• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Joint Bearing Mechanism of Coal Pillar and Backfilling Body in Roadway Backfilling Mining Technology

    2018-03-13 02:02:20ZhengzhengCaoPingXuZhenhuaLiMinxiaZhangYuZhaoandWenlongShen
    Computers Materials&Continua 2018年2期

    Zhengzheng Cao, Ping Xu,, Zhenhua Li, Minxia Zhang, Yu Zhao and Wenlong Shen

    1 Introduction

    In order to solve the increasingly serious problem of mining under building, railway and water body at present [Zhou, Guo, Cha et al. (2008); Miao (2012); Cao, Du, Xu et al.(2017)], and reasonably dispose the wastes stacked on the mine like coal gangue and coal ash [Zhang, Zhang, Zhao et al. (2007); Zhang, Miao and Guo (2015); Xin and Ji (2016)],the roadway backfilling mining technology, a kind of safe and high-efficiency coal mining technology, is developed specially and has already obtained good popularizing and application [Qian (2010); Ding, Zhou, Xu et al. (2013); Teng, Wang, Gao et al. (2016)]. In roadway backfilling mining technology, the roadheader is employed for coal cutting in roadway driving work, which conveys the solid backfilling materials, (such as ground gangue, coal ash, loess and aeolian sand) to the mined roadway underground after the materials have been processed on the ground [Miao, Zhang and Guo (2010); Xue, Cao, Cai et al. (2017)], for the purpose of mining three-under coal (coal trapped under buildings,waters-bodies and railways) or the corner residual coal resource, controlling roof in the gob, preventing surface subsidence, and disposing solid wastes [Teng, Wang, Gao et al.(2016); Guo, Li and Liu (2017)]. Therefore, the roadway backfilling mining technology can be adopted for mining three-under coal and corner residual coal in certain conditions in small and medium-size coal mines [Ju, Li, Zhang et al. (2014); Cao, Du, Li et al. (2017)].Advances in the roadway backfilling mining technology over the last ten years have seen various research methods and results [Hu, Zhang, Gao et al. (2006); Qian, Miao and Xu(2008); Miao, Huang and Ju (2012); Jia, Qiao and Jiang (2016); Xue, Ranjith, Gao et al.(2017)]. In order to solve the technical problems of mining strip extraction coal-pillar and waste disposal, Zhang et al. [Zhang, Miao, Mao et al. (2007)] proposed the waste substitution extraction by the roadway backfilling mining technology, which determines the layout with two waste filling roadway (the width and height are 4.0 m and 5.0 m) placed in middle of strip extraction coal-pillar (the width is 4.0 m), by reference to the numerical analysis of the stability of substitution extraction coal-pillar and vertical stress distribution of basic roof in strip and substitution extraction. Li et al. [Li, Mao, Bu et al. (2008)]established the mechanical model of waste-filling in roadway and obtained the elastic displacement solution of coal pillar; based on elastic-viscoelastic correspondence principle,viscoelastic displacement solution of coal pillar was found out by importing Maxwell model, therefore, the rule of the compression and the lateral deformation of coal pillar change with time and backfilling material characteristics was achieved. On the basis of strip mining characteristics, Yu et al. [Yu and Wang (2011)] described the exchanging technology of gangue backfill and analyzed the characteristics of quadratic strata movement, according to subject of strata movement and quadratic stability of coal-pillar under three circumstances exchanged by gangue backfill; Besides, the analytic formula of the bearing body of “bearing rock strata and gangue filling support body” was deduced by means of the elastoplastic theory and based on the actual force and ultimate strength of the gangue filling support body. Deng et al. [Deng, Zhang, Zhou et al. (2014)] proposed the longwall-roadway cemented backfilling mining technology to solve the engineering technical problems in extra-thick coal seam, such as low recovery rate and the difficulty in controlling the mining surface subsidence and overlying strata movement and deformation;meanwhile, the layout of filling mining system, main equipment and technics was explained systematically, based on the principle of longwall-roadway cemented backfilling mining technology in extra thick coal seam. Zhou et al. [Zhou, Li, Zhang et al. (2016)]proposed a roadway backfill method during longwall mining, so as to improving coal recovery and preventing the geohazards in room and pillar mining method in Chinese western coal mines; besides, the reasonable ratio of backfill materials for the driving roadway during longwall mining was determined by testing mechanical properties of backfill materials, and the roadway layout and the backfill mining technique were introduced; meanwhile, the distance between roadways and a driving and filling sequence for multiple-roadway driving was designed, based on the effects of the abutment stress from a single roadway driving task. In order to guard against coal pillar instability, mine earthquake, surface subsidence, vegetation deterioration, and other environmental problems in traditional room mining technology, Zhang et al. [Zhang, Sun, Zhou et al.(2016)] proposed the roadway backfill coal mining method and presented the technical principle and key equipment; further, coal pillar stress, plastic zone change, and surface deformation of the roadway backfill coal mining schemes were studied with the FLAC3D numerical simulation software, and a reasonable mining scheme of “mining 7 m and leaving 3 m” was determined. For the sake of dealing with the low coal recovery and environmental problems caused by the traditional coal mining technology in Chinese western ecological fragile coal mining area, Sun et al. [Sun, Zhang, Yin et al. (2017)]proposed the longwall roadway backfill coal mining method and established the mechanical model of coal mining in stope, on the basis of the strata movement characteristics in the roadway backfill coal mining; then, the equation of roof deflection curve with corresponding mechanical analysis and the calculation formulas of coal pillar were deduced.

