• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于彈齒軌跡的滾筒式牧草撿拾器遺漏率及工作參數(shù)優(yōu)化

    2018-03-09 05:54:33郁志宏淮守成王文明
    關(guān)鍵詞:彈齒遺漏凸輪

    郁志宏,淮守成,王文明

    ?

    基于彈齒軌跡的滾筒式牧草撿拾器遺漏率及工作參數(shù)優(yōu)化

    郁志宏1,淮守成1,王文明2

    (1. 內(nèi)蒙古農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,呼和浩特 010018; 2. 邢臺(tái)職業(yè)技術(shù)學(xué)院機(jī)電工程系,邢臺(tái) 054035)

    該文基于彈齒的運(yùn)動(dòng)軌跡,建立了遺漏率理論模型并進(jìn)行了仿真,利用MATLAB編程實(shí)現(xiàn)撿拾器凸輪機(jī)構(gòu)的參數(shù)化設(shè)計(jì)。對(duì)凸輪軌道為正弦加速度規(guī)律運(yùn)動(dòng)的撿拾器進(jìn)行遺漏率理論分析,并利用高速攝像系統(tǒng)進(jìn)行試驗(yàn),理論與試驗(yàn)的漏撿區(qū)高度線性擬合調(diào)整2為0.998 8,漏撿區(qū)面積線性擬合調(diào)整2為0.960 4。在撿拾器機(jī)器前進(jìn)速度4~6 km/h,滾筒轉(zhuǎn)速40~90 r/min時(shí),應(yīng)用遺漏率理論模型進(jìn)行中心組合響應(yīng)曲面法分析和目標(biāo)優(yōu)化,得到的理論工作參數(shù)最佳組合為前進(jìn)速度4.0 km/h,滾筒轉(zhuǎn)速54.299 r/min,此時(shí),漏撿區(qū)高度0.796 cm,漏撿區(qū)面積6.369 cm2。在前進(jìn)速度4 km/h和滾筒轉(zhuǎn)速55 r/min的條件下進(jìn)行不同含水率牧草的撿拾試驗(yàn),遺漏率均低于國家標(biāo)準(zhǔn)要求的25%。該研究為撿拾器設(shè)計(jì)提供了理論基礎(chǔ),且能更好地指導(dǎo)實(shí)際生產(chǎn)。

    農(nóng)業(yè)機(jī)械;模型;優(yōu)化;撿拾器;遺漏率;工作參數(shù)

    0 引 言

    撿拾壓捆機(jī)是常用的牧草收獲機(jī)械,作為它的主要工作部件,彈齒滾筒式撿拾器的性能好壞直接影響到撿拾壓捆機(jī)的工作性能,展開撿拾器的深入研究具有一定的意義。

    國內(nèi)學(xué)者對(duì)彈齒滾筒式撿拾器做了很多研究工作,王國權(quán)等[1]研究設(shè)計(jì)了一種秸稈撿拾打捆機(jī),并用ADAMS軟件對(duì)撿拾器進(jìn)行了仿真;王學(xué)農(nóng)等[2]設(shè)計(jì)了殘膜撿拾滾筒并利用SolidWorks軟件對(duì)其進(jìn)行了運(yùn)動(dòng)仿真;王鋒德等[3]對(duì)4YF-1300 型大方捆打捆機(jī)的傳動(dòng)系統(tǒng)、物料撿拾和喂入系統(tǒng)、機(jī)械式預(yù)壓縮室、壓縮機(jī)構(gòu)以及液壓密度控制系統(tǒng)進(jìn)行了設(shè)計(jì)和參數(shù)計(jì)算,并為驗(yàn)證機(jī)器作業(yè)的可靠性進(jìn)行了試驗(yàn);烏吉斯古楞等[4-5]應(yīng)用INVENTOR軟件對(duì)撿拾器進(jìn)行了仿真分析;孫貴斌等[6]運(yùn)用COSMOS Motion 運(yùn)動(dòng)仿真軟件對(duì)彈齒滾筒撿拾器機(jī)構(gòu)進(jìn)行了運(yùn)動(dòng)仿真;王振華等[7]對(duì)方草捆壓捆機(jī)撿拾器的工作幅寬及滾筒轉(zhuǎn)速進(jìn)行了設(shè)計(jì),并對(duì)3組彈齒的撿拾器和4組彈齒的撿拾器的運(yùn)動(dòng)參數(shù)和遺漏率進(jìn)行了對(duì)比分析;袁彩云等[8]對(duì)彈齒滾筒撿拾器的滾輪軸心在曲道內(nèi)的運(yùn)動(dòng)軌跡進(jìn)行了研究,運(yùn)用UG建模并使用ADAMS對(duì)彈齒進(jìn)行運(yùn)動(dòng)仿真分析;王文明等[9]通過ADAMS軟件仿真模擬以及試驗(yàn)研究對(duì)多個(gè)不同輪廓的凸輪盤進(jìn)行研究;肖子學(xué)等[10]利用SolidWorks軟件對(duì)彈齒滾筒式撿拾器進(jìn)行建模和仿真分析;丁海泉等[11]對(duì)彈齒滾筒式撿拾器的運(yùn)動(dòng)學(xué)特性進(jìn)行了理論分析;郁志宏等[12-15]對(duì)彈齒滾筒式牧草撿拾器性能參數(shù)做了對(duì)比試驗(yàn),以及三因素正交試驗(yàn),并對(duì)彈齒滾筒式撿拾器彈齒進(jìn)行了靜力學(xué)分析。國外學(xué)者主要綜合研究撿拾器整機(jī)性能[16-17]。目前未見對(duì)彈齒滾筒式撿拾器撿拾遺漏率進(jìn)行過理論研究,本文基于彈齒運(yùn)動(dòng)軌跡,進(jìn)行了遺漏率建模和仿真。

