• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy Effcient Modelling of a Network

    2018-03-12 12:12:31AnishKumarSahaKojSambyoChandanTilakBhunia
    China Communications 2018年1期

    Anish Kumar Saha*, Koj Sambyo, Chandan Tilak Bhunia

    Dept. of Computer Science and Engineering, NIT Arunachal Pradesh, India

    I. INTRODUCTION

    Demands of energy are growing day by day.The demands of energy in developing countries will be higher in the future. A major portion of electrical energy comes from fossil fuel, coals and natural gases. These conventional sources of energy increases the unavoidable future problem termed as “global warming and green house gases”. If we notice statistical data, according to CETE and Bell labs report, the volume of CO2emitted by ICT is near about 830 million tons every year, which is around 2% of the man made emission of the world. It has also projected that the amount of CO2emission will be approximately double in 2020. According to EIA report, fast developing countries like India and China will share half of the world increase power in 2040. One of the key areas where drastically increase power consumption is computer networking,data communication and data centers. Worldwide internet users are 3.17 billion in 2015,which is around 8% growth with respect to users in 2014. Users of internet in 2015 are almost 3 times user in 2005. Bianzino et al.[1] described different types of common strategies in energy efficient networking. These strategies are adaptive link rate, interface proxying, energy aware infrastructure, energy aware application, energy aware routing etc.Hasan et al. [2] described energy efcient cellular networking and they explained different common energy efficient research areas like,improvement in power amplifier, power saving protocol, energy aware cooperative management, management of relay & repeaters,picco/macro/ femto cells, energy aware medium access control etc. They showed different green metrics for measuring the efficiency of a system. Other than these, huge amount of energy is consuming in famous giant data centers. Data centers are generally less energy efcient. Data centers mostly consume power due to cooling and redundancy in network resources. According to DCE industry census 2013, globally data centers power demands increased more 19% from 2011 to 2012. The total energy consumption of global data centers is around 38GW, which is 316% higher figure from 12GW in 2007. Power usages effectiveness (PUE) of large data centers is nearly between 1.2-1.6. However, the PUE of medium and small size private organizations vary from 1.7 to 3.0, which is not a goodgure for efficient energy management system.Different approaches of energy efficient data centers are nano data centers, dynamic workload consolidation, sleeping scheduling, CPU frequency adjustment, lazy capacity provisioning etc [3-6]. Other than, for controlling resources andow rule modication, updated topology is important for any network. Saha et al. [15] showed how tond topology, loops in network. They briey explained link failure identication & recovery in software dened networking (SDN). Bruce Lowekamp et al.[16] proposed algorithm for topology discovery using SNBP MIBs information contents in large size bridged Ethernet network.

    Networking devices are not fully energy proportional with respect to use. Power consumption has both static and dynamic consumption. One of the examples of dynamic consumption is data rate change. Change in data rate reduces additional power consumption in forwarding nodes. In this paper,different models are proposed. These models focus on minimum topology for allows under current situations. Here data rate change with enable/disable of edges is applied. These mathematical models are mixed integer linear programming optimization problems in nature.These models are explained with examples.

    II. RELATED WORKS

    L. Zhou et al. [18] investigated two properties namely, energy efciency and spectrum efciency in handheld mobile devices during video streaming. They combined both two parameters and proposed joint parameter algorithm. They showed the relationship between them and explained that these parameters could integrate in an energy efficient model in mobile Ad Hoc network. Liang Zhou [19]proposed sharing of same video contents in nearby mobile devices without re transmission to different devices from base station. Their method was decentralised approach and did not require any further central controller. Here,mobility velocity, video file size, communication cost, transmission radius, device and storage capacity was taken as computational parameters for device-to-device and base station-to-device communication. Hui Yang et al. [20] proposed MFVC model, which was multiple flow communication with ability of non-contiguous spectral fragment in a flexigrid optical network. Flows were split into multiple spectral and sent through the physical media using modulation. Resource allocations,guard band, number of splitows, delay constrain were taken as parameters. They showed less blocking probability without affecting other services and explained the design of transponder and control model. H. Yang et al. [21]presented Cross Stratum Optimization (CSO)as elastic data centers in SDN based optical network. The aim of their model was global optimization, QoS and accommodation of data center services under heterogeneous resources condition. H. Yang et al. [22] proposed SUDOI, which was an extension of earlier CSO model in ubiquitous data centre architecture.It managed resources based on blocking probability and resource occupation rate in optical SDN data centers. Their architecture was a multi layer and cross-stratus model from user access perspective. Different controllers were assigned in different network layers that gave hierarchy structure in central control in optical SDN.

    Other than, Two types of well knowsows are Elephant flow and mice flow. Elephantows capture healthy amount of bandwidth in a link. Elephant flows, although very limited numbers, capture large capacity. Elephant flows affect the QoS for small sized flows,which are known miceows. Authors [23-26]proposed different techniques for identification of elephantows in a network. Z. Liu et al. [27] proposed effective management of elephantows in data center. Mori et al. [28]investigated the characteristic of aggregation and user trafcs and showed their relationship.They observed that traffic follows positively skewed (non-Gaussian) distributions. In this context, we propose two types of services namely “minimum bandwidth” and “trivialle transfer”.