    It can be seen that the current researches mainly focus on the stability of coal pillar and technical practice in roadway backfilling mining technology. Nevertheless, the joint bearing mechanism of coal pillar and backfilling body is the key to success of roadway backfilling mining technology, which should be research systematically to provide an important basis for theoretical research and process design in roadway backfilling mining technology. In this paper, the elastic and viscoelastic solution expression of coal pillar deformation is obtained by establishing the mechanical model of bearing system of coal pillar and backfilling body, on the basis of basic characteristics of overlying strata deformation in roadway backfilling mining technology. Then, the time formula required for coal pillar and backfilling body to play the joint bearing function is obtained and the joint bearing mechanism of coal pillar and backfilling body in roadway backfilling mining technology is achieved, by analyzing the compressive mechanical property of backfilling body.

    2 Mechanical model of bearing system of roadway backfilling mining

    The roadway backfilling mining technology is an effective approach to mining the corner residual coal resource and the quality coal resource under buildings, railways, rivers, which is an important part of coal green mining system. The key equipment of roadway backfilling mining technology includes the bulldozer, continuous miner, belt stage-loader mechanism, and high-speed conveyer (fully hydraulically driven). The high-speed conveyer is entirely mounted on a crawler unit. The basic process in the roadway backfilling mining is as follows: firstly, move out related mining equipment after finishing one cycle of roadway mining with continuous miner; secondly, convey backfilling material to the mined roadway with high speed conveyer under coordination of belt stage-loader mechanism; finally, compact the backfilling materials (such as ground gangue, coal ash,loess and aeolian sand) gradually in mined roadway with bulldozer.

    The control process of overlying strata movement in roadway backfilling mining technology can be divided into three stages, namely coal pillar bearing stage, backfilling body dynamic compaction stage and coal pillar and backfilling body combined load bearing stage. In the coal pillar bearing stage, the overburden load is mainly supported by coal pillars on both sides of the roadway; In backfilling body dynamic compaction stage,the backfilling body gradually restores bearing capacity under the compaction action of surrounding rock of roadway, which begins to play a role of bearing upper strata; In combined load bearing stage, the coal pillar and backfilling body play the joint bearing effect on the overlying strata, and achieve long time stability.

    Figure 1: Mechanical model of bearing system of roadway backfilling mining

    In the roadway backfilling mining technology, collar pillar is a long cylindrical body, and the support conditions do not vary in length direction; besides, the volume force and surface force parallel to the cross section do not vary in length direction. Meanwhile, the displacement vector in coal pillar is parallel to the cross section, and the axial displacement does not occur. Similarly, this is the same to the backfilling body in the roadway backfilling mining. Therefore, the coupling mechanism of coal pillar and backfilling body in roadway backfilling mining can be attributed to a plane strain problem. In order to analyze the mechanical feature of coal pillar and backfilling body in roadway backfilling mining, the assumptions below are given: the coal pillar and backfilling body are both the continuous,homogeneous and isotropic elastic body; the weak surface does not exist in coal pillar and backfilling body; the full thickness mining method is adopted in roadway backfilling mining, thus the cohesive forces (such as the friction, pressure) exists in the interface between coal pillar, backfilling body and roof, floor; the backfilling body occupies the entire roadway.

    The physical model of roadway backfilling mining is shown in Fig. 1(a), which is the overburden movement supported by coal pillar and backfilling body. Thewidth ofcoal pillar is , and the width and height of backfilling roadway is and ,respectively. In consideration of the symmetry of boundary conditions and external loads,the mechanical model is established, by taking a quarter of right-upper coal pillar and a quarter of left-upper coal pillar, which is shown in Fig. 1(b).

    According to the symmetry of physical model of roadway backfilling mining, the right boundary of backfilling body and left boundary of coal pillar are both the horizontal simple support constraint; the lower boundary of coal pillar and backfilling body is the vertical simple constraint; the upper boundary condition of coal pillar and backfilling body is the chain constraint in the horizontal direction. Besides, the displacement is continuous in the interface () between coal pillar and backfilling body. Therefore, the displacement boundary condition of mechanical model in roadway backfilling mining is obtained,

    In roadway backfilling mining, the load weight of overlying strata is regarded as uniform distributed load;is the average weight of overburden, andis the mining depth of coal seam. The overburden load is supported jointly by coal pillar and backfilling body, namely

    Along the roadway in unit length, the sinking displacement of coal pillar and backfilling body can be expressed as follows:

    In coal pillar and backfilling body combined load bearing stage, the sinking displacement of coal pillar is equal to that of backfilling body, namely, thus

    Combining formula (4) and formula (5), the calculative expression of uniform loadis obtained,

    The compressive characteristic of backfilling body is the key point in roadway backfilling mining technology. The related research result [Miao, Zhang, and Guo (2010)] indicates that the exponential function rule exists in stress-strain relationship of backfilling body,

    When coal pillar and backfilling body play the joint bearing function in roadway backfilling mining, the stressin backfilling body is equal to the uniform load supported by backfilling body. Combining formula (6) and formula (7), the strain of backfilling body in steady state is obtained,

    3 Elastic analysis of coal pillar deformation

    The elastic deformation solution of coal pillar is analyzed by the basic principle of Ritz method, according to the displacement boundary condition of mechanics model, the expressions of displacement field, including some undetermined coefficients, are assumed to satisfy displacement boundary condition; then, the specific values of undetermined coefficients are determined by the displacement variation equation; thus, the elastic solution of displacement field is obtained.