    為使撿拾器設(shè)計(jì)確定結(jié)構(gòu)與性能參數(shù)時(shí),遺漏率符合國家標(biāo)準(zhǔn)[18]的要求。本文將遺漏率問題轉(zhuǎn)化為漏撿區(qū)面積和高度問題進(jìn)行研究,利用MATLAB編程實(shí)現(xiàn)撿拾器凸輪機(jī)構(gòu)的參數(shù)化設(shè)計(jì),在定參數(shù)下進(jìn)行了遺漏率理論分析和高速攝像試驗(yàn)驗(yàn)證,并進(jìn)行了中心組合響應(yīng)曲面法分析與參數(shù)優(yōu)化。

    1 基于彈齒運(yùn)動(dòng)學(xué)的遺漏率模型建立

    1.1彈齒運(yùn)動(dòng)方程

    彈齒滾筒式撿拾器主要由撿拾器中間軸、滾筒盤、滾輪、凸輪盤、彈齒、管軸、護(hù)板和曲柄等組成,機(jī)構(gòu)簡(jiǎn)圖見圖1,其實(shí)質(zhì)是一個(gè)反轉(zhuǎn)后的擺動(dòng)從動(dòng)件凸輪機(jī)構(gòu)。彈齒滾筒式撿拾器的運(yùn)動(dòng)規(guī)律是凸輪盤不動(dòng),曲柄和彈齒連結(jié)點(diǎn)固定在滾筒上,滾筒在繞回轉(zhuǎn)中心轉(zhuǎn)動(dòng)帶動(dòng)彈齒運(yùn)動(dòng)。凸輪盤的輪廓形狀取決于動(dòng)件曲柄的運(yùn)動(dòng)規(guī)律。

    如圖2所示建立坐標(biāo)系,以凸輪機(jī)構(gòu)基圓圓心為坐標(biāo)原點(diǎn),撿拾器前進(jìn)方向?yàn)檩S方向,垂直于地面的方向?yàn)檩S方向,進(jìn)行彈齒運(yùn)動(dòng)分析,凸輪機(jī)構(gòu)初始擺角0方程為

    式中為滾筒半徑,m;為曲柄長度,m;0為凸輪基圓半徑,m。

    1.彈齒 2.管軸 3.曲柄 4.凸輪盤 5.滾輪 6.滾筒盤 7.中間軸 8.滾筒護(hù)板 9.側(cè)護(hù)板 10.懸掛軸 11.支架

    1.Spring-finger 2.Tube shaft 3.Crank 4.CAM disc 5.Roller 6.Cylinder plate 7.Intermediate axis 8.Cylinder guard board 9.Side guard board 10.Suspension axis 11. Stent

    注:V為機(jī)器前速速度,km·h-1;為滾筒轉(zhuǎn)速,r·s-1。

    Note:Vis machine forword speed, km·h-1;is cylinder speed, r·s-1.

    圖1 彈齒滾筒式撿拾器機(jī)構(gòu)簡(jiǎn)圖

    Fig.1 Structure diagram of spring-finger cylinder pickup collector

    注:A為曲柄與彈齒連接點(diǎn);B為滾子中心點(diǎn);G為彈齒端部點(diǎn);R為滾筒半徑,m;l為曲柄長度,m;l′為彈齒長度,m;φ為凸輪機(jī)構(gòu)擺角,rad;φ0為凸輪機(jī)構(gòu)初始擺角,rad;γ為彈齒與曲柄夾角,rad;t為時(shí)間,s。

    凸輪機(jī)構(gòu)擺角是關(guān)于的擺動(dòng)從動(dòng)件運(yùn)動(dòng)規(guī)律,其方程為

    式中為時(shí)間,s。

    在不考慮彈齒擺動(dòng)運(yùn)動(dòng)的情況下,彈齒運(yùn)動(dòng)軌跡為擺線,擺線形狀取決于的大小。擺線形狀方程

    式中′為彈齒端部回轉(zhuǎn)半徑,m。

    取值范圍為1.2~1.5[19],此時(shí)撿拾運(yùn)送物料時(shí)彈齒端部有一定的線速度但速度變化不能大,而且升舉階段彈齒端部速度相對(duì)向上;收齒時(shí)彈齒端部速度向下,即收齒時(shí)水平相對(duì)分速度為零,這樣彈齒不拖掛物料。

    彈齒端部點(diǎn)的位移、速度和加速度方程見式(4)、式(5)和式(6)。

    式中為彈齒端部水平方向位移,m;為彈齒端部垂直方向位移,m;v為彈齒端部水平方向分速度,m/s;v為彈齒端部垂直方向分速度,m/s;a為彈齒端部水平加速度,m/s2;a為彈齒端部垂直方向加速度,m/s2;v為前進(jìn)速度,m/s;為曲柄長度,m;為彈齒長度,m;為彈齒與曲柄夾角,rad;為擺角對(duì)時(shí)間的一階導(dǎo)數(shù);為擺角對(duì)時(shí)間的二階導(dǎo)數(shù)。