    Proposed Algorithms and mathematical models:

    Here four different models are proposed.Each model has different purpose and function. Therst model “Minimum edge” determines the required minimum edges along with their different data rates to support all trafcs.Switch from higher to lower data rate saves

    energy consumption in forwarding nodes. For instance, data rate change from 10 Mbps to 1Gbps increases 3W power consumption [1].This model minimizes power consumption by disabling more edges along with other edges to be set in lower data rates.

    Table I. Summary of nomenclature.

    Minimum edge model

    Objective,

    Subject to,Path selection

    Edge selection for selected path

    Rate switch and bandwidth capacity limitation

    Edge selection for spanning tree

    Spanning tree selection

    The objective (1) is a minimization function of additional power consumption of edges for their different data rates. The model optimizes in power consumption in edges through enable/disable and data rate change. Here data rate of edges is set in two different values, an intermediate value Θ and maximum capacity rate. It has six constrains. Constrain (2) entitled “Path selection” ensures, for a particular{Source, Destination} communication, only one path will be selected from a list of alternative paths. Constrain (3) entitled “Edge selection” ensures, a particular edge will be enabled if and only if at least one communication passes through this edge. Hence “Path selection”constrain (2) selects path for all communications and based on the selected path “Edge selection” constrain (3) sets the edge status.“Rate switch and bandwidth capacity limitation” constrains (4-5) set data rates for all edges. Constrain (4) sets the value of E[i][3]for lower data rate switch. In constrain (5), a small valueδis deducted from the limit Θ to convert from < to ≤ relation. It also ensures bandwidth limit of edges i.e., at E[i][3]=1 and E[i][2]=1, the sum of all required bandwidth for all communications passes through the edge should not cross its maximum bandwidth capacity limit. The different values of decision variable R are given in Table 02.

    Constrain (7) entitled “Spanning tree selection” ensures that at least one spanning tree must maintain from a list of different spanning trees. “Spanning tree selection” constrain is used to maintain connectivity between all forwarding nodes. If we do not use this constrain then the model will give more optimized result but at the same time, some forwarding nodes may disconnected from the network after applying different power saving mode like port up/down, line card enable/disable etc. Constrain (6) ensures that all edges presented in a selected spanning tree should be enabled.

    Table II. Different data rates for ith edge.

    Minimum delay model

    Objective,

    Subject to,

    Path selection

    Edge selection for selected path

    Rate switch and bandwidth capacity limitation

    Edge Selection for spanning tree

    Spanning tree selection

    Network delay divides into four classes- processing, queuing, transmission and propagation. First three delays happen at router/switch. Propagation delay depends on media.Generally, more intermediate nodes in the path increases processing and transmission delay. In this regards, the second model entitled as “Minimum delay” considers delay as objective for all communications. Here we consider delay as total number of intermediate forwarding nodes from source to destination.More number of intermediate edges means more delays in a path. This model minimizes the “total delays” for allows. The term “total delay” means sum of all delays for all flows presented in a network. The objective (8) is a minimization function, which minimizes the“total delays” for allows. The model has six constrains. Constrain (9) ensures, selection of only one path from a set of alternative paths for all communications. Constrain (10) ensures that, if anyow passes through an edge then that edge will be enabled. Constrains (11-12) set data rate switch for all edges as well as ensures that bandwidth limit of edges should not cross. Constrains (13-14) ensure that at least one spanning tree must maintain for the network to make connectivity with different forwarding nodes. The model gives more priority in delay than energy saving.

    Minimum change model

    Objective,

    Subject to,

    Path selection

    Edge selection for selected path

    Rate switch and bandwidth capacity limitation

    Edge Selection for spanning tree

    Spanning tree selection

    Sustain earlier topology

    Generally, traffic changes randomly with respect to time and space in a network. It is undesirable to change or modifyow rules for oldows in every switch to cope with current flows for certain purposes. The third model“Minimum change” determines optimal power consumption using rate change & port up/down and at the same time, maintaining the earlier required topology for oldows. Since,earlier required topology is same, so further modification is not needed in old flow rules.The model adjusts new flows with old flows and determines optimal power consumption.The objective (15) is a minimization of additional power consumption in rate change or port up/down. It has total seven constrains.Constrains (16,17,20,21) are same as discussed in Minimum edge model. Since, matrix AllotedBW contains assigned bandwidth for all “minimum bandwidth” type old flows therefore, in constrains (18-19), a part Alloted-BW[i] is added with total bandwidth of current flows for all ithedge. Constrain (22) ensures that earlier enabled edges for old flows must set enable to maintain minimum change.

    Multi flow model for “trivial file transfer” service

    Objective,

    Subject to,

    Bandwidth capacity limitation

    Maximum allotment of bandwidth for different paths

    Here two types of services namely, “minimum bandwidth” and “trivial file transfer”are considered. In “minimum bandwidth”service, all flows must maintain a minimum bandwidth for all communication. First three models are for “minimum bandwidth” type service. However, in the forth model, allows are considered as “trivialle transfer” service.In “trivialle transfer” service, bandwidth and transmission time could vary in these types ofows. Forth model “Multiow” determines to sendles as quickly as possible using multiple flows. After delivering files through multiple flows, resources could be released early and be placed in power saving mode. Here multiple flows are created for a communication.Multi flow model is applied after applying one of the three models as discussed earlier.Resources are assigningrst to all “minimum bandwidth” service, then remaining resources are allowed to assign in “trivialle transfer”service. Here “minimum bandwidth” is giving high priority than “trivialle transfer” service.This is because time and bandwidth in “trivialle transfer” could vary comparing to “minimum bandwidth” service.