    Based on the displacement boundary condition of mechanical model, the displacement field expression is assumed as follows:

    The deformation potential energyof coal pillar and deformation potential energyof backfilling body is expressed as follows:

    Substituting formula (10) into formula (11),

    The total deformation potential energy of mechanical system is obtained,

    Substituting formula (12) into formula (13),

    According to the stress boundary condition of coal pillar, the relationship is true,

    Substituting the formula (19) into the Ritz equation, namely the formula (16),

    By solving the ternary nonhomogeneous equation system, the undetermined coefficients are expressed as follows:

    Therefore, the analytical expressions of displacement field of coal pillar is obtained,

    4 Viscoelastic analysis of coal pillar deformation

    Table 1: Basic equations of elasticity and viscoelasticity

    Assume that a real functionis defined on an independent variable, and thetends to convergence in a certain range of complex plane, so the functiondetermined by the integral is denoted as Laplace transform of the real functiontransform of

    Based on the elastic-viscoelastic correspondence principle, Laplace transform can be done on the elastic solution of displacement field expression of coal pillar, namely the formula(10),

    According to the relationship between the elastic modulus, Poisson’s ratioand shear modulus, bulk modulus, namely

    Figure 2: Burgers creep mechanical model

    The rheological characteristic of coal pillar illustrated with the burgers creep mechanical model, which is shown in Fig. 2. The three dimensional constitutive equation is as follows,

    According to the viscoelastic theory, the variables are obtained,

    Based on the elastic-viscoelastic correspondence principle, the viscoelastic solution of displacement field expression of coal pillar can be transformed by doing the inverse Laplace transformation, which is shown in formula (27),

    Therefore, when the roadway height is, the maximum value of vertical creep deformation of coal pillar is. Combining with the compaction amountof backfilling body in the steady state in formula (9), the expression of

    By substituting the specific variable values into formula (28), the time required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology can be obtained.

    5 Engineer example analysis

    5.1 Elastic solution of displacement field of coal pillar

    Figure 3: The mechanical experiments

    Figure 4: The equipment of mechanical experiment

    According to the calculative expression of uniform loadandin formula (6), the specific values ofandare

    The displacement expression of coal pillar is

    Thus, the deformation potential energy of coal pillar and backfilling body are

    Substituting formula (30) into formula (31),

    Thus, the specific values ofandcan be obtained,which is shown in Tab. 2.

    Substituting the related values into formula (20),

    Table 2: Q and m values

    ?

    The undetermined coefficients can be solved,

    Then, the elastic solution of displacement field of coal pillar is obtained,

    The height of coal pillar is 6 m, substitutey=6 into formula (38), so the maximum vertical deformation of coal pillar is approximately 0.045 m, which is reasonable in practice engineer.

    5.2 Viscoelastic solution of displacement field of coal pillar

    Based on the elastic-viscoelastic correspondence principle, the specific values of creep variable,,andare substituting into formula (26),

    Based on the elastic-viscoelastic correspondence principle, the elastic modulusand Poisson’s ratioin viscoelastic theory is shown as follows,

    Substituting formula (41) into formula (34),

    Combining formula (15) with formula (21), the analytical expression of undetermined coefficients),)and)can be obtained; therefore, the formula (23) can be expressed as follows:

    Based on the elastic-viscoelastic correspondence principle, the viscoelastic solution of displacement field of coal pillar can be transformed, which is shown in formula (44),

    In formula (44), the specific expression ofis

    When the backfilling body is coal gangue (particle size is 20-25 mm), the specific values of regression coefficientsandis 0.1442 MPa and 10.31, respectively.Substituting the specific values into formula (28),

    Combining formula (45) and formula (46), the time formula required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is obtained,

    By solving the formula (47), the time is. Therefore, the time required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is 140 days.

    6 Conclusions

    (1) The control process of overlying strata movement in roadway backfilling mining technology can be divided into three stages, namely coal pillar bearing stage, backfilling body dynamic compaction stage and coal pillar and backfilling body combined load bearing stage. The coal pillar and backfilling body play the joint bearing effect on the overlying strata and achieve long time stability in combined load bearing stage.

    (2) The mechanical model of bearing system of coal pillar and backfilling body is established, on basis of the deformation characteristics of overlying strata in roadway backfilling mining technology. Besides, the elastic solution expression of coal pillar deformation is deduced with the Ritz method in energy variation principle, and the viscoelastic solution expression of coal pillar deformation is obtained, based on elasticviscoelastic correspondence principle, combining with the burgers rheological constitutive model and Laplace transform theory.

    (3) By analyzing the compressive mechanical property of backfilling body, the time formula required for coal pillar and backfilling body to play the joint bearing function in roadway backfilling mining technology is obtained. The engineer example analysis indicates that the time required to play the joint bearing function is 140 days.

    Acknowledgement:This work was supported by the National Natural Science Foundation of China (51504081, 51774110, 51508166, U1404527), the Science and Technology Breakthrough Project by Henan Province (162102210221, 162102310427), the Foundation for Higher Education Key Research Project by Henan Province (15A440013), the Ph.D.Programs Foundation of Henan Polytechnic University (B2018-65, B2018-4, B2016-67).

    Akbarov, S. D.; Negin, M.(2017): Generalized rayleigh wave dispersion in a covered half-space made of viscoelastic materials.Computers Materials & Continua, vol. 53, no.4, pp. 307-341.

    An, B. F.; Qi, W. Y.; Lan, L. X.; Mei, X. C.; Zhou, Z. et al.(2017): Critical failure time of roof and standing pillars in China western mining area.Journal of China Coal Society,vol. 42, no. 2, pp. 397-403.

    Cao, Z. Z.; Du, F.; Li, Z. H.; Wang, Q. T.; Xu, P. et al.(2017): Research on instability mechanism and type of ore pillar based on the fold catastrophe theory.Computer Modeling in Engineering & Sciences, vol. 113, no. 3, pp. 287-306.

