代單一的化學(xué)防治方法,解決化學(xué)農(nóng)藥抗性、環(huán)境污染、安全綠色食品等問(wèn)題。
[1] Williamson B, Tudzynski B, Tudzynski P, et al. Botrytis cinerea:the cause of grey mould disease[J]. Molecular Plant Pathology, 2007,8:561-580.
[2] Elad Y, Pertot I, Cotes Prado AM, Stewart A. Plant hosts of Botrytis spp[M]//Fillinger S, Elad Y, eds. Botrytis-the fungus, the pathogen and its management in agricultural systems. Heidelberg.Germany:Springer, 2016:413-486.
[3] Dean R, Van Kan JA, Pretorius ZA, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13:414-430.
[4] Veloukas T, Kalogeropoulou P, Markoglou AN, et al. Fitness and competitive ability of Botrytis cinerea field isolates with dual resistance to SDHI and QoI fungicides, associated with several sdhB and the cytb G143A mutations[J]. Phytopathology, 2014, 104 :347-356.
[5] Rupp S, Plesken C, Rumsey S, et al. Botrytis fragariae, a new species causing gray mold on strawberries, shows high frequencies of specific and efflux-based fungicide resistance[J]. Applied and Environmental Microbiology, 2017, 83(9). pii:e00269-17.
[6] Lai Z, Mengiste T. Genetic and cellular mechanisms regulating plant responses to necrotrophic pathogens[J]. Current Opinion in Plant Biology, 2013, 16:505-512.
[7] Mengiste T. Plant immunity to necrotrophs[J]. Annual Review of Phytopathology, 2012, 50:267-294.
[8] Liu T, Liu Z, Song C, et al. Chitin-induced dimerization activates a plant immune receptor[J]. Science, 2012, 336 :1160-1164.
[9] Nú?ez de Cáceres González FF, Davey MR, Cancho Sanchez E, et al.Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene[J]. Plant Cell Reports, 2015, 34 :1201-1209.
[10] Gao Y, Jia S, Wang C, et al. BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element[J]. Journal of Experimental Botany, 2016, 67:4647-4658.
[11] Gao Y, Zhao K. Molecular mechanism of BjCHI1-mediated plant defense against Botrytis cinerea infection[J]. Plant Signaling &Behavior, 2017, 12:e1271859.
[12] Gai YP, Zhao YN, Zhao HN, et al. The latex protein MLX56 from mulberry(Morus multicaulis)protects plants against insect pests and pathogens[J]. Frontiers in Plant Science, 2017, 8 :1475.
[13] Prins T, Tudzynski P, Tiedemann A, et al. Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In Fungal Pathology[M]// JW Kronstad Dordrecht. The Netherlands:Kluwer, 2000:33-64.
[14] Rasul S, Dubreuil-Maurizi C, Lamotte O, et al. Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana[J]. Plant,Cell & Environment, 2012, 35:1483-1499.
[15] Davidsson P, Broberg M, Kariola T, et al. Short oligogalacturonides induce pathogen resistance-associated gene expression in Arabidopsis thaliana[J]. BMC Plant Biology, 2017, 17:19.
[16] Lionetti V, Raiola A, Camardella L, et al. Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea[J]. Plant Physiology, 2007, 143:1871-1880.
[17] Reem NT, Pogorelko G, Lionetti V, et al. Decreased polysaccharide feruloylation compromises plant cell wall integrity and increases susceptibility to necrotrophic fungal pathogens[J]. Frontiers in Plant Science, 2016, 7:630.
[18] Fauth M, Schweizer P, Buchala A, et al. Cutin monomers and surface wax constituents elicit H2O2in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2elicitors[J]. Plant Physiology, 1998, 117:1373-1380.
[19] Schweizer P, Felix G, Buchala A, et al. Perception of free cutin monomers by plant cells[J]. The Plant Journal, 1996, 10 :331-341.
[20] Voisin D, Nawrath C, Kurdyukov S, et al. Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator[J]. PLoS Genetics, 2015, 5(10):e1000703.
[21] L’Haridon F, Besson-Bard A, Binda M, et al. A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity[J]. PLoS Pathogens, 2011, 7(7):e1002148.
[22] Bessire M, Chassot C, Jacquat AC, et al. A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea[J].The EMBO Journal, 2007, 26:2158-2168.
[23] Ju S, Go YS, Choi HJ, et al. DEWAX transcription factor is involved in resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa[J]. Frontiers in Plant Science, 2017, 8 :1210.