    Here the objective (23) is to maximize the allocation of bandwidth for all multipleows for all communications. Constrain (24) entitled “Bandwidth capacity limitation” checks the sum of bandwidth for allows should not cross maximum limit of remaining bandwidth of every edges. Constrain (25) entitled “Maximum allotment of bandwidth for different paths” ensures allocated bandwidth should not cross maximum limit of bandwidth of the path. Suppose for thegure 01, remaining capacity of edges are E1= 5Mbps, E2= 10Mbps,E3= 4 Mbps and if a path contains E1, E2and E3edges, then path limit is minimum(10, 4, 5)Mbps or 4 Mbps. Since, all decision and other variables are real, so it is a simple optimization problem.

    An example of minimum edge model is given for the network ingure 1.

    The network has the following matrices and data,

    ? Total number of edges, n=5

    ?δ=0.0001

    ? θ=10Mbps

    Fig. 1. An example of a network with ve switch and ve edges.

    ? Three communications are {S1,S4}, {S2,S5}and {S4,S5}

    ? All alternative paths for {S1,S4}, {S2,S5}and {S4,S5} arec1,c2andc3, and its values are,

    Suppose the meaning ofc1={1,2} is,P1andP2are its two alternative paths as shown in the above matrix T.

    ? Total number of communications, M= 3

    ? Capacity={100,100, 50,50,50} in Mbps

    ? Demands for communication,d={500,800,600} in Kbps

    ? No of spanning trees taken, noSP=4

    ? List if spanning trees (S) are,

    Minimum edge model

    Objective,

    Subject to,

    Path selection

    Edge selection for selected path

    Rate switch and bandwidth capacity limitation

    Spanning tree selection

    Results:

    E1=10, E2=0(Disabled), E3=10, E4=10,E5=10inMbps.

    Another example is given for multi flow model for the same network ingure 01.

    ? AllotedBW={89,80,41,30,35} in Mbps.

    ? PathLimit={9,11,9,20,9,15} in Mbps

    Objective,

    Subject to,

    Bandwidth capacity limitation

    Maximum allotment of bandwidth for different paths

    Results: Allotted bandwidths for all sixows are,

    TBW1=0, TBW2=11, TBW3=4, TBW4=20,TBW5=5 and TBW6=0 in Mbps

    Implementation and Computation time:

    The models are MILP problems except multiow. MILP is np-hard in characteristics and takes higher time for computation for large value of inputs. To solve these models,GNU Linear Programming Kit(GLPK) is used. GLPK is an open source for large scale linear, integer, mixed integer programming solver. The proposed models are written in GNU MathProg modelling language.

    An illustration of computational time for these methods has shown in Table 03. We have taken simultaneously different 100 and 50{source, destination} numbers of communications in Abilene topology. Total 65 numbers of different spanning trees have taken. Computation time for all models have measured under different numbers of alternative paths = 1, 2,3 and 4, for each {Source, Destination}. In all cases, minimum edge takes highest and multiow model takes lowest time in computation.

    Some computational times are higher value, and in those cases, heuristic approach is used to reduce it. Here hybrid Pseudo-cost branching (PC) along with Integer Optimality(MIPgap) 0.05 is taken for reducing the computation time.

    Table III. The computational times for proposed models with variation in number of alternative paths.

    Fig. 2. Structure of Abilene network.

    III. CONCLUSION

    Here four different models are proposed in energy efficient networking. Minimum edge model provides more energy efciency but requires longer time for computation. Minimum Delay model gives faster delivery of packets due to less number of intermediate edges.Minimum change model is good for fewer changes in topology andow rules. It sustains earlier required topology and cope new communications with old communications. Since,old topology remains same, oldows need not be required to reroute and modified in flow rules. Above models are designed for “minimum bandwidth” type service. Unused edges are disabled and low utilized edges are set to lower data rate for further power saving. Multiow model is designed to transfersles quickly using multiple paths in “trivialle transfer”type service. Quick delivery of packets allows resources be placed early in power saving mode. Multiows model applied after applying one of the above three models. Therefore,“minimum bandwidth” is giving higher priority than “trivial file transfer” service. Energy efficiency is achieved using rate change and enable/disable of edges. More efcient model could be achieved by considering line cards,energy hungry TCAM memory, queuing delay effects etc in a switch. Our next plan is queuing delay with power saving in energy efcient networks.

    [1] Bianzino, A.P.; Chaudet, C.; Rossi, D.; Rougier, J.,“A Survey of Green Networking Research,”Communications Surveys & Tutorials, IEEE, vol.14,no.1, First Quarter 2012, pp.3-20.

    [2] Hasan, Z.; Boostanimehr, H.; Bhargava, V.K.,“Green Cellular Networks: A Survey, Some Research Issues and Challenges,”Communications Surveys & Tutorials, IEEE, vol.13, no.4, Fourth Quarter 2011, pp.524-540.

    [3] M. Pedram, “Energy-Effcient Datacenters,”IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 10, Oct.2012, pp. 1465-1484.