    彈齒端部絕對(duì)速度不得超過3 m/s[20],此時(shí)防止牧草花葉的脫落和彈齒在撿拾后帶草。彈齒端部絕對(duì)速度方程為

    彈齒端部回轉(zhuǎn)半徑方程為

    1.2 遺漏率模型

    彈齒滾筒式撿拾器漏撿區(qū),如圖3所示,由1、、3點(diǎn)構(gòu)成,其中1點(diǎn)代表彈齒與相鄰彈齒位移軌跡交點(diǎn),點(diǎn)代表彈齒位移軌跡最低點(diǎn),點(diǎn)代表相鄰彈齒位移軌跡最低點(diǎn)。

    彈齒運(yùn)動(dòng)軌跡方程為

    相鄰彈齒運(yùn)動(dòng)軌跡方程為

    式中1為相鄰彈齒端部垂直方向位移,m。

    漏撿區(qū)面積方程為

    注:1為彈齒與相鄰彈齒位移軌跡交點(diǎn);為彈齒位移軌跡最低點(diǎn);為相鄰彈齒位移軌跡最低點(diǎn);為割茬高度和草條高度之和,m;為割茬高度,m。

    Note:1is intersection point between spring-finger displacement trajectory and adjacent spring-finger displacement trajectory;is lowest point of spring-finger displacement trajectory;is lowest point of adjacent spring-finger displacement trajectory;is the sum of stubble height and grass height, m;is stubble height, m.

    圖3 彈齒滾筒式撿拾器漏撿區(qū)

    Fig.3 Leakage collecting area of spring-finger cylinder pickup collector

    漏撿區(qū)長度方程為

    漏撿區(qū)高度H方程為

    忽略草條高度不一致情況下,理論遺漏率S

    式中為漏撿區(qū)長度,m;為割茬高度和草條高度之和,m;為割茬高度,m。

    2 程序“彈齒滾筒式撿拾器參數(shù)化設(shè)計(jì)系統(tǒng)”的實(shí)現(xiàn)

    基于MATLAB語言設(shè)計(jì)的“彈齒滾筒式撿拾器參數(shù)化設(shè)計(jì)系統(tǒng)”,可實(shí)現(xiàn)5種常見從動(dòng)件運(yùn)動(dòng)規(guī)律(等速運(yùn)動(dòng)、等加速等減速運(yùn)動(dòng)、三四五次方程、正弦加速度(擺線)運(yùn)動(dòng)和余弦加速度(簡(jiǎn)諧)運(yùn)動(dòng))的凸輪機(jī)構(gòu)數(shù)學(xué)模型[21-23]以及彈齒運(yùn)動(dòng)數(shù)學(xué)模型的設(shè)計(jì)。該系統(tǒng)輸入凸輪機(jī)構(gòu)結(jié)構(gòu)參數(shù)和工作參數(shù),運(yùn)行可生成凸輪輪廓圖、彈齒端部位移曲線圖、彈齒端部回轉(zhuǎn)半徑圖、彈齒端部速度圖、彈齒端部加速度圖以及彈齒與鄰齒端部位移曲線圖等,輸出凸輪的最大壓力角、曲率半徑滾子、最大設(shè)計(jì)半徑、彈齒端部回轉(zhuǎn)半徑、漏撿區(qū)面積、理論遺漏率、定長距離漏撿區(qū)面積、定長距離理論遺漏率和凸輪輪廓點(diǎn)數(shù)據(jù)文件,并輸出邊界條件判斷結(jié)果。

    以課題組研制的撿拾器試驗(yàn)臺(tái)為例,其原型為9KJ-1.4A小方捆撿拾壓捆機(jī),試驗(yàn)臺(tái)使用文獻(xiàn)[4]設(shè)計(jì)的新型凸輪,升程和回程為擺線(正弦加速度)運(yùn)動(dòng)規(guī)律,凸輪機(jī)構(gòu)結(jié)構(gòu)參數(shù)如表1。

    表1 凸輪機(jī)構(gòu)結(jié)構(gòu)參數(shù)

    設(shè)置機(jī)器前進(jìn)速度為4 km/h,滾筒轉(zhuǎn)速為50 r/min,利用表1參數(shù)進(jìn)行繪圖和輸出。將對(duì)應(yīng)參數(shù)代入正弦加速度(擺線)運(yùn)動(dòng)凸輪機(jī)構(gòu)數(shù)學(xué)模型獲得凸輪輪廓,如圖4所示。

    圖4 凸輪輪廓圖

    3 試驗(yàn)驗(yàn)證與工作參數(shù)優(yōu)化

    國家標(biāo)準(zhǔn)中規(guī)定撿拾器撿拾遺漏率要小于1%。撿拾器撿拾遺漏率為撿拾器在撿拾過程當(dāng)中漏撿部分質(zhì)量(長度小于70 mm的碎草不統(tǒng)計(jì)在撿拾損失飼草之內(nèi))占測(cè)定地段上的被撿牧草全部質(zhì)量的百分比,方程為