[24] Go YS, Kim H, Kim HJ, et al. Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-Type transcription factor[J]. The Plant Cell, 2014,26:1666-1680.
[25] Zhang H, Yu P, Zhao J, et al. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance[J]. The New Phytologist,2017, 217:799-812.
[26] Liu Z, Wu Y, Yang F, et al. BIK1 interacts with PEPRs to mediate ethylene-induced immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110:6205-6210.
[27] Ross A, Yamada K, Hiruma K, et al. The Arabidopsis PEPR pathway couples local and systemic plant immunity[J]. The EMBO Journal, 2014, 33:62-75.
[28] Tang D, Zhou JM. PEPRs spice up plant immunity[J]. The EMBO Journal, 2016, 35:4-5.
[29] Yamada K, Yamashita-Yamada M, Hirase T, et al. Danger peptide receptor signaling in plants ensures basal immunity upon pathogeninduced depletion of BAK1[J]. The EMBO Journal, 2016, 35:46-61.
[30] Miya A, Albert P, Shinya T, et al. CERK1, a LysM receptor kinase,is essential for chitin elicitor signaling in Arabidopsis[J].Proceedings of the National Academy of Sciences of the United States of America, 2007, 104:19613-19618.
[31] Chinchilla D, Zipfel C, Robatzek S, et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J]. Nature, 2007, 448:497-500.
[32] Kemmerling B, Schwedt A, Rodriguez P, et al. The BRI1-associated kinase 1, BAK1, has a brassinolide-Independent role in plant celldeath control[J]. Current Biology, 2007, 17 :1116-1122.
[33] Schulze B, Mentzel T, Jehle AK, et al. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1[J]. The Journal of Biological Chemistry, 2010, 285:9444-9451.
[34] Veronese P, Nakagami H, Bluhm B, et al. The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens[J]. The Plant Cell, 2006, 18:257-273.
[35] Laluk K, Luo H, Chai M, et al. Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis[J]. The Plant Cell, 2011, 23:2831-2849.
[36] Zhang J, Li W, Xiang T, et al. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector[J]. Cell Host &Microbe, 2010, 7:290-301.
[37] Feng F, Yang F, Rong W, et al. A Xanthomonas uridine 5’-monophosphate transferase inhibits plant immune kinases[J]. Nature,2012, 485:114-118.
[38] Galletti R, Ferrari S, De Lorenzo G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellininduced resistance against Botrytis cinerea[J]. Plant Physiology,2011, 157:804-814.
[39] Genenncher B, Wirthmueller L, Roth C, et al. Nucleoporinregulated MAP kinase signaling in immunity to a necrotrophic fungal pathogen[J]. Plant Physiology, 2016, 172:1293-1305.
[40] Meng X, Xu J, He Y, et al. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance[J]. The Plant Cell, 2013, 25 :1126-1142.
[41] Jiang Y, Yu D. The WRKY57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance[J]. Plant Physiology,2016, 171:2771-2782.
[42] Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection[J]. Plant Physiology, 2012,159:266-285.
[43] Lai Z, Vinod K, Zheng Z, et al. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens[J].BMC Plant Biology, 2008, 8:68.
[44] Liu S, Kracher B, Ziegler J, et al. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100[J]. ELife, 2015, 4:e07295.
[45] Li GJ, Meng XZ, Wang RG, et al. Dual-Level Regulation of ACC Synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis[J]. PLoS Genetics, 2012, 8(6):e1002767.
[46] Liao CJ, Lai ZB, Lee S, et al. Arabidopsis HOOKLESS1 regulates responses to pathogens and abscisic acid through interaction with MED18 and acetylation of WRKY33 and ABI5 chromatin[J].The Plant Cell, 2016, 28:1662-1681.
[47] Liu B, Hong YB, Zhang YF, et al. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress[J]. Plant Science:an International Journal of Experimental Plant Biology, 2014, 227:145-156.
[48] Adachi H, Ishihama N, Nakano T, et al. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea[J]. Plant Signaling & Behavior, 2016,11:e1183085.
[49] Zhao Y, Wei T, Yin KQ, et al. Arabidopsis RAP2. 2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses[J]. The New Phytologist, 2012, 195 :450-460.
[50] Moffat CS, Ingle RA, Wathugala DL, et al. ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis[J]. PLoS One, 2012, 7(4):e3599.
[51] Zhang H, Hong Y, Huang L, et al. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea[J].Scientific Reports, 2016, 6:30251.