    [4] Cavdar, D.; Alagoz, F., “A survey of research on greening data centers,”Proc. Global Communications Conference (GLOBECOM), IEEE, 2012,pp. 3237-3242.

    [5] Vytautas Valancius et al., “Greening the internet with nano data centers,” Proc. of the 5th international conference on Emerging networking experiments and technologies (CoNEXT ‘09),ACM, New York, NY, USA, 2009, pp. 37-48.

    [6] L. L. H. Andrew et al., “Algorithms for dynamic capacity provisioning,” Proc. The 10th International Conference on Optical Internet(COIN2012), Yokohama, Kanagawa, 2012, pp.73-74.

    [7] Brandon Heller et al., “ElasticTree: saving energy in data center networks,” Proc. of the 7th USENIX conference on Networked systems design and implementation (NSDI’10), USENIX Association, Berkeley, CA, USA, 2010, pp. 17-17.

    [8] R. Wang et al., “Energy-aware routing algorithms in Software-Defined Networks,” Proc.of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, Sydney, NSW, 2014, pp. 1-6.

    [9] K. van der Veldt et al., “Carbon-aware path provisioning for NRENs,” Proc. International Green Computing Conference, Dallas, TX, 2014, pp.1-7.

    [10] F. Giroire et al., “Optimizing rule placement in software-defined networks for energy-aware routing,”Proc. IEEE Global Communications Conference, Austin, TX,2014, pp. 2523-2529.

    [11] R. Bruschiet al., “Green extension of Open-Flow,” Proc.26th International Teletraffic Congress (ITC), Karlskrona, 2014, pp. 1-6.

    [12] M. Zhang et al., “GreenTE: Power-aware traffic engineering,”Proc. The 18th IEEE International Conference on Network Protocols, Kyoto,2010,pp. 21-30.

    [14] Tatsuya Otoshi, Yuichi Ohsita, Masayuki Murata,Yousuke Takahashi, Keisuke Ishibashi, and Kohei Shiomoto, “Traffc prediction for dynamic traffc engineering,” Computer Networks, ACM, vol.85, C (July 2015), pp. 36-50.

    [15] A K Saha et al., “Topology Discovery, Loop Finding and Alternative Path Solution in POX Controller”,Proc. of the International MultiConference of Engineers and Computer Scientists 2016(IMECS 2016), Hong Kong,Vol-2, 16-18 March 2016 , pp. 553-557.

    [16] Bruce Lowekamp, David O’Hallaron, and Thomas Gross, “Topology discovery for large ethernet networks,”Proc. of the conference on Applications, technologies, architectures, and protocols for computer communications(SIGCOMM ?01),ACM, New York, NY, USA,2001, pp. 237-248.

    [17] R. Carpa, O. Glück and L. Lefevre, “Segment routing based traffic engineering for energy efficient backbone networks,”Proc. 2014 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), New Delhi, 2014, pp. 1-6.

    [18] L. Zhou, R. Q. Hu, Y. Qian and H. H. Chen, “Energy-Spectrum Efficiency Tradeoff for Video Streaming over Mobile Ad Hoc Networks,”IEEE Journal on Selected Areas in Communications,vol. 31, no. 5, May 2013, pp. 981-991.

    [19] Liang Zhou, “Mobile Device-to-Device Video Distribution: Theory and Application,”ACM Trans. Multimedia Computing, Communications and Applications,”vol. 12, Issue 3, Article 38(March 2016), 23 pages.

    [20] Hui Yanget al., “Multi-flow virtual concatenation triggered by path cascading degree inexible spectrum optical networks,”Proc. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, CA, 2013, pp. 1-3.

    [21] H. Yanget al., “CSO: cross stratum optimization for optical as a service,”IEEE Communications Magazine, vol. 53, no. 8, August 2015, pp. 130-139.

    [22] H. Yang, J. Zhang, Y. Zhao, J. Han, Y. Lin and Y.Lee, “SUDOI: software defined networking for ubiquitous data center optical interconnection,”IEEE Communications Magazine, vol. 54, no. 2,February 2016, pp. 86-95.

    [23] Tatsuya Mori et al., “Identifying elephantows through periodically sampled packets,”Proc. of the 4th ACM SIGCOMM conference on Internet measurement (IMC ‘04). ACM, New York, NY,USA,2004, pp. 115-120.

    [24] Lei Bai et al., “Algorithm based on multiple filters for elephant flows identification,” Proc.International Conference on Transportation,Mechanical, and Electrical Engineering (TMEE),Changchun, 2011, pp. 1084-1087.

    [25] Lei Bai et al., “Using TCBF technique to realize elephantows identication,” Proc. International Conference on Transportation, Mechanical,and Electrical Engineering (TMEE), Changchun,2011, pp. 1080-1083.

    [26] Lichang Che and Bin Qiu, “Landmark LRU: an effcient scheme for the detection of elephantows at internet routers,” IEEE Communications Letters, vol. 10, no. 7, July 2006, pp. 567-569.

    [27] Z. Liu et al., “An Enhanced Scheduling Mechanism for Elephant Flows in SDN-Based Data Center,” Proc. IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, 2016, pp.1-5.