    式中S′為遺漏率,%;為測(cè)定長度,m;W為撿拾器漏拾牧草質(zhì)量,g;P為每米草條質(zhì)量,kg。

    式(14)體現(xiàn)空間上的遺漏率,而式(15)體現(xiàn)質(zhì)量上的遺漏率,將理論遺漏率問題轉(zhuǎn)化為漏撿區(qū)面積和高度問題以便于試驗(yàn)驗(yàn)證。

    3.1 試驗(yàn)儀器設(shè)備

    撿拾器試驗(yàn)臺(tái)見圖5。高速攝像機(jī)dimaxS4、JN338型智能數(shù)字式轉(zhuǎn)矩轉(zhuǎn)速測(cè)量?jī)x表、CNT800-4T0075G 和VARISPEED-616G5變頻器等。

    1.鏈傳動(dòng) 2.電動(dòng)機(jī) 3.扭矩傳感器 4.皮帶傳動(dòng) 5.集草箱 6.帶式輸送器 7.滾筒撿拾器 8.后側(cè)護(hù)板 9.草條車

    3.2 試驗(yàn)方法

    高速攝像機(jī)記錄彈齒端部運(yùn)動(dòng)狀態(tài)。攝像機(jī)與計(jì)算機(jī)通過USB數(shù)據(jù)線相連接,并應(yīng)用CamWare軟件控制攝像和記錄。高速攝像測(cè)試系統(tǒng)如圖6,標(biāo)尺為20 mm× 20 mm和10 mm×10 mm的正方形格尺。鏡頭至20 mm× 20 mm標(biāo)尺水平距離為1 200 mm,彈齒標(biāo)定點(diǎn)至20 mm×20 mm標(biāo)尺軸向距離為90 mm??刂栖浖O(shè)定每秒鐘164張圖像,根據(jù)攝像機(jī)最高分辨率調(diào)定分辨率為2 016×2 016。圖7為彈齒端部跟蹤點(diǎn)標(biāo)定,以撿拾器回轉(zhuǎn)中心軸心為坐標(biāo)原點(diǎn),以鏈輪上貼的標(biāo)尺中心為標(biāo)定點(diǎn)。記錄圖像上跟蹤點(diǎn)水平像素值和垂直像素值及草條車跟蹤點(diǎn)每秒水平像素變化值,在MATLAB中使用3次插樣的方法獲取擬合曲線,求出漏撿區(qū)高度且用積分求出漏撿區(qū)面積。

    1.彈齒 2.側(cè)護(hù)板 3.PCO dimax S4型高速攝像機(jī) 4.計(jì)算機(jī)

    圖7 跟蹤點(diǎn)標(biāo)定

    3.3 試驗(yàn)方案

    所用機(jī)型滾筒轉(zhuǎn)速范圍為40~90 r/min,前進(jìn)速度為4~6 km/h。應(yīng)用Central Composite Design(CCD)-響應(yīng)面優(yōu)化法[24-26]進(jìn)行遺漏率研究。在Design-Expert中,按照中心組合響應(yīng)曲面設(shè)計(jì)[27-31]設(shè)計(jì)試驗(yàn)方案,試驗(yàn)因素及編碼水平表如表2所示。

    表2 因素水平編碼表

    3.4 試驗(yàn)結(jié)果分析與工作參數(shù)優(yōu)化

    3.4.1 模型驗(yàn)證

    將表2中的機(jī)器前進(jìn)速度與滾筒轉(zhuǎn)速和表1的機(jī)構(gòu)參數(shù)輸入“彈齒滾筒式撿拾器參數(shù)化設(shè)計(jì)系統(tǒng)”中,生成漏撿區(qū)高度和漏撿區(qū)面積,作為理論模型曲面響應(yīng)數(shù)據(jù);試驗(yàn)結(jié)果作為試驗(yàn)?zāi)P颓骓憫?yīng)數(shù)據(jù),如表3所示。

    表3 理論模型與試驗(yàn)結(jié)果曲面響應(yīng)數(shù)據(jù)表

    使用Origin軟件將表3得到的理論漏撿區(qū)高度和試驗(yàn)漏撿區(qū)高度數(shù)值進(jìn)行線性擬合,調(diào)整2為0.998 8,方程如圖8a所示;再將表3得到的理論漏撿區(qū)面積和試驗(yàn)漏撿區(qū)面積數(shù)值進(jìn)行線性擬合,調(diào)整2為0.960 4,方程如圖8b所示。由此可知圖8表面建立的遺漏率理論分析模型是較準(zhǔn)確的。

    圖8 理論分析與試驗(yàn)數(shù)值線性擬合

    3.4.2 工作參數(shù)優(yōu)化

    根據(jù)表3數(shù)據(jù),各因素對(duì)理論模型漏撿區(qū)高度和漏撿區(qū)面積響應(yīng)曲面如圖9所示。

    a. 漏撿區(qū)高度

    a. Height of leakage area

    b. 漏撿區(qū)面積

    由圖9a可知,滾筒轉(zhuǎn)速與前進(jìn)速度不存在交互作用,整體趨勢(shì)平滑,前進(jìn)速度一定時(shí),漏撿區(qū)高度隨滾筒轉(zhuǎn)速的增大而減小;滾筒轉(zhuǎn)速一定時(shí),漏撿區(qū)高度隨前進(jìn)速度增大而增大。由圖9b可知,滾筒轉(zhuǎn)速與前進(jìn)速度存在交互作用,在滾筒轉(zhuǎn)速處于0水平時(shí),漏撿區(qū)面積隨前進(jìn)速度增大而增大,波動(dòng)范圍為4.23~10.30 cm2,但當(dāng)前進(jìn)速度處于低水平時(shí),漏撿區(qū)面積波動(dòng)區(qū)間較小,波動(dòng)范圍為2.10~4.91 cm2。這是因?yàn)闈L子主要處于凸輪機(jī)構(gòu)升程階段末期,對(duì)彈齒端部位移影響?。磺斑M(jìn)速度一定時(shí),漏撿區(qū)面積隨滾筒轉(zhuǎn)速的增大而減小;滾筒轉(zhuǎn)速一定時(shí),漏撿區(qū)面積隨速度增大而增大。