[52] Lu X, Jiang W, Zhang L, et al. AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annua[J]. PLoS One,2013, 8:e57657.
[53] Lu X, Zhang L, Zhang F, et al. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea[J]. The New Phytologist, 2013, 198:1191-1202.
[54] Ramirez V, Agorio A, Coego A, et al. MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis[J]. Plant Physiology, 2011, 155:1920-1935.
[55] Sardesai N, Laluk K, Mengiste T, et al. The Arabidopsis Myb transcription factor MTF1 is a unidirectional regulator of susceptibility to Agrobacterium[J]. Plant Signaling & Behavior,2014, 9. pii:e28983.
[56] Krol E, Mentzel T, Chinchilla D, et al. Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2[J]. The Journal of Biological Chemistry, 2010, 285:13471-13479.
[57] Giri MK, Singh N, Banday ZZ, et al. GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana[J]. The Plant Journal:for Cell and Molecular Biology, 2017, 91:802-815.
[58] Yang Y, Li L, Qu LJ. Plant Mediator complex and its critical functions in transcription regulation[J]. Journal of Integrative Plant Biology, 2016, 58:106-118.
[59] Kidd BN, Edgar CI, Kumar KK, et al. The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis[J]. The Plant Cell, 2009, 21 :2237-2252.
[60] Cevik V, Kidd BN, Zhang P, et al. MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis[J]. Plant Physiology, 2012, 160 :541-555.
[61] Ou B, Yin KQ, Liu SN, et al. A high-throughput screening system for Arabidopsis transcription factors and its application to Med25-dependent transcriptional regulation[J]. Molecular Plant, 2011, 4:546-555.
[62] Yang Y, Ou B, Zhang J, et al. The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25[J]. The Plant Journal:for Cell and Molecular Biology, 2014, 77:838-851.
[63] Chen R, Jiang H, Li L, et al. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors[J]. The Plant Cell, 2012, 24 :2898-2916.
[64] Lai Z, Schluttenhofer CM, Bhide K, et al. MED18 interaction with distinct transcription factors regulates multiple plant functions[J]. Nature Communications, 2014, 5 :3064.
[65] Zhu Y, Schluttenhoffer CM, Wang P, et al. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis[J]. The Plant Cell, 2014, 26 :4149-4170.
[66] Wang C, Du X, Mou Z. The mediator complex subunits MED14,MED15, and MED16 are involved in defense signaling crosstalk in Arabidopsis[J]. Frontiers in Plant Science, 2016, 7 :1947.
[67] Wang C, Ding Y, Yao J, Zhang Y, et al. Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola[J].The Plant Journal, 2015, 83:1019-1033.
[68] Wang C, Zhang X, Li JL, Zhang Y, et al. The Elongator complexassociated protein DRL1 plays a positive role in immune responses against necrotrophic fungal pathogens in Arabidopsis[J].Molecular Plant Pathology, 2016, 19:286-299.
[69] Berr A, McCallum EJ, Alioua A, et al. Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi[J]. Plant Physiology, 2010, 154 :1403-1414.
[70] Lee S, Fu F, Xu S, et al. Global regulation of plant immunity by histone lysine methyl transferases[J]. The Plant Cell, 2016, 28 :1640-1661.
[71] Lopez A, Ramirez V, Garcia-Andrade J, et al. The RNA silencing enzyme RNA polymerase v is required for plant immunity[J].PLoS Genetics, 2011, 7:e1002434.
[72] Dhawan R, Luo H, Foerster AM, et al. HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis[J]. The Plant Cell, 2009, 21 :1000-1019.
[73] Zhang Y, Li D, Zhang H, et al. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways[J]. BMC Plant Biology, 2015, 15:252.
[74] El Oirdi M, El Rahman TA, Rigano L, et al. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato[J]. The Plant Cell,2011, 23:2405-2421.
[75] Asselbergh B, Curvers K, Franca SC, et al. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis[J]. Plant Physiology, 2007, 144 :1863-1877.
[76]Abuqamar S, Luo H, Laluk K, et al. Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor[J]. The Plant Journal:for Cell and Molecular Biology, 2009, 58:347-360.
[77] Ouyang Z, Liu S, Huang L, et al. Tomato SlERF. A1, SlERF. B4,SlERF. C3 and SlERF. A3, members of B3 group of ERF Family,are required for resistance to Botrytis cinerea[J]. Frontiers in Plant Science, 2016, 7:1964.