    Cao, Z. Z.; Du, F.; Xu, P.; Lin, H. X.; Xue, Y. et al.(2017): Control mechanism of surface subsidence and overburden movement in backfilling mining based on laminated plate theory.CMC: Computers Materials & Continua, vol. 53, no. 3, pp. 187-202.

    Deng, X. J.; Zhang, J. X.; Zhou, N.; An, T. L.; Guo, S.(2014): The research and application of longwall-roadway cemented backfilling mining technology in extra-thick coal seam.Journal of Mining & Safety Engineering, vol. 31, no. 6, pp. 857-862.

    Deng, X. J.; Zhang, J. X.; Klein, B.; Zhou, N.; Dewit, B.(2017): Experimental characterization of the influence of solid components on the rheological and mechanical properties of cemented paste backfill.International Journal of Mineral Processing, vol.168, pp. 116-125.

    Ding, Y. L.; Zhou, Y. J.; Xu, P.; Peng, G.; Cao, Z. Z.(2013): Mechanism analysis of restraining surface cracks and protecting Tetraena mongolice maxin with backfilling mining.Journal of Mining & Safety Engineering, vol. 30, no. 6, pp. 868-873.

    Guo, W. B.; Li, Y. T.; Liu, D. C.(2017): Application of strip pillar mining technology under dense constructions within industrial square.Journal of Henan Polytechnic University (Natural Science), vol. 36, no. 6, pp. 8-14.

    Hu, B. N.; Zhang, W. H.; Gao, Q. C.; Liu, P. L.(2006): Test research on permanent pillar mining with coal refuse backfilling.Coal Science and Technology, vol. 34, no. 11, pp. 46-48.

    Li, M.; Zhang, J. X.; Zhou, N.; Zhang, Q.(2017): Deformation and failure analysis of river levee induced by coal mining and its influence factor.Computer Modeling in Engineering & Sciences, vol. 113, no. 2, pp. 183-194.

    Li, Q.; Mao, X. B.; Bu, W. K.; Ma, Z. G.(2008): Mechanism of using waste-filling in roadway to control the deformation of covered rock strata.Journal of China University of Mining & Technology, vol. 37, no. 6, pp. 745-750.

    Jia, H. S.; Qiao, A. Z.; Jiang, W. Y.(2016): Deformation-failure characteristics and supporting method of mining tunnel roof in Buertai mine.Journal of Henan Polytechnic University (Natural Science), vol. 35, no. 3, pp. 338-344.

    Ju, F.; Li, M.; Zhang, J. X.; Miao, X. X.; Liu, Z.(2014): Construction and stability of an extra-large section chamber in solid backfill mining.International Journal of Mining Science and Technology, vol. 24, no. 6, pp. 763-768.

    Miao, X. X.(2012): Progress of fully mechanized mining with solid backfilling technology.Journal of China Coal Society, vol. 37, no. 8, pp. 1247-1255.

    Miao, X. X.; Huang, Y. L.; Ju, F.(2012): Strata movement theory of dense backfill mining.Journal of China University of Mining & Technology, vol. 41, no. 6, pp. 863-867.

    Miao, X. X.; Zhang, J. X.; Guo, G. L.(2010): Study on waste-filling method and technology in fully-mechanized coal mining.Journal of China Coal Society, vol. 35, no. 1,pp. 1-6.

    Qian, M. G.(2010): On sustainable coal mining in China.Journal of China Coal Society,vol. 35, no. 4, pp. 529-534.

    Qian, M. G.; Miao, X. X.; Xu, J. L.(2008): On scientized mining.Journal of Mining &Safety Engineering, vol. 25, no. 1, pp. 1-10.

    Sun, Q.; Zhang, J. X.; Yin, W.; Zhou, N.; Liu, Y.(2017): The study of stability of surrounding rock and characters of overburden strata movement with longwall roadway backfill coal mining.Journal of China Coal Society, vol. 42, no. 2, pp. 404-412.

    Teng, T.; Wang, J. G.; Gao, F.; Ju, Y.; Jiang, C.(2016): A thermally sensitive permeability model for coal-gas interactions including thermal fracturing and volatilization.Journal of Natural Gas Science and Engineering, vol. 32, pp. 319-333.

    Teng, T.; Wang, J. G.; Gao, F.; Ju, Y.; Xia, T.(2016): Impact of water film evaporation on gas transport property in fractured wet coal seams.Transport in Porous Media, vol. 113,no. 2, pp. 357-382.

    Xin, Y. J.; Ji, H. Y.(2016): Study on uniaxial compression experiments for different ratio and large-scale similar simulated specimens.Journal of Henan Polytechnic University(Natural Science), vol. 35, no. 1, pp. 30-36.

    Xue, Y.; Cao, Z. Z.; Cai, C. Z.; Dang, F. N.; Hou, P. et al.(2017): A fully coupled thermohydro-mechanical model associated with inertia and slip effects.Thermal Science, vol. 21,no. S1, pp. 259-266.

    Xue, Y.; Ranjith, P. G.; Gao, F.; Zhang, D. C.; Cheng, H. M. et al.(2017): Mechanical behaviour and permeability evolution of gas-containing coal from unloading confining pressure tests.Journal of Natural Gas Science and Engineering, vol. 40, pp. 336-346.

    Yu, W. J.; Wang, W. J.(2011): Strata movement induced by coal-pillar under three circumstances exchanged by gangue backfill and quadratic stability law.Chinese Journal of Rock Mechanics and Engineering, vol. 30, no. 1, pp. 105-112.