    為了進(jìn)一步得到工作參數(shù)的最佳匹配組合,以使撿拾器作業(yè)質(zhì)量達(dá)到最佳,對(duì)理論模型進(jìn)行邊界條件的補(bǔ)充,如表4。

    對(duì)理論模型進(jìn)行多目標(biāo)優(yōu)化,目標(biāo)函數(shù)如下:

    min H

    minN

    1.2≤≤1.5

    max≤3

    4≤V≤6

    40≤≤90

    式中max為彈齒端部絕對(duì)速度最大值,m/s;為滾筒轉(zhuǎn)速,r/min。

    表4 理論模型邊界條件數(shù)據(jù)表

    漏撿區(qū)高度H最低和漏撿區(qū)面積N最小時(shí)的最優(yōu)解為:=54.299 r/min,V=4.0 km/h。此時(shí),漏撿區(qū)高度為0.796 cm,漏撿區(qū)面積為6.369 cm2,擺線形狀為1.460,彈齒端部最大線速度3 m/s。

    2017年9月15日,根據(jù)優(yōu)化結(jié)果及試驗(yàn)的可操作性,在前進(jìn)速度4 km/h和滾筒轉(zhuǎn)速55 r/min的條件下進(jìn)行試驗(yàn),經(jīng)高速攝像分析,此時(shí)漏撿區(qū)高度為0.835 cm,漏撿區(qū)面積為6.774 cm2。2017年9月21日,將含水率15%、18%、21%、25%的6 kg牧草放在2 m2的草條車上進(jìn)行撿拾試驗(yàn),遺漏率分別為0.2%、0.21%、0.25%、0.24%,遺漏率均低于國家標(biāo)準(zhǔn)要求的25%。

    4 結(jié) 論

    1)針對(duì)彈齒滾筒式撿拾器作業(yè)時(shí)遺漏率最小化問題,本文在彈齒滾筒式撿拾器運(yùn)動(dòng)學(xué)分析基礎(chǔ)上,使用Matlab開發(fā)了“彈齒滾筒式撿拾器參數(shù)化設(shè)計(jì)系統(tǒng)”,通過輸入機(jī)構(gòu)參數(shù)和工作參數(shù)仿真撿拾器彈齒端部運(yùn)動(dòng)狀態(tài)進(jìn)行遺漏率理論分析,并利用高速攝像系統(tǒng)進(jìn)行彈齒端部運(yùn)動(dòng)軌跡跟蹤試驗(yàn),驗(yàn)證了理論模型的正確性,理論與試驗(yàn)漏撿區(qū)高度線性擬合調(diào)整2為0.998 8,漏撿區(qū)面積線性擬合調(diào)整2為0.960 4。

    2)前進(jìn)速度為4~6 km/h,滾筒轉(zhuǎn)速為40~90 r/min時(shí),運(yùn)用中心組合響應(yīng)曲面法進(jìn)行遺漏率理論分析得知,撿拾器前進(jìn)速度一定時(shí),遺漏率隨滾筒轉(zhuǎn)速的增大而減?。粷L筒轉(zhuǎn)速一定時(shí),遺漏率隨機(jī)器前進(jìn)速度增大而增大;補(bǔ)充邊界條件進(jìn)行目標(biāo)優(yōu)化,得到的最佳參數(shù)組合為滾筒轉(zhuǎn)速54.299 r/min,前進(jìn)速度4.0 km/h,此時(shí)漏撿區(qū)高度0.796 cm,漏撿區(qū)面積6.369 cm2。在前進(jìn)速度4 km/h和滾筒轉(zhuǎn)速55 r/min的條件下進(jìn)行不同含水率牧草的撿拾試驗(yàn),遺漏率均滿足國家標(biāo)準(zhǔn)要求。

    [1] 王國權(quán),余群,卜云龍,等. 秸稈撿拾打捆機(jī)設(shè)計(jì)及撿拾器的動(dòng)力學(xué)仿真[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2001,32(5):59-61,68.

    Wang Guoquan, Yu Qun, Bu Yunlong, et al. Design of pickup baler and dynamic simulation of pickup roller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(5): 59-61, 68. (in Chinese with English abstract)

    [2] 王學(xué)農(nóng),陳發(fā),張佳喜,等. 基于Solidworks殘臘撿拾滾筒3D設(shè)計(jì)及運(yùn)動(dòng)仿真[J]. 新疆農(nóng)業(yè)科技,2008,45(S2):156-158.