    [28] T. Mori et al., “On the characteristics of Internet traffic variability: spikes and elephants,” Proc.International Symposium on Applications and the Internet, 2004, pp. 99-106.

    亚洲色图 男人天堂 中文字幕| 动漫黄色视频在线观看| 精品午夜福利视频在线观看一区| 欧美成人免费av一区二区三区| 国产成人啪精品午夜网站| 国产av一区在线观看免费| 国产精品久久久久久精品电影| 色噜噜av男人的天堂激情| 国产野战对白在线观看| 热99在线观看视频| 日本 av在线| 成人欧美大片| 日韩av在线大香蕉| 精品乱码久久久久久99久播| 免费电影在线观看免费观看| 啦啦啦免费观看视频1| 国产精品99久久99久久久不卡| 丰满人妻熟妇乱又伦精品不卡| 国产日本99.免费观看| 一个人免费在线观看电影 | 亚洲成av人片在线播放无| 久久性视频一级片| 在线观看美女被高潮喷水网站 | 免费看美女性在线毛片视频| 日韩成人在线观看一区二区三区| av天堂中文字幕网| 欧美日韩国产亚洲二区| 欧美精品啪啪一区二区三区| 国产精品电影一区二区三区| 禁无遮挡网站| 色综合站精品国产| 欧美日本亚洲视频在线播放| 日本黄大片高清| 美女 人体艺术 gogo| 国产aⅴ精品一区二区三区波| 一个人免费在线观看电影 | 午夜福利免费观看在线| 日韩欧美一区二区三区在线观看| 国产极品精品免费视频能看的| 成人一区二区视频在线观看| 可以在线观看的亚洲视频| 成人无遮挡网站| 俄罗斯特黄特色一大片| 男女床上黄色一级片免费看| 欧美一区二区精品小视频在线| 国产激情久久老熟女| 久久草成人影院| 性色avwww在线观看| 麻豆成人午夜福利视频| 90打野战视频偷拍视频| 久久这里只有精品中国| 日韩欧美一区二区三区在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产单亲对白刺激| 亚洲国产欧洲综合997久久,| 国产伦精品一区二区三区视频9 | 亚洲,欧美精品.| 久久久久久人人人人人| 国产 一区 欧美 日韩| 精品午夜福利视频在线观看一区| 校园春色视频在线观看| 久久国产精品人妻蜜桃| 可以在线观看毛片的网站| 欧美日韩福利视频一区二区| 深夜精品福利| 亚洲美女视频黄频| 国产一区二区在线观看日韩 | 中文亚洲av片在线观看爽| 日日摸夜夜添夜夜添小说| 国内精品久久久久精免费| 无人区码免费观看不卡| 精品久久久久久久末码| 国产高清有码在线观看视频| 日日干狠狠操夜夜爽| 久久久色成人| 天堂网av新在线| 老汉色∧v一级毛片| www.999成人在线观看| 舔av片在线| 亚洲人成电影免费在线| 一本综合久久免费| 国产精品av视频在线免费观看| 听说在线观看完整版免费高清| 美女高潮的动态| 淫妇啪啪啪对白视频| 国产精品98久久久久久宅男小说| 成人国产一区最新在线观看| 噜噜噜噜噜久久久久久91| 精品一区二区三区四区五区乱码| 国产午夜精品论理片| 国产99白浆流出| 国产精品久久久人人做人人爽| 免费电影在线观看免费观看| 青草久久国产| 成人三级做爰电影| 国产精品一区二区免费欧美| 免费在线观看视频国产中文字幕亚洲| 亚洲真实伦在线观看| 欧美黑人欧美精品刺激| av视频在线观看入口| 亚洲色图 男人天堂 中文字幕| 免费看日本二区| 欧美日韩瑟瑟在线播放| 婷婷精品国产亚洲av在线| 色综合站精品国产| 18禁裸乳无遮挡免费网站照片| 夜夜夜夜夜久久久久| 国产高清三级在线| 人妻夜夜爽99麻豆av| 亚洲专区中文字幕在线| cao死你这个sao货| 天堂动漫精品| 国产一区在线观看成人免费| 亚洲激情在线av| 午夜亚洲福利在线播放| 色综合站精品国产| 欧美zozozo另类| 国产视频内射| 日韩欧美国产在线观看| 国产 一区 欧美 日韩| 欧美日韩国产亚洲二区| 搞女人的毛片| 一a级毛片在线观看| 国产精品九九99| 日韩有码中文字幕| 日本一本二区三区精品| 无遮挡黄片免费观看| av欧美777| 亚洲欧美精品综合久久99| 国产私拍福利视频在线观看| 香蕉av资源在线| 69av精品久久久久久| 亚洲欧洲精品一区二区精品久久久| 熟女电影av网| 欧美性猛交黑人性爽| 日本黄色片子视频| 国产99白浆流出| 免费高清视频大片| 可以在线观看的亚洲视频| 