    Zhang, J. X.; Miao, X. X.; Guo, G. L.(2015):Consolidated solid backfill mining method and its applications. Science Press.

    Zhang, J. X.; Miao, X. X.; Mao, X. B.; Chen, Z. W.(2007): Research on waste substitution extraction of strip extraction coal-pillar mining.Chinese Journal of Rock Mechanics and Engineering, vol. 26, no. S1, pp. 2687-2693.

    Zhang, J. X.; Sun, Q.; Zhou, N.; Jiang, H. Q.(2016): Research and application of roadway backfill coal mining technology in western coal mining area.Arabian Journal of Geosciences, vol. 9, pp. 558.

    Zhang, W. H.; Zhang, J. X.; Zhao, J. S.; Wei, S. Q.; Ju, F.(2007): Research on waste filling technology and its matching equipment in coal mining.Journal of Mining & Safety Engineering, vol. 24, no. 1, pp. 79-83.

    Zhou, N.; Li, M.; Zhang, J. X.; Gao, R.(2016): Roadway backfill method to prevent geohazards induced by room and pillar mining: a case study in Changxing coal mine, China.Natural Hazards and Earth System Sciences, vol. 16, pp. 2473-2484.

    Zhou, Z. Y.; Guo, G. L.; Cha, J. F.; Ma, Z. G.(2008): Study on subsidence controlled of tunnel mining with coal refuse backfilling under buildings.Safety in Coal Mines, vol. 8,pp. 19-22.