[78] Van der Does D, Leon-Reyes A, Koornneef A, et al. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59[J]. The Plant Cell, 2013, 25:744-761.
[79] Caarls L, Elberse J, Awwanah M, et al. Arabidopsis JASMONATEINDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid[J].Proceedings of the National Academy of Sciences of the United States of America, 2017, 114:6388-6393.
[80] Smirnova E, Marquis V, Poirier L, et al. Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea Infection[J].Molecular Plant, 2017, 10:1159-1173.
[81] Du M, Zhao J, Tzeng DTW, et al. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato[J]. The Plant Cell, 2017, 29:1883-1906.
[82] Lai Z, Wang F, Zheng Z, et al. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens[J]. The Plant Journal, 2011, 66:953-968.
[83] Kabbage M, Kessens R, Dickman MB. A plant Bcl-2-associated athanogene is proteolytically activated to confer fungal resistance[J]. Microb Cell, 2016, 3 :224-226.
[84] Li Y, Kabbage M, Liu W, et al. Aspartyl protease-mediated cleavage of BAG6 is necessary for autophagy and fungal resistance in plants[J]. The Plant Cell, 2016, 28 :233-247.
[85] Li X, Zhang H, Tian L, et al. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress[J]. Frontiers in Plant Science, 2015, 6:463.
[86] Survila M, Davidsson PR, Pennanen V, et al. Peroxidase-generated apoplastic ROS impair cuticle integrity and contribute to DAMP-elicited defenses[J]. Frontiers in Plant Science, 2016, 7 :1945.
[87] Bi FC, Liu Z, Wu JX, et al. Loss of ceramide kinase in Arabidopsis impairs defenses and promotes ceramide accumulation and mitochondrial H2O2bursts[J]. The Plant Cell, 2014, 26 :3449-3467.
[88] Rossi FR, Krapp AR, Bisaro F, et al. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea[J]. The Plant Journal:for Cell and Molecular Biology, 2017, 92:761-773.
[89] Mao G, Meng X, Liu Y, et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis[J]. The Plant Cell, 2011,23:1639-1653.
[90] Khare D, Choi H, Huh SU, et al. Arabidopsis ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114:E5712-E5720.
[91] Burow M, Halkier BA, Kliebenstein DJ. Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness[J]. Current Opinion in Plant Biology, 2010, 13:348-353.
[92] Fan J, Doerner P. Genetic and molecular basis of nonhost disease resistance:complex, yes;silver bullet, no[J]. Current Opinion in Plant Biology, 2012, 15:400-406.
[93] Zhang Y, Zhang Y, Qiu D, et al. BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance in host plants[J]. Biochemical and Biophysical Research Communications, 2015, 457:627-634.
[94] Xu J, Meng J, Meng X, et al. Pathogen-Responsive MPK3 and MPK6 reprogram the biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity[J]. The Plant Cell, 2016,28:1144-1162.
[95] Zhang Y, Jin X, Ouyang Z, et al. Vitamin B6 contributes to disease resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2015, 175:21-25.
[96] Lemonnier P, Gaillard C, Veillet F, et al. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea[J].Plant Molecular Biology, 2014, 85:473-484.
[97] Rizzi YS, Cecchini NM, Fabro G, et al. Differential control and function of Arabidopsis ProDH1 and ProDH2 genes on infection with biotrophic and necrotrophic pathogens[J]. Molecular Plant Pathology, 2017, 18:1164-1174.
[98] Zhao P, Zhang F, Liu D, et al. Matrix metalloproteinases operate redundantly in Arabidopsis immunity against necrotrophic and biotrophic fungal pathogens[J]. PLoS One, 2017, 12 :e0183577.
[99] Li D, Zhang H, Song Q, et al. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000[J]. BMC Plant Biology, 2015, 15:143.
[100]Camanes G, Scalschi L, Vicedo B, et al. An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae[J].The Plant Journal, 2015, 84:125-139.
[101]Zhang H, Hong Y, Huang L, et al. Virus-Induced gene silencingbased functional analyses revealed the involvement of several putative trehalose-6-phosphate synthase/phosphatase genes in disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in tomato[J]. Frontiers in Plant Science, 2016, 7:1176.
[102]Polturak G, Grossman N, Vela-Corcia D, et al. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114:9062-9067.
[103]Yan X, Qiao H, Zhang X, et al. Analysis of the grape(Vitis vinifera L.)thaumatin-like protein(TLP)gene family and demonstration that TLP29 contributes to disease resistance[J].Scientific Reports, 2017, 7:4269.