亚洲一区二区三区不卡视频| 99re在线观看精品视频| 久久中文字幕一级| 亚洲人与动物交配视频| 一区二区三区国产精品乱码| 日本免费一区二区三区高清不卡| 一个人观看的视频www高清免费观看 | 欧美午夜高清在线| 久久久久久久精品吃奶| 九色国产91popny在线| 欧美日韩精品网址| 久久久国产精品麻豆| 精品欧美国产一区二区三| 99久久99久久久精品蜜桃| 欧美一区二区精品小视频在线| 久久久国产精品麻豆| 午夜福利视频1000在线观看| 99国产精品99久久久久| 男女午夜视频在线观看| 禁无遮挡网站| 成人一区二区视频在线观看| 最新中文字幕久久久久 | 欧美中文综合在线视频| 两人在一起打扑克的视频| 久久精品国产亚洲av香蕉五月| 亚洲精品在线观看二区| 国产一区二区三区视频了| 久久久久久九九精品二区国产| 老熟妇仑乱视频hdxx| 午夜视频精品福利| 少妇人妻一区二区三区视频| 97超视频在线观看视频| 99国产精品一区二区蜜桃av| 亚洲aⅴ乱码一区二区在线播放| 色视频www国产| 国产aⅴ精品一区二区三区波| xxx96com| 欧美乱色亚洲激情| 亚洲午夜精品一区,二区,三区| 成人国产综合亚洲| 黑人巨大精品欧美一区二区mp4| 国产三级在线视频| a在线观看视频网站| 高潮久久久久久久久久久不卡| 日本免费一区二区三区高清不卡| 国产成人精品久久二区二区91| 国产高清三级在线| av欧美777| 老鸭窝网址在线观看| 亚洲 欧美一区二区三区| 亚洲人成网站在线播放欧美日韩| 久久久水蜜桃国产精品网| www.www免费av| 精品国内亚洲2022精品成人| 国产高清视频在线播放一区| 性色av乱码一区二区三区2| 中文字幕最新亚洲高清| 精华霜和精华液先用哪个| 禁无遮挡网站| h日本视频在线播放| 亚洲熟妇熟女久久| 久久午夜亚洲精品久久| 日韩大尺度精品在线看网址| 亚洲美女黄片视频| 十八禁人妻一区二区| 国产成人精品久久二区二区免费| 日韩欧美精品v在线| 十八禁人妻一区二区| 亚洲国产欧美网| 精品久久久久久,| 69av精品久久久久久| 三级毛片av免费| 亚洲va日本ⅴa欧美va伊人久久| 色在线成人网| 男人和女人高潮做爰伦理| 99国产精品99久久久久| 深夜精品福利| 国产av一区在线观看免费| 无限看片的www在线观看| 国产精品久久久人人做人人爽| 嫩草影院入口| 一本综合久久免费| 国产精品一及| 亚洲国产色片| 欧美日本视频| 亚洲精品美女久久av网站| 亚洲第一欧美日韩一区二区三区| av福利片在线观看| 国产高清有码在线观看视频| 国产熟女xx| 日韩人妻高清精品专区| 中亚洲国语对白在线视频| 婷婷丁香在线五月| 国产野战对白在线观看| 麻豆av在线久日| 久久久久久久久中文| 亚洲av成人不卡在线观看播放网| 国产伦人伦偷精品视频| 久久久精品大字幕| 午夜免费成人在线视频| 最近在线观看免费完整版| 国产精品一区二区免费欧美| 精华霜和精华液先用哪个| 欧美日韩乱码在线| 色av中文字幕| 成年版毛片免费区| 热99在线观看视频| 婷婷丁香在线五月| 久久久久久人人人人人| 18禁美女被吸乳视频| 一本精品99久久精品77| 国产又色又爽无遮挡免费看| 成人午夜高清在线视频| 国产亚洲精品综合一区在线观看| 1000部很黄的大片| 啪啪无遮挡十八禁网站| 一级毛片女人18水好多| 国产高清激情床上av| 欧美日韩乱码在线| 真人做人爱边吃奶动态| 国产三级中文精品| 丰满人妻一区二区三区视频av | 国产99白浆流出| 国产精品1区2区在线观看.| 久久精品91蜜桃| 国产乱人视频| 亚洲精品美女久久av网站| 国产精品 国内视频| 成人鲁丝片一二三区免费| 啦啦啦观看免费观看视频高清| 每晚都被弄得嗷嗷叫到高潮| 美女高潮喷水抽搐中文字幕| 最近最新免费中文字幕在线| 两人在一起打扑克的视频| 日日摸夜夜添夜夜添小说| 国产乱人视频| 国产精品日韩av在线免费观看| 搡老妇女老女人老熟妇| 色av中文字幕| 日韩免费av在线播放| cao死你这个sao货| 一级毛片精品| 色吧在线观看| 欧美乱妇无乱码| 丁香六月欧美| 深夜精品福利| 日韩欧美在线二视频| 伊人久久大香线蕉亚洲五| 99riav亚洲国产免费| 久久久久久久久中文| 免费电影在线观看免费观看| 高清在线国产一区| 亚洲av成人不卡在线观看播放网| 久久久久九九精品影院| 欧美激情久久久久久爽电影| 午夜亚洲福利在线播放| 99国产精品99久久久久| 亚洲av日韩精品久久久久久密| 