    人妻夜夜爽99麻豆av| 男女边摸边吃奶| 久久99蜜桃精品久久| 成人国产av品久久久| 天堂8中文在线网| 亚洲精品国产av成人精品| 亚洲国产成人一精品久久久| 亚洲无线观看免费| 日韩av不卡免费在线播放| 丰满人妻一区二区三区视频av| 91精品国产国语对白视频| 亚洲欧美中文字幕日韩二区| 国产伦精品一区二区三区四那| 你懂的网址亚洲精品在线观看| 久久久久精品久久久久真实原创| 精品少妇久久久久久888优播| 99热全是精品| a级片在线免费高清观看视频| 永久免费av网站大全| 亚洲一级一片aⅴ在线观看| 六月丁香七月| 涩涩av久久男人的天堂| 国产精品久久久久久久电影| 黑人高潮一二区| 日韩欧美精品免费久久| 亚洲国产精品国产精品| 国产av码专区亚洲av| 汤姆久久久久久久影院中文字幕| 成人漫画全彩无遮挡| 最近的中文字幕免费完整| 亚洲三级黄色毛片| 日韩一本色道免费dvd| 亚洲国产欧美在线一区| 亚洲国产色片| 国产av一区二区精品久久| 国产av码专区亚洲av| 日日撸夜夜添| 最近手机中文字幕大全| 日本欧美视频一区| 22中文网久久字幕| 精品一区在线观看国产| 欧美日韩av久久| 精品一品国产午夜福利视频| 亚洲精品乱码久久久久久按摩| 免费不卡的大黄色大毛片视频在线观看| 亚洲婷婷狠狠爱综合网| 国产日韩欧美亚洲二区| 国产av精品麻豆| 九九久久精品国产亚洲av麻豆| 亚洲成人手机| 久久久国产欧美日韩av| 黑丝袜美女国产一区| 国产极品粉嫩免费观看在线 | 婷婷色综合www| 又爽又黄a免费视频| h日本视频在线播放| av福利片在线| 日韩欧美精品免费久久| 日韩电影二区| 汤姆久久久久久久影院中文字幕| 观看美女的网站| 美女视频免费永久观看网站| 看免费成人av毛片| 亚洲天堂av无毛| 日韩成人av中文字幕在线观看| 天堂俺去俺来也www色官网| 97超碰精品成人国产| 只有这里有精品99| 丰满迷人的少妇在线观看| 日韩一区二区三区影片| 99re6热这里在线精品视频| av播播在线观看一区| 亚洲国产精品一区三区| 欧美成人午夜免费资源| 男女免费视频国产| 搡老乐熟女国产| 国产日韩欧美视频二区| 久久久欧美国产精品| 午夜日本视频在线| 国产高清有码在线观看视频| 亚洲av在线观看美女高潮| 国产精品.久久久| 人人妻人人澡人人看| 亚洲高清免费不卡视频| 高清在线视频一区二区三区| 亚洲第一区二区三区不卡| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品成人久久小说| 久久亚洲国产成人精品v| 免费人妻精品一区二区三区视频| 高清不卡的av网站| 乱人伦中国视频| 看十八女毛片水多多多| 亚洲一级一片aⅴ在线观看| 男人和女人高潮做爰伦理| 成人美女网站在线观看视频| 午夜日本视频在线| 91精品伊人久久大香线蕉| 丝瓜视频免费看黄片| 老司机影院毛片| 99久久中文字幕三级久久日本| 男人和女人高潮做爰伦理| 人妻 亚洲 视频| 亚洲一区二区三区欧美精品| 国产综合精华液| 美女视频免费永久观看网站| 日本免费在线观看一区| 久久人人爽人人爽人人片va| 水蜜桃什么品种好| 熟女av电影| 亚洲精品日韩av片在线观看| 国语对白做爰xxxⅹ性视频网站| 一个人免费看片子| 国产成人精品无人区| √禁漫天堂资源中文www| 美女中出高潮动态图| 成人毛片a级毛片在线播放| 夫妻午夜视频| 国产欧美日韩一区二区三区在线 | 精品一区二区免费观看| 简卡轻食公司| 在线播放无遮挡| 自拍偷自拍亚洲精品老妇| 久久久久久久精品精品| 国产成人精品一,二区| 永久免费av网站大全| 国产高清国产精品国产三级| 国产无遮挡羞羞视频在线观看| 久久鲁丝午夜福利片| 草草在线视频免费看| 午夜老司机福利剧场| 欧美97在线视频| 欧美xxⅹ黑人| 伦理电影免费视频| 国产深夜福利视频在线观看| 91午夜精品亚洲一区二区三区| 亚洲国产精品一区三区| 蜜桃久久精品国产亚洲av| av天堂中文字幕网| 精品一区在线观看国产| 日日啪夜夜爽| 男女免费视频国产| 久久青草综合色| 国产在线一区二区三区精| 久久人妻熟女aⅴ| 丰满人妻一区二区三区视频av| 亚洲欧美中文字幕日韩二区| 伦理电影大哥的女人| 桃花免费在线播放| 午夜激情福利司机影院| 99精国产麻豆久久婷婷| 国产精品一区二区在线不卡| 久久久久久人妻| 亚洲欧美精品自产自拍| 久久久久久久精品精品| 国产淫语在线视频| 久久精品国产自在天天线| 丰满少妇做爰视频| kizo精华| 精品一区二区免费观看| 下体分泌物呈黄色| 免费大片黄手机在线观看| 久久久久久久久大av| 亚洲国产色片| 一个人看视频在线观看www免费| 亚洲欧美成人综合另类久久久| 我要看黄色一级片免费的| 两个人免费观看高清视频 | 精品人妻一区二区三区麻豆| 男人舔奶头视频| 一区二区三区四区激情视频| 精品一品国产午夜福利视频| 亚洲天堂av无毛| 国语对白做爰xxxⅹ性视频网站| 久久久精品免费免费高清| 国产一区二区三区av在线| 18禁在线无遮挡免费观看视频| 久久国产精品男人的天堂亚洲 | 国产成人精品无人区| 免费大片18禁| 国产色婷婷99| 欧美日韩在线观看h| av国产久精品久网站免费入址| 美女中出高潮动态图| 亚洲熟女精品中文字幕| 亚洲人与动物交配视频| 久久久久国产网址| 一级毛片电影观看| 亚洲国产毛片av蜜桃av| 日本午夜av视频| 亚洲欧美清纯卡通| 亚洲无线观看免费| 精品久久久久久久久av| 狠狠精品人妻久久久久久综合| 国产精品久久久久久久电影| 免费观看无遮挡的男女| 成人午夜精彩视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产老妇伦熟女老妇高清| 久久av网站| 亚洲国产精品专区欧美| 狂野欧美白嫩少妇大欣赏| 久久久国产精品麻豆| 大片电影免费在线观看免费| av线在线观看网站| 午夜av观看不卡| 亚洲综合精品二区| 