    Wang Xuenong, Chen Fa, Zhang Jiaxi, et al. Three-dimensional design and motion simulating of tooth roller for collecting residual plastic film based on the software of Solidworks[J].Xinjiang Agricultural Sciences, 2008, 45(S2): 156-158. (in Chinese with English abstract)

    [3] 王鋒德,陳志,王俊友,等. 4YF-1300 型大方捆打捆機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(11):36-41.

    Wang Fengde, Chen Zhi, Wang Junyou, et al. Design and experiment of 4YF-1300 large rectangular baler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(11): 36-41. (in Chinese with English abstract)

    [4] 烏吉斯古楞,劉偉峰,包那日那. 滾筒式撿拾器的運(yùn)動(dòng)仿真[J]. 農(nóng)機(jī)化研究,2010,32(9):50-53.

    Wujisiguleng, Liu Weifeng, Baonarina. Simulation of Spring-tooth Pick-up[J]. Journal of Agricultural Mechanization Research, 2010, 32(9): 50-53. (in Chinese with English abstract)

    [5] 烏吉斯古楞. 彈齒滾筒式牧草撿拾器運(yùn)動(dòng)仿真及性能參數(shù)的試驗(yàn)研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2010.

    Wujisiguleng. Simulation and Experimental Study on Performance Parameters of Spring-tooth Grass Pickup Roller[D]. Hohhot: Inner Mongolia Agricultural University, 2010. (in Chinese with English abstract)

    [6] 孫貴斌,孫召瑞,吳修彬,等. 基于COSMOS Motion 的彈齒滾筒撿拾器運(yùn)動(dòng)仿真[J]. 農(nóng)業(yè)裝備與車輛工程,2010,48(8):37-39.

    Sun Guibin, Sun Zhaorui, Wu Xiubin, et al. Simulation of spring-finger cylinder pickups motion based on COSMOS Motion[J]. Agricultural Equipment & Vehicle Engineering, 2010, 48(8): 37-39. (in Chinese with English abstract)

    [7] 王振華,王德成,劉貴林,等. 方草捆壓捆機(jī)撿拾器參數(shù)設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(增刊):107-109.

    Wang Zhenhua, Wang Decheng, Liu Guilin, et al. Pickup parameters design of square baler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(Supp.): 107-109. (in Chinese with English abstract)

    [8] 袁彩云,刁培松,張道林. 彈齒滾筒撿拾器的設(shè)計(jì)與運(yùn)動(dòng)仿真[J]. 農(nóng)機(jī)化研究,2011,33(5):73-76.

    Yuan Caiyun, Diao Peisong, Zhang Daolin. Design and motion simulation of spring-finger cylinder pickups[J]. Journal of Agricultural Mechanization Research, 2011, 33(5): 73-76. (in Chinese with English abstract)

    [9] 王文明,王春光. 彈齒滾筒式撿拾器參數(shù)分析與仿真[J].農(nóng)機(jī)化研究,2012,43(10):82-89.

    Wang Wenming, Wang Chunguang. Parameter analysis and simulation of spring-finger cylinder pickup collector[J]. Journal of Agricultural Mechanization Research, 2012, 43(10): 82-89. (in Chinese with English abstract)

    [10] 肖子學(xué). 彈齒滾筒式撿拾器的參數(shù)化設(shè)計(jì)及運(yùn)動(dòng)學(xué)仿真研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2014.

    Xiao Zixue. Parametric Design and Kinematics Simulation on Spring-Finger Cylinder Pick up Collector[D]. Huhhot:Inner Mongolia Agricultural University, 2014. (in Chinese with English abstract)

    [11] 丁海泉,郁志宏,劉偉峰,等. 彈齒滾筒式撿拾器運(yùn)動(dòng)學(xué)特性的理論分析[J]. 農(nóng)機(jī)化研究,2015,37(10):76-82.

    Ding Haiquan, Yu Zhihong, Liu Weifeng, et al. Theory analysis on kinematics characteristics of spring-finger cylinder pickup device[J]. Journal of Agricultural Mechanization Research, 2015, 37(10): 76-82. (in Chinese with English abstract)

    [12] 郁志宏,王文明,莫日根畢力格,等. 彈齒滾筒式撿拾器撿拾性能試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(3):106-112.

    Yu Zhihong, Wang Wenming, Morigenbilige, et al. Experiment on performance of spring-finger cylinder pickup collector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 106-112. (in Chinese with English abstract)

    [13] 郁志宏,莫日根畢力格,王文明,等. 彈齒滾筒式牧草撿拾器性能參數(shù)對(duì)比試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2017,39(2):122-127.

    Yu Zhihong, Morigenbilige, Wang Wenming, et al. Comparison Experimental and research on the performance parameter of the spring-finger cylinder pickup collector[J]. Journal of Agricultural Mechanization Research, 2017, 39(2): 122-127. (in Chinese with English abstract)

    [14] 郁志宏,達(dá)布其力吐,王文明,等. 撿拾器試驗(yàn)臺(tái)性能參數(shù)分析與優(yōu)化[J]. 農(nóng)機(jī)化研究,2017,39(1):187-191,196.

    Yu Zhihong, Dabuqilitu, Wang Wenming, et al. The performance parameters analysis and optimazation of pickup Experimental-device[J]. Journal of Agricultural Mechanization Research, 2017, 39(1): 187-191,196. (in Chinese with English abstract)

    [15] 郁志宏,吳淑紅,王文明,等. 彈齒滾筒式撿拾器彈齒的靜力學(xué)分析[J]. 農(nóng)機(jī)化研究,2017,39(4):27-31.