[104]Wang Y, Wang D, Wang F, et al. Expression of the grape VaSTS19 Gene in Arabidopsis improves resistance to powdery mildew and Botrytis cinerea but increases susceptibility to Pseudomonas syringe pv tomato DC3000[J]. Int J Mol Sci, 2017, 18(9).pii:E2000.
[105]Huang L, Zhang S, Singer SD, et al. Expression of the Grape VqSTS21 Gene in Arabidopsis confers resistance to osmotic stress and biotrophic pathogens but not Botrytis cinerea[J]. Frontiers in Plant Science, 2016, 7:1379.
[106]Cerrudo I, Keller MM, Cargnel MD, et al. Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acidindependent mechanism[J]. Plant Physiology, 2012, 158:2042-2052.
[107]Cargnel MD, Demkura PV, Ballare CL. Linking phytochrome to plant immunity:low red:far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin[J]. The New Phytologist,2014, 204:342-354.
[108]Costa A, Barbaro MR, Sicilia F, et al. AIR12, a b-type cytochrome of the plasma membrane of Arabidopsis thaliana is a negative regulator of resistance against Botrytis cinerea[J]. Plant Sci,2015, 233:32-43.
[109]Gommers CM, Keuskamp DH, Buti S, et al. Molecular profiles of contrasting shade response strategies in wild plants:differential control of immunity and shoot elongation[J]. The Plant Cell,2017, 29:331-344.
[110]Mhamdi A, Noctor G. High CO2primes plant biotic stress defences through redox-linked pathways[J]. Plant Physiology, 2016,172:929-942.
[111] Tomas-Grau RH, Requena-Serra FJ, Hael-Conrad V, et al.Soft mechanical stimulation induces a defense response against Botrytis cinerea in strawberry[J]. Plant Cell Reports, 2018,37:239-250.
[112]Garcia T, Gutierrez J, Veloso J, et al. Wounding induces local resistance but systemic susceptibility to Botrytis cinerea in pepper plants[J]. Journal of Plant Physiology, 2015, 176 :202-209.
[113]Tripathi D, Zhang T, Koo AJ, et al. Extracellular ATP acts on jasmonate signaling to reinforce plant defense[J]. Plant Physiology, 2017, 176:511-523.
[114]Segarra G, Santpere G, Elena G, et al. Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis[J]. PLoS One, 2013, 8 :e56075.
[115]Nie P, Li X, Wang S, et al. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET-and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8:238.
[116]Martinez-Hidalgo P, Garcia JM, Pozo MJ. Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules[J]. Frontiers in Microbiology, 2015,6:922.
[117] Sanchez-Bel P, Troncho P, Gamir J, et al. The nitrogen availability interferes with mycorrhiza-induced resistance against Botrytis cinerea in tomato[J]. Front Microbiol, 2016, 7:1598.
[118]Miotto-Vilanova L, Jacquard C, Courteaux B, et al. Burkholderia phytofirmans PsJN confers grapevine resistance against Botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization[J]. Front Plant Sci, 2016, 7:1236.
[119]Sharifi R, Ryu CM. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both?[J]. Frontiers in Microbiology, 2016, 7:196.
[120]Noda J, Brito N, Gonzalez C. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity[J]. BMC Plant Biol, 2010, 10:38.
[121]Frias M, Brito N, Gonzalez C. The Botrytis cinerea cerato-platanin BcSpl1 is a potent inducer of systemic acquired resistance(SAR)in tobacco and generates a wave of salicylic acid expanding from the site of application[J]. Molecular Plant Pathology, 2013,14:191-196.
[122]Zhu W, Ronen M, Gur Y, et al. BcXYG1, a Secreted Xyloglucanase from Botrytis cinerea, triggers both cell death and plant immune responses[J]. Plant Physiology, 2017, 175 :438-456.
[123]Ouyang Z, Li X, Huang L, et al. Elicitin-like proteins Oli-D1 and Oli-D2 from Pythium oligandrum trigger hypersensitive response in Nicotiana benthamiana and induce resistance against Botrytis cinerea in tomato[J]. Mol Plant Pathol, 2015, 16:238-250.
[124]Weiberg A, Wang M, Lin FM, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science, 2013, 342 :118-123.
[125]Wang M, Weiberg A, Lin FM, et al. Bidirectional crosskingdom RNAi and fungal uptake of external RNAs confer plant protection[J]. Nature Plants, 2016, 2:16151.