国产精品人妻久久久久久| 少妇人妻久久综合中文| 日韩一区二区三区影片| 午夜福利网站1000一区二区三区| 成人无遮挡网站| 国产成人午夜福利电影在线观看| 亚洲av福利一区| 亚洲av综合色区一区| 你懂的网址亚洲精品在线观看| 99九九线精品视频在线观看视频| 在线观看人妻少妇| 观看av在线不卡| 男人和女人高潮做爰伦理| 日本黄色日本黄色录像| av一本久久久久| 亚洲精品乱码久久久v下载方式| 男女啪啪激烈高潮av片| 春色校园在线视频观看| 少妇高潮的动态图| 日韩av免费高清视频| 特大巨黑吊av在线直播| 亚洲一区二区三区欧美精品| 亚洲精品日本国产第一区| 岛国毛片在线播放| 国产日韩一区二区三区精品不卡 | 久久久欧美国产精品| 国产成人免费观看mmmm| 免费黄网站久久成人精品| 亚洲精品乱码久久久久久按摩| 精品国产国语对白av| 午夜免费男女啪啪视频观看| 国产精品人妻久久久影院| 丝袜在线中文字幕| 国产黄色免费在线视频| 人妻少妇偷人精品九色| 肉色欧美久久久久久久蜜桃| 国产成人a∨麻豆精品| av视频免费观看在线观看| 国产精品秋霞免费鲁丝片| 97精品久久久久久久久久精品| 国产白丝娇喘喷水9色精品| a级毛片免费高清观看在线播放| 国产深夜福利视频在线观看| av在线观看视频网站免费| 国语对白做爰xxxⅹ性视频网站| 99国产精品免费福利视频| 大码成人一级视频| 日日啪夜夜爽| 久久国产乱子免费精品| 久久99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 日韩成人av中文字幕在线观看| 久久精品熟女亚洲av麻豆精品| 26uuu在线亚洲综合色| 99热6这里只有精品| 美女脱内裤让男人舔精品视频| 久久综合国产亚洲精品| 国产午夜精品一二区理论片| 午夜久久久在线观看| 亚洲图色成人| 国产一区二区在线观看日韩| 成人二区视频| 亚洲av国产av综合av卡| 一级毛片aaaaaa免费看小| 成人国产麻豆网| 免费在线观看成人毛片| 成人毛片a级毛片在线播放| 亚洲国产最新在线播放| 国产精品一区二区在线观看99| 一级a做视频免费观看| 极品少妇高潮喷水抽搐| 99热国产这里只有精品6| 麻豆乱淫一区二区| 男女啪啪激烈高潮av片| 国产精品一区www在线观看| 大陆偷拍与自拍| 国产综合精华液| 成人午夜精彩视频在线观看| 精品久久久久久久久av| 国产淫语在线视频| 久久久国产一区二区| 日日啪夜夜爽| 少妇人妻久久综合中文| 乱人伦中国视频| 国产熟女午夜一区二区三区 | 日韩在线高清观看一区二区三区| 免费久久久久久久精品成人欧美视频 | 精品少妇黑人巨大在线播放| av天堂久久9| 日韩电影二区| 久久久国产一区二区| 在线观看人妻少妇| 色吧在线观看| 伊人久久国产一区二区| 精品一区二区免费观看| 亚洲av在线观看美女高潮| 美女主播在线视频| 18禁动态无遮挡网站| 男女免费视频国产| 久久国内精品自在自线图片| 高清午夜精品一区二区三区| 好男人视频免费观看在线| 成年人免费黄色播放视频 | 日韩精品免费视频一区二区三区 | 成年美女黄网站色视频大全免费 | 亚洲国产毛片av蜜桃av| 一本—道久久a久久精品蜜桃钙片| 亚洲av不卡在线观看| 久久热精品热| 久久久久国产精品人妻一区二区| 中文天堂在线官网| 水蜜桃什么品种好| 亚洲激情五月婷婷啪啪| 狂野欧美激情性bbbbbb| 国产成人精品久久久久久| 好男人视频免费观看在线| 免费大片黄手机在线观看| 亚洲情色 制服丝袜| 少妇被粗大的猛进出69影院 | 亚洲av欧美aⅴ国产| 2021少妇久久久久久久久久久| 亚洲经典国产精华液单| 18禁在线无遮挡免费观看视频| 国产成人精品福利久久| 久久6这里有精品| 国产伦在线观看视频一区| 搡老乐熟女国产| a级一级毛片免费在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产日韩一区二区三区精品不卡 | 久久女婷五月综合色啪小说| 国产精品久久久久久av不卡| 亚洲av二区三区四区| av国产精品久久久久影院| 久久亚洲国产成人精品v| 精品一区在线观看国产| 欧美老熟妇乱子伦牲交| 搡老乐熟女国产| 国产成人午夜福利电影在线观看| 免费av中文字幕在线| 日韩精品免费视频一区二区三区 | 精品人妻偷拍中文字幕| 热99国产精品久久久久久7| av.在线天堂| 夜夜骑夜夜射夜夜干| 老司机影院毛片| 六月丁香七月| 插逼视频在线观看| 国产精品熟女久久久久浪| 精品熟女少妇av免费看| 男人爽女人下面视频在线观看| 亚洲国产精品一区二区三区在线| 中文乱码字字幕精品一区二区三区| 一级毛片黄色毛片免费观看视频| 中文字幕精品免费在线观看视频 | 黄色一级大片看看| 一二三四中文在线观看免费高清| 女性生殖器流出的白浆| 能在线免费看毛片的网站| 黑丝袜美女国产一区| 午夜91福利影院| 美女脱内裤让男人舔精品视频| 亚洲国产最新在线播放| 亚洲欧美一区二区三区黑人 | 黄片无遮挡物在线观看| 免费看日本二区| 成人黄色视频免费在线看| 热re99久久精品国产66热6| 黄片无遮挡物在线观看| 久久久久久久大尺度免费视频| 欧美日韩视频精品一区| 免费黄网站久久成人精品| 少妇人妻 视频| 久久久久久人妻| 精品国产一区二区久久| 97在线人人人人妻| 97超视频在线观看视频| 国产欧美日韩精品一区二区| 我要看日韩黄色一级片| 亚洲性久久影院| 人人澡人人妻人| 伦精品一区二区三区| 久久久久久久精品精品| 人人妻人人澡人人爽人人夜夜| 午夜福利视频精品| 最近中文字幕2019免费版| 欧美日韩国产mv在线观看视频| 精品国产露脸久久av麻豆| 中文字幕精品免费在线观看视频 | 欧美日韩综合久久久久久| 国语对白做爰xxxⅹ性视频网站| 高清午夜精品一区二区三区| 麻豆成人午夜福利视频| 亚洲精品自拍成人| 热re99久久精品国产66热6| 久久国产乱子免费精品| 乱人伦中国视频| 