    Yu Zhihong, Wu Shuhong, Wang Wenming, et al. Static analysis for spring-finger of 9KJ-1.4a forage baler pickup collector[J]. Journal of Agricultural Mechanization Research, 2017, 39(4): 27-31. (in Chinese with English abstract)

    [16] Bortolini Marco, Cascini Alessandro, Gamberi Mauro. Sustainable design and life cycle assessment of an innovative multi-functional haymaking agricultural machinery[J]. Journal of Cleaner Production, 2014, 82: 23-36.

    [17] Langer Thomas H, Ebbesen Morten K. Kordestani Ario. Experimental analysis of occupational whole-body vibration exposure of agricultural tractor with large square baler[J]. International Journal of Industrial Ergonomics, 2015(47): 79-83.

    [18] 中華人民共和國機(jī)械行業(yè)標(biāo)準(zhǔn).牧草撿拾器:JB/T5160-2010[S].

    [19] 卡那沃依斯基. 收獲機(jī)械[M]. 曹崇文,吳春江,柯???,譯. 北京:中國農(nóng)業(yè)機(jī)械出版社,1983.

    [20] 中國農(nóng)業(yè)機(jī)械化科學(xué)研究院. 農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè):下冊(cè)[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2007.

    [21] 李霞,劉本學(xué),張三川. 基于MATLAB軟件的凸輪輪廓曲線設(shè)計(jì)及從動(dòng)件運(yùn)動(dòng)學(xué)仿真[J]. 中原工學(xué)院學(xué)報(bào),2012,23(1):41-43,78.

    Li Xia, Liu Benxue, Zhang Sanchuan. The design of the cam profile and the follower kinematics simulation with MATLAB[J]. Journal of Zhongyuan University of Technology, 2012, 23(1): 41-43,78. (in Chinese with English abstract)

    [22] 盛凱,曾南宏. 彈齒滾筒撿拾器的機(jī)構(gòu)特性及其運(yùn)動(dòng)數(shù)學(xué)模型[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),1991,22(1):51-57.

    Sheng Kai, Zeng Nanhong. The mechanical feature and motional math model of spring-finger cylinder pick-ups[J]. Transactions of the Chinese Society for Agricultural Machinery, 1991, 22(1): 51-57. (in Chinese with English abstract)

    [23] 盛凱. 擺動(dòng)從動(dòng)件盤形凸輪機(jī)構(gòu)CAD通用程序設(shè)計(jì)[J]. 吉林工學(xué)院學(xué)報(bào),1986(1):121-129.

    Sheng Kai. General program of CAD of plate cam mechanism with swing driven member[J]. Journal of Jilin Institute of Technology, 1986(1): 121-129. (in Chinese with English abstract)

    [24] 陳魁. 試驗(yàn)設(shè)計(jì)與分析[M]. 北京:清華大學(xué)出版社,2005.

    [25] 徐向宏,何明珠. 試驗(yàn)設(shè)計(jì)與Design-Expert SPSS 應(yīng)用[M].北京:科學(xué)出版社責(zé)任有限公司,2016.

    [26] 潘麗軍,陳錦權(quán). 試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理[M]. 南京:東南大學(xué)出版社,2008.

    [27] 王建楠,謝煥雄,胡志超,等.甩盤滾筒式花生種子機(jī)械化包衣工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(7):43-50.

    Wang Jiannan, Xie Huanxiong, Hu Zhichao, et al. Parameter optimization on mechanical coating processing of rotary table-roller coating machine for peanut seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 43-50. (in Chinese with English abstract)

    [28] 游兆延,胡志超,吳惠昌,等. 1MCDS-100A型鏟篩式殘膜回收機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):10-18. You Zhaoyan, Hu Zhichao, Wu Huichang, et al. Design and experiment of 1MCDS-100A typed shovel-sieve residual film recovery machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 10-18. (in Chinese with English abstract)

    [29] 王雷,張華,張蕾蕾,等. 甜櫻桃采后熱空氣處理抑制青霉病的工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):295- 300.

    Wang Lei, Zhang Hua, Zhang Leilei, et al. Process optimization of hot-air treatment on inhibition of blue mould infection for postharvest sweet cherry fruit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 295-300. (in Chinese with English abstract)

    [30] 蔣恩臣,孫占峰,潘志洋,等. 超級(jí)稻摘穗收獲機(jī)沉降箱性能分析與運(yùn)行參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,46(1):100-105.

    Jiang Enchen, Sun Zhanfeng, Pan Zhiyang, et al. Performance analysis and operational parameters optimization of deposition chamber to clean super rice in stripper combine harvester[J]. Transaction of the Chinese Society for Agricultural Machinery, 2015, 46(1): 100-105. (in Chinese with English abstract)

    [31] 王永維,唐海燕,王俊,等. 蔬菜缽苗高速移栽機(jī)吊杯式栽植器參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(1):91-99.