国产精品爽爽va在线观看网站| 日韩欧美一区二区三区在线观看| 天天一区二区日本电影三级| 亚洲 国产 在线| 国产一区二区三区在线臀色熟女| 日本撒尿小便嘘嘘汇集6| 欧美中文综合在线视频| 亚洲无线观看免费| 亚洲美女视频黄频| 国产高清有码在线观看视频| 在线看三级毛片| 国产精品国产高清国产av| 一区二区三区高清视频在线| 九九热线精品视视频播放| 久久久久性生活片| 欧美日韩瑟瑟在线播放| 国产野战对白在线观看| 色播亚洲综合网| av黄色大香蕉| 亚洲精品在线观看二区| 两个人视频免费观看高清| 国产午夜精品论理片| 亚洲无线在线观看| 一区二区三区国产精品乱码| 国产91精品成人一区二区三区| 熟女人妻精品中文字幕| 一区二区三区高清视频在线| 欧美成人性av电影在线观看| 精品久久久久久久人妻蜜臀av| 国产精品免费一区二区三区在线| bbb黄色大片| 亚洲精品在线美女| 后天国语完整版免费观看| 亚洲欧美日韩东京热| 我要搜黄色片| 欧美高清成人免费视频www| 一a级毛片在线观看| 黄片大片在线免费观看| 欧美日韩精品网址| 久久久久久国产a免费观看| 婷婷丁香在线五月| 可以在线观看毛片的网站| 无人区码免费观看不卡| 成人av在线播放网站| 国产成人精品久久二区二区免费| av天堂中文字幕网| 国产高清激情床上av| 亚洲精品中文字幕一二三四区| 亚洲男人的天堂狠狠| 国内精品一区二区在线观看| 丁香欧美五月| 亚洲精品色激情综合| 亚洲人成电影免费在线| www国产在线视频色| 午夜久久久久精精品| 亚洲国产日韩欧美精品在线观看 | 天堂网av新在线| 国产精品久久久久久久电影 | 午夜福利高清视频| 18禁美女被吸乳视频| 午夜福利在线观看吧| 又爽又黄无遮挡网站| 日本一本二区三区精品| 男女午夜视频在线观看| 久久久久久大精品| 日韩有码中文字幕| 丁香六月欧美| 欧美午夜高清在线| 中国美女看黄片| 波多野结衣巨乳人妻| 日本 av在线| 黄色视频,在线免费观看| 亚洲精品456在线播放app | 淫妇啪啪啪对白视频| 9191精品国产免费久久| 欧美av亚洲av综合av国产av| tocl精华| 欧美中文综合在线视频| 国产极品精品免费视频能看的| 亚洲av美国av| 99热6这里只有精品| 国产激情欧美一区二区| 搡老熟女国产l中国老女人| 97人妻精品一区二区三区麻豆| 嫩草影院精品99| 夜夜夜夜夜久久久久| 无限看片的www在线观看| 丰满人妻一区二区三区视频av | 久久热在线av| 19禁男女啪啪无遮挡网站| 国产精品一区二区免费欧美| 在线观看免费视频日本深夜| 成人av在线播放网站| 性欧美人与动物交配| 9191精品国产免费久久| 亚洲中文字幕一区二区三区有码在线看 | 国产一区二区在线观看日韩 | 亚洲男人的天堂狠狠| 女人高潮潮喷娇喘18禁视频| 国内精品一区二区在线观看| 日韩欧美免费精品| 欧美日本视频| 国产成人精品无人区| 国产精品乱码一区二三区的特点| cao死你这个sao货| 日本成人三级电影网站| 久久久国产成人免费| 午夜两性在线视频| 在线观看免费午夜福利视频| 国产野战对白在线观看| 久久久国产成人精品二区| 大型黄色视频在线免费观看| 欧美乱妇无乱码| 在线a可以看的网站| 免费观看的影片在线观看| 黄色 视频免费看| 国产麻豆成人av免费视频| 97碰自拍视频| 亚洲人与动物交配视频| 又粗又爽又猛毛片免费看| a在线观看视频网站| 精品福利观看| cao死你这个sao货| 韩国av一区二区三区四区| 日韩三级视频一区二区三区| 成人三级做爰电影| 黄片小视频在线播放| 淫妇啪啪啪对白视频| 日本 av在线| 免费在线观看亚洲国产| 久久久久亚洲av毛片大全| a在线观看视频网站| 99视频精品全部免费 在线 | 亚洲午夜精品一区,二区,三区| 久久久久久国产a免费观看| 91九色精品人成在线观看| 偷拍熟女少妇极品色| 窝窝影院91人妻| 变态另类丝袜制服| 午夜久久久久精精品| 久久精品影院6| 脱女人内裤的视频| 国产蜜桃级精品一区二区三区| av片东京热男人的天堂| 久久久久久人人人人人| 久久久国产成人精品二区| 热99在线观看视频| 亚洲国产中文字幕在线视频| 国产精品,欧美在线| 丁香六月欧美| 亚洲欧美一区二区三区黑人| 一级黄色大片毛片| 亚洲成人久久爱视频| 无遮挡黄片免费观看| 99久国产av精品| 亚洲专区字幕在线| 丰满的人妻完整版| 午夜福利视频1000在线观看| 男人舔奶头视频| 后天国语完整版免费观看| 亚洲专区中文字幕在线| 