成人国产av品久久久| av天堂中文字幕网| 日本欧美国产在线视频| av网站免费在线观看视频| 国产美女午夜福利| 亚洲精品,欧美精品| 免费看日本二区| 国产极品粉嫩免费观看在线 | 国产成人午夜福利电影在线观看| 天美传媒精品一区二区| 老司机影院毛片| 婷婷色综合www| 人妻夜夜爽99麻豆av| 狂野欧美白嫩少妇大欣赏| 免费人妻精品一区二区三区视频| 午夜精品国产一区二区电影| 亚洲伊人久久精品综合| 男人添女人高潮全过程视频| 91久久精品国产一区二区三区| 人妻一区二区av| 久久99热这里只频精品6学生| 女性生殖器流出的白浆| 久久国内精品自在自线图片| 亚洲精品视频女| 欧美3d第一页| 国产精品秋霞免费鲁丝片| 丝袜喷水一区| 男女国产视频网站| 黄色配什么色好看| 夜夜骑夜夜射夜夜干| 亚洲av欧美aⅴ国产| 人妻系列 视频| 国产精品无大码| 自线自在国产av| 各种免费的搞黄视频| 日韩电影二区| 视频区图区小说| 久久久国产欧美日韩av| 黑人猛操日本美女一级片| 伦精品一区二区三区| 高清不卡的av网站| 成年美女黄网站色视频大全免费 | 亚洲人成网站在线观看播放| 免费观看性生交大片5| 国产精品麻豆人妻色哟哟久久| 成人国产麻豆网| 少妇精品久久久久久久| 黑人猛操日本美女一级片| 欧美人与善性xxx| 嫩草影院入口| av网站免费在线观看视频| 丰满饥渴人妻一区二区三| 精品久久久久久久久亚洲| 国产91av在线免费观看| 日韩中文字幕视频在线看片| 少妇的逼水好多| 免费观看性生交大片5| 欧美日韩综合久久久久久| 亚洲国产精品成人久久小说| 午夜av观看不卡| 精品亚洲乱码少妇综合久久| 高清av免费在线| 97超碰精品成人国产| 一二三四中文在线观看免费高清| 亚洲欧美一区二区三区黑人 | 色婷婷av一区二区三区视频| 国产色婷婷99| 国产综合精华液| 老司机影院毛片| 国产精品久久久久久精品电影小说| 日日啪夜夜撸| 成年av动漫网址| 免费不卡的大黄色大毛片视频在线观看| 国产av一区二区精品久久| 啦啦啦中文免费视频观看日本| 久久国产精品大桥未久av | 欧美日韩视频精品一区| 在线观看人妻少妇| 久久午夜综合久久蜜桃| 国产白丝娇喘喷水9色精品| 热99国产精品久久久久久7| 2022亚洲国产成人精品| 99热这里只有精品一区| 777米奇影视久久| 97超碰精品成人国产| 男男h啪啪无遮挡| 成人毛片60女人毛片免费| 麻豆精品久久久久久蜜桃| 国产精品秋霞免费鲁丝片| 一级毛片aaaaaa免费看小| 精品少妇久久久久久888优播| 插逼视频在线观看| a级毛色黄片| 亚洲欧洲国产日韩| 青春草视频在线免费观看| 成人18禁高潮啪啪吃奶动态图 | 精品人妻偷拍中文字幕| 久久久久久久国产电影| 九色成人免费人妻av| 国产精品99久久久久久久久| 99久久精品国产国产毛片| av在线观看视频网站免费| 亚洲国产精品国产精品| 欧美少妇被猛烈插入视频| 久久久久国产网址| 国产淫片久久久久久久久| 中文欧美无线码| 国产在线一区二区三区精| 国国产精品蜜臀av免费| 国产白丝娇喘喷水9色精品| 久久久久精品性色| 精品久久久久久久久亚洲| 国产色婷婷99| 久久97久久精品| 国产熟女欧美一区二区| 99热这里只有是精品在线观看| 亚洲国产精品专区欧美| 97超碰精品成人国产| videossex国产| 国产黄色免费在线视频| 高清在线视频一区二区三区| 我要看日韩黄色一级片| 熟女电影av网| 热re99久久精品国产66热6| 最近最新中文字幕免费大全7| 久久毛片免费看一区二区三区| av卡一久久| 亚洲精品乱码久久久久久按摩| 亚洲不卡免费看| 精品久久国产蜜桃| 成人亚洲精品一区在线观看| 51国产日韩欧美| 国内揄拍国产精品人妻在线| 国产av一区二区精品久久| 大片免费播放器 马上看| 美女大奶头黄色视频| 熟妇人妻不卡中文字幕| 亚洲欧洲日产国产| 欧美最新免费一区二区三区| 久久精品国产亚洲网站| 日韩大片免费观看网站| 在线精品无人区一区二区三| 亚洲av免费高清在线观看| 日本午夜av视频| 精品视频人人做人人爽| 久久韩国三级中文字幕| 亚洲精品视频女| 精品人妻一区二区三区麻豆| 亚洲情色 制服丝袜| 欧美xxⅹ黑人| 中文字幕制服av| 夫妻午夜视频| 大陆偷拍与自拍| 久久精品久久久久久久性| 日韩三级伦理在线观看| 亚洲久久久国产精品| av不卡在线播放| 亚洲熟女精品中文字幕| 一级毛片aaaaaa免费看小| 午夜福利视频精品| 2022亚洲国产成人精品| 国产一区有黄有色的免费视频| 日本爱情动作片www.在线观看| 亚洲精品aⅴ在线观看| 内地一区二区视频在线| av天堂久久9| 亚洲电影在线观看av| 亚洲成人一二三区av| 高清av免费在线| 亚洲av二区三区四区| 国产乱来视频区| 日韩中文字幕视频在线看片| 黄色一级大片看看| 午夜激情福利司机影院| 一本—道久久a久久精品蜜桃钙片| 不卡视频在线观看欧美| 欧美精品亚洲一区二区| 国产成人免费观看mmmm| 久久精品国产亚洲av涩爱| 在线 av 中文字幕| 亚洲av成人精品一二三区| 国产精品不卡视频一区二区| 国产精品熟女久久久久浪| 久久精品久久久久久噜噜老黄| 人人妻人人看人人澡| 美女cb高潮喷水在线观看| 欧美日韩视频精品一区| 日韩欧美一区视频在线观看 | 久久久亚洲精品成人影院| 精品亚洲成a人片在线观看| 久久99热这里只频精品6学生| 久久热精品热| 在线观看人妻少妇| 亚洲,一卡二卡三卡| 日韩人妻高清精品专区| 亚洲国产精品国产精品| 少妇裸体淫交视频免费看高清| 91久久精品电影网| 国产日韩欧美亚洲二区| 国产黄片视频在线免费观看| 亚洲精品乱码久久久久久按摩| 一个人免费看片子| 久久 成人 亚洲| 亚洲精品,欧美精品| 精品视频人人做人人爽| 丰满少妇做爰视频| 观看av在线不卡| 欧美高清成人免费视频www| 老司机亚洲免费影院| 搡女人真爽免费视频火全软件| 人妻一区二区av|