    Wang Yongwei, Tang Yanhai, Wang Jun, et al. Parameter optimization for dibble-type planting apparatus of vegetable pot seedling transplanter in high-speed condition[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47(1): 91-99. (in Chinese with English abstract)

    Leakage rate and optimization of working parameters for cylinder pickup collector based on spring-finger trajectory

    Yu Zhihong1, Huai Shoucheng1, Wang Wenming2

    (1.,,010018; 2.054035)

    The leakage rateis a very important pickup performance indexer of a grass collector machine. It is critical to determine mechanical structural and performance parameters of a grass collector so that its leakage rate is lower than national standard. The overlap area of two adjacent bullet teeth trajectory profile is called pickup leakage area. A lower leakage rate requires a smaller pickup leakage area and lower height of pickup leakage area. Leakage rate of a collector could be well represented by total pickup leakage area and height of pickup leakage area. In this study, a program named “Parametric design system of spring-finger cylinder pickup collector” was developed using MATLAB 2016b based on kinematics analysis of spring-finger cylinder pickup collector. An innovated spring-finger cylinder pickup collector was designed based on sinusoid accelerated cam mechanism at Inner Mongolia Agricultural University. In order to optimize and minimize leakage rate of this spring-finger cylinder pickup collector machine, a simulation model was established using its mechanical structural and performance parameters. This mathematical simulation model contained five kinds of follower movement law, it provided spring-finger teeth to teeth trajectory profile, spring-finger teeth speed profile and spring-finger teeth acceleration profile. These data were used to check mechanical structural parameters and boundary condition of the spring-finger cylinder pickup collector; and they were also used to calculate total pickup leakage area and height of pickup leakage area of the collector. Central composite response surface method test was taken on the new type of the pickup collector test bench developed by Inner Mongolia Agricultural University. Under conditions of forward speed of 4-6km/h and cylinder rotation speed of 40 – 90 r/min, high-speed camera system was used to track the moving trajectory of the bullet teeth end, the end displacement fitting curves ofspring fingerwere got by using three-time sample insertion method for interpolation, experimental leakage area height and leakage area were calculated. The theoretical leakage area height and leakage area were analyzed by the program. Test results are basically consistent with the theoretical results of the program. Correctness of simulation mathematical model of the program is verified.The study showed the correlation coefficient of height of pickup leakage area between theoretical model and tested result was2=0.998 8; the correlation coefficient of pickup leakage area between theoretical model and tested result was2=0.960 4. Response surface based analysis and test result showed that when forward speed was set as constant, the leakage rate decreased if the drum rotation speed was increased; and when drum speed was set as constant, the leakage rate increased if the forward speed was increased. After increasing the boundary condition of collector, the leakage rate optimization showed that the lowest leakage rate happened when moving forward speed was 4.0 km/h and a drum rotating speed was 54.299 r/min, at which point that the leakage area height was 0.796 cm, and total leakage area was 6.369 cm2. The tests were conducted for Alfalfa grass with different moisture content, when the forward speed was 4.0 km/h and drum rotation speed was 55 r/min, leakage area rate of the spring-finger cylinder pickup collector were all lower than 25% national standard.

    agricultural machinery; models; optimization; pickup collector; leakage rate; working parameters

    2017-08-04

    2017-12-31

    國家自然科學(xué)基金項(xiàng)目(51365035)

    郁志宏,河北邢臺(tái)人,教授,博士生導(dǎo)師,主要從事農(nóng)牧業(yè)機(jī)械智能化研究。Email:yzhyqyzhyq@126.com

    10.11975/j.issn.1002-6819.2018.04.005

    S225.2+3

    A

    1002-6819(2018)-04-0037-07

    郁志宏,淮守成,王文明. 基于彈齒軌跡的滾筒式牧草撿拾器遺漏率及工作參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):37-43.doi:10.11975/j.issn.1002-6819.2018.04.005 http://www.tcsae.org

    Yu Zhihong, Huai Shoucheng, Wang Wenming. Leakage rate and optimization of working parameters for cylinder pickup collector based on spring-finger trajectory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 37-43. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.04.005 http://www.tcsae.org

    猜你喜歡
    彈齒遺漏凸輪
    來自動(dòng)物星球的挑戰(zhàn)(二)小五狼遺漏的線索
    彈齒滾筒式撿拾裝置的結(jié)構(gòu)設(shè)計(jì)
    遺漏的光陰
    鴨綠江(2021年17期)2021-11-11 13:03:41
    軸流式全喂入花生收獲機(jī)撿拾機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)
    水平旋轉(zhuǎn)摟草機(jī)彈齒運(yùn)動(dòng)學(xué)分析
    凸輪零件的內(nèi)花鍵拉削工藝的自動(dòng)化生產(chǎn)線
    基于UG&VERICUT的弧面凸輪多軸數(shù)控加工仿真實(shí)現(xiàn)
    基于MATLAB的盤形凸輪逆向工程
    彈齒滾筒式撿拾裝置彈齒的靜力學(xué)分析
    凸輪機(jī)構(gòu)在“S”型無碳小車中應(yīng)用的可行性
    旺苍县| 若尔盖县| 房产| 洞口县| 黔东| 宝丰县| 泗水县| 闽清县| 鸡东县| 开化县| 浦东新区| 团风县| 桐梓县| 涿鹿县| 于田县| 辛集市| 清涧县| 达孜县| 桂林市| 新昌县| 和平区| 美姑县| 吉木萨尔县| 睢宁县| 屏南县| 康保县| 永仁县| 湖口县| 永济市| 周至县| 新巴尔虎左旗| 中西区| 新干县| 泽普县| 嵊州市| 临邑县| 洛阳市| 河西区| 涟水县| 天等县| 衢州市|