嫁个100分男人电影在线观看| 超碰成人久久| 亚洲国产欧美一区二区综合| 欧美激情久久久久久爽电影| 欧美成狂野欧美在线观看| 午夜视频精品福利| 欧美中文日本在线观看视频| ponron亚洲| 真人一进一出gif抽搐免费| 久久久久国产精品人妻aⅴ院| 制服丝袜大香蕉在线| 97碰自拍视频| cao死你这个sao货| 国内精品美女久久久久久| 欧美色欧美亚洲另类二区| 久久精品夜夜夜夜夜久久蜜豆| 欧洲精品卡2卡3卡4卡5卡区| 免费电影在线观看免费观看| 亚洲国产欧美网| 免费人成视频x8x8入口观看| 九九在线视频观看精品| 国产真实乱freesex| 日韩欧美国产一区二区入口| 欧美成狂野欧美在线观看| 久久久久久人人人人人| 久久亚洲真实| netflix在线观看网站| 久久欧美精品欧美久久欧美| 婷婷精品国产亚洲av| 91在线精品国自产拍蜜月 | 一卡2卡三卡四卡精品乱码亚洲| 国产又色又爽无遮挡免费看| 视频区欧美日本亚洲| 成人精品一区二区免费| 99国产极品粉嫩在线观看| 后天国语完整版免费观看| 婷婷亚洲欧美| 亚洲av熟女| 最近在线观看免费完整版| 久久草成人影院| 亚洲一区二区三区不卡视频| 天堂√8在线中文| 少妇的丰满在线观看| 久久欧美精品欧美久久欧美| 黄频高清免费视频| 国产精品亚洲美女久久久| 亚洲国产欧洲综合997久久,| 99久久成人亚洲精品观看| 欧美日韩精品网址| 欧美zozozo另类| 亚洲国产中文字幕在线视频| 日本黄大片高清| 99久久无色码亚洲精品果冻| 亚洲欧美日韩东京热| 1024香蕉在线观看| 久久久久精品国产欧美久久久| 一二三四在线观看免费中文在| 母亲3免费完整高清在线观看| 午夜精品一区二区三区免费看| 美女高潮喷水抽搐中文字幕| 亚洲欧美精品综合久久99| 成年女人看的毛片在线观看| 美女高潮的动态| 在线视频色国产色| 久久久久精品国产欧美久久久| 美女高潮喷水抽搐中文字幕| 制服人妻中文乱码| 国内毛片毛片毛片毛片毛片| 欧美最黄视频在线播放免费| 久久久精品欧美日韩精品| 久久久久免费精品人妻一区二区| 日韩欧美免费精品| 免费无遮挡裸体视频| 亚洲性夜色夜夜综合| 国产精品电影一区二区三区| 国产精品av久久久久免费| 99视频精品全部免费 在线 | 亚洲美女黄片视频| 老司机福利观看| 国产三级在线视频| 中文字幕最新亚洲高清| 久久久精品欧美日韩精品| 中文字幕av在线有码专区| 欧美zozozo另类| 日韩免费av在线播放| 亚洲色图 男人天堂 中文字幕| 丁香欧美五月| 久久久久精品国产欧美久久久| 国产不卡一卡二| 成年女人永久免费观看视频| 亚洲av第一区精品v没综合| 久久久久国产一级毛片高清牌| 精品国产超薄肉色丝袜足j| 国产精品爽爽va在线观看网站| 真实男女啪啪啪动态图| 国产91精品成人一区二区三区| 亚洲国产欧美网| 99精品欧美一区二区三区四区| 亚洲avbb在线观看| 身体一侧抽搐| 欧美成狂野欧美在线观看| 一级黄色大片毛片| www.www免费av| 99国产精品一区二区三区| 男女之事视频高清在线观看| 色av中文字幕| 18禁国产床啪视频网站| 久久国产精品人妻蜜桃| 丰满的人妻完整版| 亚洲avbb在线观看| 大型黄色视频在线免费观看| 欧美色视频一区免费| 亚洲欧美激情综合另类| 99久久久亚洲精品蜜臀av| 亚洲aⅴ乱码一区二区在线播放| av黄色大香蕉| 三级国产精品欧美在线观看 | 丁香欧美五月| 老司机午夜十八禁免费视频| 高潮久久久久久久久久久不卡| 亚洲精品色激情综合| 国产成人精品久久二区二区免费| a级毛片a级免费在线| 午夜日韩欧美国产| 色综合站精品国产| 真人做人爱边吃奶动态| 精品久久久久久久毛片微露脸| 午夜久久久久精精品| 无遮挡黄片免费观看| 亚洲五月婷婷丁香| 不卡一级毛片| 天天躁日日操中文字幕| 身体一侧抽搐| 亚洲av熟女| 久久久久久久久中文| 99在线人妻在线中文字幕| 99热精品在线国产| 国产主播在线观看一区二区| 欧美丝袜亚洲另类 | 桃色一区二区三区在线观看| 99久久久亚洲精品蜜臀av| 国产三级黄色录像| 精品久久久久久久人妻蜜臀av| av欧美777| 观看免费一级毛片| 老汉色av国产亚洲站长工具| 久久午夜综合久久蜜桃| 久久香蕉国产精品| 美女扒开内裤让男人捅视频| 亚洲av美国av| 中文字幕高清在线视频| 色综合站精品国产| 日日摸夜夜添夜夜添小说| 亚洲激情在线av| 中文在线观看免费www的网站| 91av网一区二区| 亚洲天堂国产精品一区在线|